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(Random Multiplicative Multifractal Measures, Part ITI)

Julien Barral and Benoit B. Mandelbrot

ABSTRACT. This is the second of three papers devoted to a class of random
measures generated by multiplicative processes.

Part I surveys the main motivations which led B. Mandelbrot to intro-
duce such statistically self-affine multifractal measures, from the initial limit
lognormal processes to multiplicative cascades of random weights, and finally
the multifractal products of pulses. A discussion contrasts the recent class
of multifractal products of cylindrical pulses with the well-known canonical
cascade measures.

This Part II presents the examples of Part I as particular elements of a
class of random measures generated by multiplications of functions for which
several fundamental problems, namely non-degeneracy, finiteness of moments,
dimension of the carrier and multifractal analysis can be studied and solved.
The results complete Kahane’s general theory of T-martingales and are applied
to new examples.

Part IIT will provide the proofs of the results obtained in Part II.

1. INTRODUCTION

Random singular measures obtained as limits of nonnegative multiplicative
martingales were introduced in [M1, M2, M3] to provide models for turbulence.
[M1, M2, M3] raised and partly solved three fundamental problems concerning the
limit measure p. Is g non-degenerate, that is positive with positive probability? If
so, under what condition the moments of high orders of ||u|| diverge, and what is the
smallest Hausdorff dimension of a set carrying all the mass of i 7 Best known is a
supclass of measures constructed in [M2, M 3], namely canonical cascade measures,
CCM. See Section 6.1 of this paper or Part I [BM2] for a construction. For the
CCM, [KP] confirmed the conjectures in [M2, M3] in definitive fashion. Recall
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2 Non-degeneracy, moments, dimension, and multifractal analysis

also that CCM were introduced to simplify the construction in [M1] and allow the
above mentioned questions to be answered. Returning later to the measures defined
in [M1], whose construction involves lognormal multiplicative martingales, [K2]
developed a theory of Gaussian multiplicative chaos. The fundamental problems
were solved for certain examples reducible to CCM, and partial answers were given
for certain other classes of constructions. This theory was extended in [K3] to
non-lognormal multiplicative martingales. A Lévy stable multiplicative chaos was
introduced in [Fa2, Fad4] that illustrates the theory with another class of examples.

At their level of generality, [K2, K3] and [Fa2, Fa4] obtain non-degeneracy
for certain classes of martingales via sufficient conditions for L? (p integer > 2)
convergence. Indeed the L? theory of these martingales is particularly manageable.
Then, general sufficient conditions are given to find a lower bound for the dimension
of the limit measure carrier.

Let us now return to the statistically self-similar CCM for which there exists
a necessary and sufficient condition for L' convergence. For fine results — such as
sufficient condition for LP convergence with p close to 1 — one seeks explicit forms
that would apply, if perhaps not for the general construction of [K3], at least for
a useful large subclass. Such a class is investigated in [WaWi], which generalizes
CCM by allowing the random weights to be governed by a Markov chain defined
recursively along the branch of the b-adic tree. Another such class consists in the
new examples of statistically self-similar measures introduced in [M4], namely the
(grid free) multifractal products of cylindrical pulses, MPCP, recently extended
in [BaMu]. MPCP are studied in [BM1], and their non-statistically self-similar
extension, in [B6]. Part I ([BMZ2]) discusses CCM, MPCP and also a third class
of (semi-grid free) measures that illustrate the theory in [K3], namely Poisson
canonical cascade measures, PCCM.

To study MPCP, [BM1] introduces reductions that make applicable the mate-
rial originally developed for CCM. Moreover, it turns out that the MPCP structure
is complex enough to enable the approach in [BM1, B6] to derive general results
for a more general subclass M of random measures in the theory in [K3].

Section 2 completes the theory of M provided in [K3]. We provide an LP
(p € (1,2]) sufficient condition for non-degeneracy in M. Section 3 is devoted
to examples, that include CCM, PCCM, MPCP and their extension in [BaMul].
Another topic consists in the multifractal products of pulses, MPP, that [M4]
introduces together with MPCP. Those pulses need not be cylindrical. Section 4
deals with the almost sure simultaneous construction of uncountable families of
non-degenerate measures of this type and provides a lower bound estimate for the
dimension of the carrier. This problem plays a fundamental role in the multifractal
analysis of statistically self-similar limit measures in M. Section 5 gives satisfactory
answers to the problems of non-degeneracy, finiteness of moments (of positive and
negative orders), dimension of the carrier, and multifractal analysis for a subclass
M' of statistically self-similar measures in M. Section 6 applies the results in
Section 5 to new constructions that illustrate M'.
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2. NON-DEGENERACY FOR INFINITE PRODUCTS OF RANDOM
INDEPENDENT FUNCTIONS

In this section, a sufficient condition for LP convergence (1 < p < 2), and
so non-degeneracy, is obtained for a subclass of the general construction of mul-
tiplicative chaos in [K3] ([K3], Theorem 3, provides general sufficient conditions
for degeneracy, as well as a necessary and sufficient condition for L? convergence).
This subclass includes the fundamental examples mentioned in the introduction
(see also Section 3).

2.1. The general construction. In [K3] theory, random measures are con-
structed on a locally compact metric space. Here, we are interested in such random
measures constructed on R. Without loss of generality, we give their construction
on [0,1], and at the end of Section 3 devoted to examples we will specify when a
construction has a natural extension to R. Section 4 will obtain these measures as
projections of measures constructed in the same way, but on the boundary of an
homogeneous tree.

In the sequel, if K is a compact metric space, weak convergence of measures on
K means weak* convergence in the dual of C'(K), the set of real valued continuous
functions on K.

Let (92, B,P) be the probability space on which the random variables in this
paper are defined.

For every Borel subset B of R?, denote by B(B) the o-field generated by the
Borel subsets of B.

Let o be a bounded positive Borel measure on [0,1]. Consider a family of
measurable functions Q. : ([0,1] x Q,B([0,1))®B) = (Ry,B(R})),0<e <1, and
g, a nonnegative function in L!([0,1],0) such that f[0,1] q(t)do(t) > 0.

For € € (0,1] let F. be the o-field generated in B by the family of random
variables {Qx(t, ')}tE[O,l], A€[e,1]-

Assume that {Q.}o<-<1 satisfies the following property

(P1) There exists a set D C [0,1] of full o-measure such that for all t € D,
(Qs_1(t, -))S>1 is a right-continuous martingale with respect to (]—"s_l)s>1, with
expectation 1. Moreover, with probability one, for every eq € (0,1], there exists
a positive integrable function h(-,w) such that sup. <.<; Qe(t,w) < h(t,w) for o-
almost every ¢ € [0,1].

Denote by p. the measure on [0,1] whose density with respect to o is

e (1) = Q.00

It follows from [K3] that with probability one, the measures p. converges
weakly, as ¢ — 0, to a non-negative measure u. It also follows that if a given
point ¢ € [0,1] is not an atom of o, then ¢ is not an atom of p almost surely.

Since we can substitute to o the measure defined by ¢(t).do(t), without loss of
generality we assume that ¢(¢t) = 1 in the sequel. Sometimes the measures p. and
1 will be denoted respectively by Q. - o and @ - 0.
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REMARK 2.1. (1) Here, the martingales are indexed by parameters ¢ tending to
0 in connexion with the fact that in the examples, letting £ tend to 0 influences the
values of the martingale (u.) only at small scales. In fact, in [K3] the martingale
is parametrized by a discrete parameter n € N* and this martingale (@) is taken

so that E(Q, (t)) = q(t).

The fact that the parameter € ranges in an interval upper bounded by 1 is an
arbitrary choice. This upper bound could be replaced by any other 7" > 0 in the
definition.

(2) The existence of the function h in (P1) is required to ensure, via the
dominated convergence theorem, that for every f € C([0,1]), the family of random

variables ( f[O,l] Vi (t)dps_l(t))s>1 forms a right-continuous martingale. Then, the

approach in [K3] works in the continuous parameter context.

2.2. The subclass M. We add the following assumptions:
(P2) the family {Q.} possesses a factorization

QE' = QEQE,E’ (0 <é <e< 1);
with Q.. =1, and {Q. } having the same measurability property as {Q:}.

For ¢ € (0,1] and every nontrivial subinterval I of [0, 1] let 7’; be the o-field
generated in B by the families of random variables {Q: x(t,-)}ter, ac(0,c)- Denote
?[50’1] by F..

(P3) For every 0 < e <1, F. and F. are independent.

(P4) There exists § > 0 such that for every e € (0,1] and every family G
of nontrivial subintervals of [0,1] of common length € such that d(I,J) > fe for
every I # J € G, the o-algebra’s ?ﬁ, I € G, are mutually independent (d(I,J) =
inf{lt—s|: tel, seJ}).

If properties (P1) to (P4) are satisfied, we say that ) - o belongs to the class
M.

If, moreover, the stationary property

(P5) The probability distribution of Q. (t,-) does not depend on ¢ (more pre-
cisely ¢ in the set D introduced in (P1))

is satisfied, then for p > 0 define (independently of ¢t € D)

. log E(Q< (1))
0 =1 — 7
olp) =lm e = 1)
Notice that due to the martingale property of (Q.(t)), E(Q:(¢)?) is monotonic.

log, E(Qb—n (t)p)

Consequently, 8¢g(p) is also equal to limsup,,_, ., for every b > 1.

2.3. Toward non-degeneracy in M. LP convergence results. In this
section, we assume that 1 is not an atom of . For every integer b > 2 and n > 0,
let A ={0,...,b—1}" and for w € A" let I, denote the b-adic semi-open to the
right interval naturally encoded by w.

THEOREM 2.2 (LP convergence).
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(1) Assume that properties (P1) to (P4) hold. Let p € (1,2]. Assume there
exists an integer b > 2 such that

(2.1) > ( > o) /

n>0 \weAn T

1/p
E(Qp-n-1(t)) da(t)) < 0.

Then u:([0,1]) converges to u([0,1]), as € — 0, almost surely and in LP
norm.

(2) Assume property (P1) holds. p.([0,1]) converges to u([0,1]), as € — 0,
almost surely and in L? norm, if and only if

sup / E(Q:(s)Q:(t)) do(s)do(t) < oo.
£€(0,1) J[0,1]?

In Theorem 2.2, if ¢ is the Lebesgue measure ¢, the sufficient condition (2.1)
becomes

1/p
(2.2) be”“*l/m (/ E(Qp-- (1)) dt) < 00,
[0,1]

n>0
which holds for some b > 2 if and only if it holds for all b > 2.

Following the [BrMiP] setting (see also the references therein), given an integer
b > 2 we define the multifractal function of o by

. 1
¢ (p) = limsup — log;, Z o (Ly)*.
n—oo T
weEA™
In fact, this quantity does not depend on b > 2 for p > 0. If (P5) holds, then a
simpler sufficient condition than (2.1) for L? convergence is given by the following
corollary.

COROLLARY 2.3. Assume properties (P1) to (P5) hold. Letp € (1,2]. Assume
(2.3) vs(p) +0g() <0 (1—p+9Q(p)<OifU=€).

Then pe([0,1]) converges to u([0,1]), as € — 0, almost surely and in LP norm.

REMARK 2.4. (1) The second part of Theorem 2.2 is found and pointed out
as “particularly manageable” and useful in [K2, K3]. Indeed, it provides enough
information in many cases [K2, Fa4, K5, Fa5].

The first part of Theorem 2.2 now provides a simple sufficient condition for LP
convergence (p € (1,2]) in a subclass of constructions. This result generalizes the
one obtained in [B6] and recalled in the next section. Moreover, when considering
old or recent statistically self-similar examples, for p € (1, 2] one recovers the same
sufficient (and necessary) condition derived by another approach using the self-
similarity (see [KP], [BM1], [BaMu]). This result is based on a combination of an
inequality by von Bahr and Essen ([vBahrE]) and properties (P2) to (P4). These
properties capture those used in several particular examples of such martingales
to derive LP convergence via the [vBahrE] inequality ([Bi2],[B5],[B6],[Fa6]). For
example (2.3) is derived in [Fa6] in the particular case where the martingale density
Qp-n /2 is the CCM one. We notice that the construction of [Fa2, Fa4] belongs to
M.
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(2) As will be shown in proving Theorem 4.2 in Part IIT ([B7]), Theorem 2.2
can be extended to similar complex-valued martingales. This is done in [Bi3] and
[B6] in particular cases.

(3) There is almost no hope to find a general criterion avoiding a condition of
high frequences decorrelation like (P4). Indeed, consider the example of generalized
Riesz products with random phases studied in [BCM]: b is an integer > 2, W a
nonnegative integrable 1-periodic function, and (¢n)n>0 a sequence of uniformly
distributed in [0,1) independent random variables. There, Q. is given by

n
Q-(t) = [[W*t+er) (ce@® " b "),
k=0

Conditions (P1) to (P3) hold but (P4) does not. For o = ¢, non-degeneracy holds
if and only if the martingale . ([0,1]) is almost surely equal to 1. Moreover, this
fact is characterized in terms of the vanishing of certain Fourier coeflicients of W.

(4) When o is the Lebesgue measure and (P5) holds, our result (Corollary 2.3)
is of the same kind as the one obtained in [WaWi] for certain measures in the class
described in the introduction of this paper.

3. EXAMPLES OF MARTINGALES SATISFYING CONDITIONS (P1) To (P4).
3.1. Products of Pulses associated with point processes.

DEFINITION 3.1 (Cylindrical pulse). Given a nontrivial subinterval I of R,
a cylindrical pulse based on I is a simple function P : R — R, of the form

P(t) = W(I)11(t) + 11 (t),

where W(I) is a constant and I¢ denotes the complement of I. Given a point
M = (t,)) € R x R}, Py will denote a cylindrical pulse based on the interval
I :=[t—X\t+A).

DEFINITION 3.2 (Pulse). Given a nontrivial subinterval I = [a,b) of R and
a nonnegative function W € L'([0,1]), the pulse based on (I, W) is the function

P:R — Ry defined by

P(t) = W (=2 ) 1 (8) + 1oy 0).

Given a point M = (t,\) € R x R%, Py will denote the pulse based on (Ins, W).

Let S be a locally finite subset of R x R , either deterministic, or defined by a
random Poisson point process with locally bounded positive Borel intensity measure
A.

Let {Bj }r>1 be a partition of R x (0,1] into Borel subsets whose A-measure is
positive and finite.

If S is deterministic, define Ny to be the cardinality # .S N By of SN By. If
Ni > 1, denote by My 1, ..., My n, the elements of SN By. The numbers N, and
the My, 1 <n < Ny, are considered as constant random variables.

In order to obtain a Poisson point process S with intensity A ([Ki]), let Ap,
denote the restriction of A to B(B},) and choose a sequence (M, )n>1 of By-valued
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. . . . A .
random variables with common distribution ﬁ. Then denote by Ny a Poisson

variable with parameter A(By). Assume that the previous random variables are
mutually independent. Finally, define S = {Mj n; 1 <k, 1 <n < Ni}.

Products of cylindrical pulses. This subclass of M includes CCM, PCCM
and MPCP, which are discussed in Part I [BM2] and also in Section 6 later in this
paper.

Let W be a non-negative integrable random variable, and fix (Wg,n)n>1 a
sequence of copies of W. It will be assumed that E(W) > 0 when the set S is
deterministic.

Assume that all the random variables My, ,,, Ny and Wi, ,,, k,n > 1, are mutu-
ally independent.

Now, for M = (tm, Am) = Mg, € S denote by P the cylindrical pulse based
on Ips such that W (Ia) = Wiy, also denoted Wy

Then obtain {Q. }o<-<1, which satisfies properties (P1) to (P4) (with g = 2),
as

[vesnirsey Pu(t)
E (HMESO{AZE} PM(t))

This can be reformulated as follows: for alle € (0,1] and ¢ € R, define the truncated
cone Cc(t) = {(s,A) e Rx (0,1]; t — A< s<t+ A, e <A<1}. One has

Q- (t) =

0. = wesnen
E (HMeSncs (t) WM)
(E(W)) TSN H W (S deterministic),
— MeSNC.(t)
exp (—AC(t)) ®W)—-1)) J] Wum (S Poisson).

MeSNnC, (t)

REMARK 3.3. (1) We see that changing W into yW with v > 0 does not
affect the value of the density when S is deterministic. Consequently, normalizing
with the term (E(W))™# S0C®) g equivalent to changing W into W/E(W), i.e.
assuming E(W) = 1.

Also, when S is a Poisson point process, no normalization is necessary when
E(W) =1.

(2) Given v > 0, one can change the interval Ipr = [tar — A, tar + Apr) into
Ing = [t — YAM, tar + YAum) without changing the structure of the construction.
This only affects 8 which is changed into v8. Then C.(t) = {(s,A) € R x (0,1]; t —
A< s<t+yA e< A< 1}

(3) For the computations of the expectations of products of functions associated

with Poisson processes involved in all this section, the reader is referred to the proof
of Lemma 7.1 in Part IIT ([B7]).
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Products of non-cylindrical pulses. Fix W a nonnegative function in
L([0,1),¢), and extend it on R by 1-periodicity. Assume that W is non identically 0
when S is deterministic.

If S is deterministic, consider (¢nr)aes a sequence of independent random
phases which are uniformly distributed in [0,1). Then for M € S define Py, as the
pulse based on (Ing, W (- + dur)).

If S is the Poisson point process with intensity A, define Py to be the pulse
based on (Inr, W).

Then obtain {Q. }o<-<1, which satisfies properties (P1) to (P4) (with g = 2),
as

HMGSn{,\ZE} Py (t)
E (HMeSn{Azs} PM(t))
The expression (3.1) simplifies to be

—# SNC.(t) A\
0.t = ( W () du> I (”‘f’M ~far M)
[0,1]

MeSNC. (t) 2Am

(3.1) Q:(t) =

when S is deterministic and the property
(3.2) V MeS, 1/(2\y) €N
holds; the expression (3.1) simplifies to be

Q:(t) = exp [—A (cs(t))( . 1]W(u) du—l)] I w (M)

MeSnC.(t) 2Am
when S is a Poisson point process and the property
(3.3) A is invariant by horizontal translations

holds.

REMARK 3.4. The choice of (Bk,Nk, (Mk,n)n21)k21; ((Wk,n)nZI)kZI and
((én,,. )n>1)k>1 affects neither the probability distribution of the stochastic pro-
cesses (Qc(t))ee(0,1], ter and Q. (t))e(0,1], ter, nor those of the other random vari-
ables defined in this paper.

Combining both constructions together. When S is deterministic, if the
¢urs are chosen independent of the Wjys, one also can consider the product @5 =
Qsés to get a more elaborate element of M.

When S is a Poisson point processvaE, éa and their product @E have been

considered in [M4] when E(W) = f[o ;W (t)dt =1 and the intensity of S is

dtd)
A, (dtd)) = g o (P>0).

The element @ - £ of M so obtained is what [M4] calls multifractal products of
pulses, MPP (see Section 6).
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For a general choice of the intensity A and the pair (W, W), the correct combi-
nation is not the product Q.Q. but the martingale obtained with the products of
pulses Py (t)Pps(¢)

O.(t) [vesnirsey Puy (t)Pa (t)
E(Muesninze PuPu(t))
Under (3.3) this simplifies to be
~(t—1 A
[ Wi (ﬂ)

MeSNC.(t) 2Am

exp [A (C-(1)) (]E(W) W (u) du — 1)1
[0,1]

@E (t) =

Now let us restate Theorem 2.2 for these constructions. R

The measure (). - o is also denoted by pu., and the limit measure @ - o by u.
For t € R, define C(t) as being (J,. ., C<(t).

For p > 0, define

0(p) = log E(W?) — plog (W) N
6(p) = log f[O,l] W (u)? du — plog f[o,l] W (u) du.

THEOREM 3.5 (L? convergence, deterministic S). Assume (3.2) holds if
W #1.
(1) Let p € (1,2]. Suppose there ezists an integer b > 2 such that

> (% et

n>0 \wecAn" w

1/p
exp ((G(p) + g(p))# SN Cb—n—l(t)) da(t)) < 0.

Then u:([0,1]) converges to u([0,1]), as € — 0, almost surely and in LP
norm.
(2) pe([0,1]) converges to u([0,1]), as € — 0, almost surely and in L? norm,

if and only if
/[0 1]2 xp ((0(2) + 5(2))# SN C(t) n C(s)) dO’(t)dU(s) < o0,

If #5 N Cp-n(t) is equivalent to n uniformly in ¢, we have Og(p) = (6(p) +
8(p))/log(b). Then condition (2.3) simplifies to be

¢s (p) + (0(p) + 0(p)) / Log(b) < 0;

when @5 is the martingale associated with CCM, this coincides with the sufficient
condition in [KP] when ¢ = £ and Theorem B in [Fa6] for a general o.

If S is a Poisson point process, for p > 0 define

8(p) = E(W?) W)Pdu—1—p <]E(W)
[0.1]

W(u) du — 1) .

[0,1]

THEOREM 3.6 (LP convergence, Poisson point process S). Assume (3.3)
holds if W # 1.
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(1) Let p € (1,2]. Suppose there ezists an integer b > 2 such that

2

n>0

1/p
3 oI, /1 exp (é(p)A (c,,_n_l(t))) da(t)) < 0.

wEA™

Then u:([0,1]) converges to u([0,1]), as € — 0, almost surely and in LP
norm.

(2) pe([0,1]) converges to u([0,1]), as € = 0, almost surely and in L? norm,
if and only if

/ exp (B(2)A (€(1) NC(5))) do(t)do(s) < co.
o2

When (3.3) holds, the probability distribution of Q. (¢) does not depend on t.
Then condition (2.3) becomes:

(3.4) ¢o(p) +ab(p) <0,

where @ is a parameter that only depends on the geometry of the Poisson point
process and measures the size of the expected number of points in C. (t) with respect
to the same number in the statistically self-similar case for which A = A, with p = 1:

o = limsup M
e—0 log(1/e)
In the particular case of MPCP, one recovers the sufficient condition found in
[BM1].

REMARK 3.7. Theorems 3.5 and 3.6 are both corollaries of Theorem 2.2. When
W and W are positive, Theorem 3.6 can be obtained as a corollary of Theorem
3.5 by conditioning on S and using the Jensen inequality. In fact, if one defines
a(p) =6(p) +0(p) and A(B) = #S N B when S is deterministic, Theorems 3.5 and
3.6 are formally the same. -

Theorem 3.6 and (3.4) are established in [B6] when W = 1. When S is any
locally finite deterministic set, the result is new (when S is the geometric realization
of an homogeneous b-adic tree and W = 1, Theorem 3.5 is a consequence of results
in [Bi3] for martingales in the branching random walk) .

3.2. Extension of products of cylindrical pulses: log-infinitely divisi-
ble cascades. This class of random measures is constructed in [BaMu]. It illus-
trates [K3] theory. Also it is contained in M and includes MPCP generated with
positive random weights.

Let us recall that the characteristic function E(e**X ) of a real valued infinitely
divisible random variable X takes the form e#=m(€) with

2
Pram,s(€) = mE — - + /R (e — 1~ igsin(u) ) n(du),

where m, s € R and the nonnegative Borel measure 7 is called the Lévy measure of
X and is so that flu\<1 u?r(du) < oo and 7((—1,1)¢) < oo.
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Products of cylindrical pulses associated with Poisson point processes (see Sec-
tion 3.1) have the following property when W > 0: for every ¢t € R and £ € (0,1),
the characteristic function of the random variable log Q. (t) is given by

E (e 0<0) = exp [A(C.() (~i€ (BW) — 1) +E(e s W) —1)] .

It is straithforward to verify that this is the characteristic function of an infi-
nitely divisible random variable. When the Poisson intensity A = pA; (p > 0,
A1 (dtd\) = dtd\/N?), that is when one constructs MPCP, this property is an im-
mediate consequence of the i.i.d. property of the W's and the self-similarity property
of A;.

[BaMu] exhibits the following fact. Let 7 be the measure on R defined by
7(du) = Plog w(du). The log-density log Q. (t) of MPCP is equal to P(C-(t)), where
the mapping P is defined on the Borel subsets B of Rx R* of finite Aj-measure by

P(B) = —pA(BYE(W) —1) + 3 log(Wn).
MeSnB
It follows that in the sense (specified below) of [RaRo], P is an “independently
scattered infinitely divisible” random measure on R x R} ; moreover, the Lévy
measure associated with P is p.

The construction of the more general “log-infinitely divisible cascades” per-
formed in [BaMu] uses the following result of [RaRo]: If 7 is the Lévy mea-
sure of an infinitely divisible random variable, one can associate with 7 and every
(m, s) € R? arandom function on the elements of B(R x R}.) of finite A;-measure,
namely Pr s, which is called “independently scattered infinitely divisible random
measure” on R X R} because it possesses the following properties:

(1) for every B € B(R x R’ ) such that A;(B) < oo,
E(eispw,m,sw)) = e#mme@M(B) (¢ € R);

(2) for every finite family {B;} of pairwise disjoint elements of B(R x R% ) such that
A1(B;) < o0, the random variables Py, s(B;) are mutually independent.

Now let J be the interval {q € R : f‘u|>1 e? m(du) < oo}. Define the con-
vex function ¢ m s(-) to be equal to cp,r,“,s(—_i-) on J and +oco outside of J. By
construction,

E (equ,m,s(B)) — ¥mm.s(@A1(B)

for every g € J and every Borel subset B of R x R} of finite Aj-measure.
If, moreover, 1 € J and (m, s) is chosen so that ¢z 1, s(1) = 0, [BaMu] obtains
the positive martingale defined by

QE (t) = eP"",m,.s (Cz (t))

and considers @ -£. It is not clear that in general there exists a version of the process
(Q<(t)) which satisfies (P1) or the right-continuity involved in Remark 2.1(2). Such
a property holds for example when f\u|<1 |u|m(du) < .

Another remarkable point in [BaMu] is that the cone C.(t) can be replaced by
a modified one, yielding a nice “exact scaling property” for the limit measure @ - £.

After the construction provided in [BaMul], it is immediate to perform the
previous construction with respect to any locally bounded positive Poisson intensity
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A. If (P1) (or the right-continuity involved in Remark 2.1(2)) does not hold for
any version of (), we consider the almost sure weak limit measure p of a sequence
e, such that €, — 0 as n — oco. In this case, Q). is redefined to be equal to Q.,
on (€n+1,€n], and so it satisfies (P1). Remarking that Q. also satisfies properties
(P2) to (P4) (again with 8 = 2), Theorem 2.2 becomes:

THEOREM 3.8 (L? convergence, log-infinitely divisible cascades).
(1) Let p € (1,2]. Suppose there ezists an integer b > 2 such that

1/p
> ( > oIt /1 exp (¢F,m,s(p)A(Cb_n_1(t)))da(t)) < 00.

n>0 \weA”

Then u:([0,1]) converges to u([0,1]), as € — 0, almost surely and in LP
norm.

(2) pe([0,1]) converges to u([0,1]), as € — 0, almost surely and in L* norm,
if and only if

/[0 e exp (¢ﬂ,m,s(2)A (C(t) n C(S)) ) da-(t)da.(s) < 00.

When (3.3) holds, the probability distribution of Q.(t) does not depend on t.
Then condition (2.3) becomes:

0o (p) + Ar,m,o(p) <O.
Here again, for p € (1,2] and o = £, we recover the sufficient (and almost
necessary) condition for convergence in L? for u.([0,1]) when A = A; ([BaMu)).

REMARK 3.9. (1) When ¢, s is the characteristic function of a Gaussian
random variable, the continuous base free martingale Q. - o illustrates [K2] theory
as well as [M1].

MPCP belong to constructions involving infinitely divisible laws without Gaus-
sian part. The way they can be perceived as associated with Gaussian Py, s(B)
is conditionally on the Poisson point process when W is lognormal.

(2) The scaling of moments property in the construction of [BaMu] possesses
a weaker version in absence of self-similarity [CRA].

(3) Since the examples of functions Q.(t) associated with Poisson point pro-
cesses or intensities are in fact defined on the whole real line, if o is a locally
bounded positive Borel measure defined on R, an almost sure weak limit @ - ok
of Q. - o, as € — 0, is defined on every compact subset of R. By choosing an un-
bounded increasing sequence of positive numbers (a,) such that o({—an,an}) =0
for all n, we can define almost surely on R a measure () - o whose restriction to each
K, = [~an,a,] is Q - 0|k, . Finally, the measure @ - o is the vague limit, as ¢ — 0,
of the measures Q). - o on R.

4. SIMULTANEOUS CONVERGENCE OF UNCOUNTABLE FAMILIES IN M

We are given a bounded positive Borel measure ¢ on [0, 1].

The simultaneous construction of uncountable families of non-degenerate mar-
tingale limit measures such as p in Section 2 is a natural problem. It arises for
example when studying the multifractal analysis of CCM or MPCP. Indeed, in
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order to get almost surely the whole multifractal spectrum of the measure, it is
necessary to associate such a family of “Gibbs” measures with each sample of the
construction. Moreover, one has to find simultaneous lower bounds for the lower
Hausdorff dimensions of these measures. This is done in [B3] for CCM and [BM1]
for MPCP.

The same problem arises in [BFal], which describes how many times different
points are covered by the random arcs in the Dvoretzky covering of the circle, and
also how many times different points are covered by the random intervals in the
Poisson covering of the real line.

In Section 2, the fact that a given measure-valued martingale u. converges al-
most surely, as € — 0, is a consequence of the nonnegative martingale convergence
theorem in R (see [K3] for details). Theorem 2.2 provides a sufficient condition
for the limit to be non-degenerate. This result makes it possible to study simulta-
neously countable families of such constructions, but tells nothing for uncountable
families.

Roughly speaking, given an uncountable family Q. (¢,w) () of functions satisfy-
ing properties (P1) to (P4), the parameter v ranging in an uncountable set T', the
problem of simultaneous convergence reduces to showing that for any subinterval
I of [0, 1], with probability one, for every v € I, Q.(7y) - o(I) converges as € — 0.

So we are led to study the simultaneous convergence of uncountable families of
real valued martingales Y (-y). This problem appears in the context of multiplicative
martingales related to the dyadic tree structure in [JoLeN]. It is then encountered
in [Bi2, Bi3] in the context of martingales in the branching random walk. These
works inspired [B3] for the simultaneous construction of Gibbs measures. All the
results of simultaneous convergence in these papers are intimately related to the
regularity of v — Y (). Also, a minimal regularity is required. Here, we shall limit
ourselves to the case where the dependence is analytic. For other kinds of regularity,
the reader is referred to [Bi2], [B4, B5, B6]. We also point out that without
assumption (P4) [K7] constructs simultaneously some families of non-degenerate
measures associated with lognormal Q. (¢,-)(7), v € [0,1]. In this context, the
lognormality plays a crutial role in solving the problem.

We consider a measurable subset T' of R¢ (d > 1) and a family of measurable
functions Q. : ([0,1]xT'xQ,B([0,1))®B(L)®B) — (Ry,B(Ry)), 0 < e <1, such
that for every v € T the family {(Q-(:,7, -)}56(0,1] satisfies properties (P1) to (P4)
(and (P1) with the same subset D for all v € I if D differs from [0,1]). Thus we
get a family of measure-valued martingales ((u) = Q-(-,7,") - 0)56(0,1])7@‘ The
assumption on the regularity of this process with respect to v will be specified in
the statement of Theorem 4.2.

It turns out that solving the problem of the simultaneous convergence of mea-
sures p involves the construction of an associated family of measures on an homo-
geneous tree. We introduce these connected measures in the next section.

From now on, we assume that o is atomless.
4.1. Associated measures on an homogeneous tree. We need some new

notations.
Let b be an integer > 2.
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For any integer m > 0 we denote by A™ the set of finite words of length m on the
alphabet {0,...,b—1} (by convention, A° = {@#}). We use |w| to denote the length
m of w € A™ and I, to denote the closed b-adic subinterval [y /" w;b=%,b~™ +
Yo wib~i of [0,1] naturally encoded by w = wy ---wy,. Let A* = [Joo_  A™
and 0A* = {0,...,b— 1}, The set A* UJA* is equipped with the concatenation
operation. For w € A* A, = wdA* denotes the cylinder determined by w, i.e.
Ay = {ww' : w' € 0A*} . Let A* be the o-field of 9A* generated by all cylinders.

For every £ € A* and n > 1, denote by A, (£) the cylinder of the n*® generation
containing .

For every ¢t € [0,1) and n > 1, denote by I,,(t) the closure of the b-adic interval
of the n'" generation, semi-open to the right, which contains t.

For every w € A*, denote the center of I, by t,,. Also denote by f,, the affine
increasing function that maps [0, 1] onto I.

Let d be the usual ultrametric distance on JA* defined by d(#,3) = b~* where
k=sup{i>1: t;---t; = 5, ---3;} (by convention sup () = 0).
Let 7 be the mapping from 0A* to [0,1] defined by
o -
7T(t)= y (fztl---f,----E(')A*).

i=1

Let £ denote the unique measure on (9A*, A*) such that for all w € A*, /(A,) =
blvl,

Since o is atomless, there exists an unique measure & on (0A*, A*) such that
o=con ! and 5(Ay) = d(I) for all w € A*.

If Q - o belongs to M, for € € (0,1] and € JA* define Q. (f) = Q. (w(f)). Also
let i be the measure on (0A*, A*) whose density with respect to ¢ is equal to
@s(f). We also write 1. = @E -o. For w € A*, the restriction of fiy—jw, to A, can
be written as

diy-1w1e = Qp-1w1 ()AL,
where /724‘” is the measure on (A, wA*) whose density with respect to o is

P (8) = Qe 1o (D)

(see (P2) for the definition of Q. /). We also define on I, the measure u!» whose
density with respect to o is

dple

i (t) = Qp-1wi p=1wl(t)-
Suppose now that for every w € A*, the family (Q;"(t, W) = Qp-1wl p-1wle(fu(t), w)),
0 < e < 1, satisfies (P1). Due to [K3], with probability one, for every w € A*, fift»

converges weakly, as € = 0, to a measure i**. Denote fi*** by i. By construction
we have

He = [l © 7"'71:
and

Ly — 7 Aw -1 I
/J’E - :us om ) /J’

Also, fundamental relations for the sequel arise:

— ﬁAw oL,
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The general functional equation. For alln >m > 1

4D w01 = Y me @)= 3 [ Qo ()l (@),

weEA™ weAm 1w

If, with probability one, ¢t — Qy-=(t) has only jump discontinuities, then
(4.2) ply) = [ Qup-m(t) pl (dt) Y w € Ap.
L

(Proof: ¢ being atomless, due to [K3], with probability one, the b-adic points
of [0,1] are not atoms of u, so u(l,) = limy, 4o pp-= (I); moreover, again by
[K3], conditionally on Fy-=, almost surely the countable family of jump points of
t = Qp-m(t) is of p'v-measure 0, since p* is independent of Fy-m by (P3), so

limy, 00 pp—n (Iw) = f[w Qb—\w| NIW (dt))
It follows that

@3 = Y w)= Y [ Qee@ut@) vm>1

wEA™ weA™ Vv

4.2. Simultaneous convergence result. We return to the simultaneous
convergence of the family p2; Y denotes the measure on (0A*, A*) associated
with pY; Qc(t,7) denotes the random variable Q.(¢,7,-). Our assumption is the
following:

(A1): T is a non-empty open set or a singleton. Moreover, there exists an
integer b > 2 such that for every compact subset K of '
(2) for every w € A* the family

ey Qe 20

s>1

is a right-continuous martingale in C(K).

(ii) There exists an open subset Ux of C? such that K C Ug, and for every
m,n €N, Qp-m : [0,1]x KxQ —= Ry and Qp-m p-m—n : [0,1]x K xQ — Ry possess
respectively a measurable extension Q-m and Qp-m p-m-» from [0,1] x Uk x Q to
C; Qp-m p-m = 1. Moreover, with probability one, for every w € A* and n > |w|

€ Ug / Oper (£, 2,w) do(t)
I,

exists and is analytic. One denotes @b—m (t,z,-) and Q\b—m’b—m—n (t,z,-) by @b—m (t, 2)
and Qp-m p-m-n(t, 2) respectively. Also the following properties hold:

(P’1) for every (¢,2) € D x Ug and m > 0, E(@b—m(t, z)) is defined and equal
to 1;

(P’2) for every m,n > 0, Qp-m-1 = Qp-mQp—m p-m-1 and Qp-m p-m-n-1 =
Qp-m p-m—nQp-m—n p—m-n-1; R

(P’3) For every m > 0 and n > 1, the o-algebra’s o (Qy-+(t,2) : t € [0,1], z €
Uk, 0 < k <m) and U(Q\b—m7b—k(t,z) : t €0,1], z € Uk, k > m) are inde-
pendent, as well as U(@b—m7b—m—k(t, z): t€l0,1], z€ Uk, 0 <k <n) and
0 (Qp-m—n p-m-r(t,2) : t€[0,1], 2 € Uk, k >n);
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(P’4) For every m > 0, and every family G of nontrivial subintervals of [0, 1] of
common length b~ such that d(I,J) > Bb~™ for every I # J € G, the o-algebra’s
0(Qp-m p-+(t,2): t€I, z€ Uk, k>m), I €G, are mutually independent.

(7i1) Uk being chosen as in (i) and (i3), for every compact subset K' of Ux and
w € A*, there exists a number p € (1,2] such that

(4.4) Z sup (Z J(va)p_l/I

n>1 2K \ycan we

1/p
E('@b—\wl—"—l(taz)|p) da(t)) < 0.

REMARK 4.1. If assumption (A1) holds with the integer b then it holds for
every integer of the form bV, N > 1.

THEOREM 4.2. Suppose (A1) holds. With probability one, for oll v € T, the
measure (1] converges weakly, as € — 0, to a nonnegative measure Y, and p?
converges to the measure ' = Y o 1. Moreover, if t € [0,1] = Q.(t,7) is
positive almost surely for all v € T, then, with probability one, for all v € T, the

support of uY (resp. 17) is supp(co) (resp. supp(o)).

4.3. Simultaneous lower bounds for dimensions. Given a subset E of
[0, 1], define its o-Hausdorff dimension as

dim, (E) = inf{d > 0: H*°(E) =0}
where

HP(E) = im, inf{d oU:)* : Ec|JUi, |Ui| <6}

Define similarly dimgz (E’) for any subset E of 8A*. Of course, when o = £, one
recovers the usual Hausdorff dimension.

In this section we give sufficient conditions for computing a lower bound for
the lower o-Hausdorff dimension of the measures pu” constructed in the previous
section: the lower o-Hausdorff dimension of a positive measure p on [0, 1] is defined
as dim, () = inf{dim,(B) : B € B([0,1]), u(B) > 0}.

We make the following assumptions (A2)(%)(4¢)(4i%) (iv) (v).

(A2) (i) Assumptions (i) and (ii) of (A1) are strengthened as follows: If
K is a compact subset of I', for every m,n > 0, the probability distribution of
2 €Uk — @b_mib_m_n (t,z) does not depend on ¢t € D. Moreover, for every w € A*
and n > 1,

(rexm [ Qpretai (69 do(0))

s>1

is a right-continuous martingale in C'(K), and
ze€ Uk — / Q\b—|w|,b—|w|—n (t, Z) da(t)
I,

exists and is analytic.
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Next, for z € Ug and p > 1 define
. 1 A~
0(z,p) = limsup — log; E(|Qp-n (¢, 2)[?)
n—oo N

log ]E(|C§b_n p=n—m(t z)|”)
8 (z,p) = limsup s ’ ’
(z,p) im sup muzpl Tog b

0(z,p) is a convex function of p for a fixed z. It does not depend on b.
Also, for p > 1 define

. . 1
¢ (p) =limsup sup sup —log, Y (0(Tuww)/o(Iw))".
n—oo  weA™, m>1 vEA™
o(1y)>0

It is an exercise to show that 8(z,p) < 8 (z,p) and ¢, (p) < 3 (p).

REMARK 4.3. Suppose that o possesses a self-similar structure, for example o
is a quasi-Bernoulli measure (see [BrMiP]) depending on the c-adic grid, ¢ > 2.
Then, the number g’o)(,b) (p) introduced for technical reasons tends to ¢, (p) as b = ¢V
tends to co. This remark and assumption (i7)(a) below together suggest that in

general b must be chosen as large as possible.

(#) Assumption (ii7) of (A1) is replaced by the following one: for every compact
subset K' of Uk, there exists p € (1,2] such that
(a)

& (p) + sup 8 (z,p) < 0.
zEK'

(B) for every § > 0 there exists ng(d) > 1 such that for every n > ng(d) and
ze K'

log E('@b—" p-n—m (t,2)|P)
’ ’ <g® 6.
7snuzpl Tog b < 6% (z,p) +
Notice that assumption (i)(a) implies that for every v € K, one has ¢, (p) +
0(~y,p) < 0. Since this function of p is convex and its value at p = 1 is (1) +
6(y,1) = 0, and also 6(v, -) is non-decreasing, we deduce that ¢! (11) + g—ﬁ(y, 1+) <
0 for every v € K and ¢/ (11) < 0. Consequently,

0,(1")
— 8i
Q('Y;U) - 1 + (Pfr(]-—i_) € (07 1];
where o
f (1) == —(~,17).
0,(1%) 2= (3, 17)

(#41) For every compact subset K of T such that K is the closure of its interior, the
function y — g—f}(*y, 1%) is continuously differentiable on the interior of K.
(iv) For every compact subset K of T,

(a) There exists px > 1 such that for every § > 0, there exists ng(d) > 1 such
that for all v € K and q € [1, pk]

%logb E(Qp-=(t,7)?) < 0(v,q) + 6.
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(B)
0(y,1+2) =0, (1" +o(x) (yeK, z>0)

where o(z) is uniform over v € K.

(v) For every compact subset K of ', if n > 0 is small enough, for every n > 1 and
w € A", there exists a random variable M, (n) such that for all v € K

$uD Qe (1,7)' %7 < Mu (1) (@ (twr 7)) "

and either of the following properties (a) or (3) applies

(@)(1) My (n) is independent of v + Qp-n (tw,v) and E(M,(n)) = exp(o(n)) uni-
formly over w € A™. (2) If K is the closure of its interior, for every k > 0 the
function v = Q- p-x-1(ty,7) is almost surely continuously differentiable over the
interior of K, and

0Qp-+ p-k—1
i

sup sup  sup E(Qb-k,b-k-1<tw,v)n (tw,fy)Dzexp(om));

1<i<d yelInt(K) 0<k<n
(B)(1) For every h > 0, E(M,(n)") = exp(o(n)) uniformly over w € A". (2) If
K is the closure of its interior, for every k > 0 the function vy = Qp—k p—r—-1(tw,?)
is almost surely continuously differentiable over the interior of K, and for every
h' > 1 close enough to 1

6Qb_k,b_k_1

6'}’1 (t’w7 ’Y)

1<i<d v€Int(K) 0<k<n

) = exp (o(n)).

sup sup  sup E(Qb—k,b—k—l(tw,v)”"'

Then let (A2) be the collection of assumptions (A2) () (i4)(iii)(iv) and ((v)(a)(1)
or (v)(B)(1))-

Finally, for v € T such that g7 # 0, define P(v) and P'(y) as the following
properties

( log 1" (An(t
lim inf o8 'li ( (ﬂ)) > D(v,0) @7 — almost everywhere
PO n—=0" log & (An(f))
log p (I, (t
liminf ~2F (1)) > D(v,0) p” — almost everywhere,
n—=0 log o (I,(t))
log 7 (An(t -
lim inf — i( (~)) > —¢! (11) [ — almost everywhere
P(y) : 4 n=0 log £(An(t))
1 I,(t
liminf —2 o (In( ))) > —¢! (1Y) p” — almost everywhere.

THEOREM 4.4.

(1) Suppose (A2) holds. Then (A1) holds. Let C be T if T is a singleton or
a C' curve in T'. With probability one, for all v € C, conditionally on
Y #0, P(y) holds and min(dimz(127), dim, (1)) > D(y,0).
Moreover, if the controls in (A2)(v)(a)(2) and (A2)(v)(8)(2) also
hold with n = 0 then, with probability one, for all v € C, conditionally on
i" #0, P'(y) holds and min(dimy{(5"), dim (7)) > —¢, (11) — 6., (11).
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(2) Suppose (A2) holds. Then (A1) holds. With probability one, there exists
I(w) C T such that T'\ I'(w) is of null Lebesque measure and for every
v € T'(w) such that 57 # 0, P(vy) and P'(y) hold as well as the conclusions
of (1) concerning the dimensions.

REMARK 4.5. (1) Assumption (A2)(ii) strengthens (A1)(éii) because in the
proof of Theorem 4.4 we need a uniform control of some moment of order > 1 of
the random variables & (A, )~ 2 (Ay).

(2) In the case where K is a singleton {7}, (A2) reduces to (A2)(7)(i¢) and
((v)(a)(1) or (v)(B)(1)). In fact, in this case one also has the remarkable following
property: with probability one, conditionally on p = u” # 0,

(4.5) —! (17) < liminf M < limsup M <=l (17)
7 n—=0 log £(I,(t)) noo- log £(I,(t)) 7
p-almost everywhere, so the property (4.5) true o-almost everywhere (see [H] for
example) is also true @Q - o-almost everywhere.

Also [K2] and [Fad] obtained the same kind of lower bounds for dim, (u) for
certain choices of () and o.

(3) Theorem 4.4 extends Theorem 10 in [B6] which is concerned only with the
particular families of products of cylindrical pulses associated with a Poisson point
process and o = {. Nevertheless, we mention that results in [B6] involve a C*
regularity with respect to v rather than analyticity.

(4) Theorem 9 of [B6] for products of cylindrical pulses also obtains an up-
per bound for the dimension of a single non-degenerate measure p = @ - 0. Also
simultaneous upper bounds are given for families of measures associated with sta-
tistically self-similar Poisson point processes (Theorem 5 of [B6]), and in this case
they coincide with the lower bounds. It is not easy to state general conditions under
which such an estimate could be derived.

4.4. Application to the multifractality of Q.(t). The virtue of the infinite
products of (random) functions we are interested in is that often they converge
to multifractal limit measures. It is at least the case for statistically self-similar
constructions. When there is no self-affinity, there is no reason why the limit
measure should not be multifractal. But such objects are technically very difficult
to deal with. This is partly due to the difficulty to control moments of negative
orders of pieces of the measure in these cases, and until now the best that can be
done is to compute p-almost everywhere the Hoélder exponent of the limit measure p,
yielding only one point of the multifractal spectrum. Nevertheless, returning to the
construction of these infinite products, the mutifractality of the limit object must
have a conterpart in terms of the high variability of the density when one looks at
partial product of functions after a large number of multiplications. In this section,
we illustrate this idea with a simple, but significative and nontrivial example. Let
A be a Poisson intensity invariant by horizontal translations: A = £ ® v. Recall

A(Ce)

that @ was defined in Section 3 as @ = lim sup ————. Define
c—o0  log(1l/e)

A(Cy—n—m -n
a = inf lim sup sup € \Gy )
b22 nsoo m>1 log b™
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One has @ < @. Then let Q(t,a) be the product of cylindrical pulses associated
with a Poisson point process with intensity A and a W almost surely equal to a
constant a > 0.

Suppose A(C;) = oo as € — 0 and for 3 € R define

log Qc(t,a)

AR

Fy={te0,1]: lim

THEOREM 4.6.

(1) Suppose limsup,_,gev([e,1]) < oo, @ =0 anda # 1. Ifa < 1 (resp.
a > 1), with probability one, for all B € (—o0,1 —a] (resp. [1 —a,)),

dim Fg = ].;

moreover, if 3 >1—a (resp. 3 <1—a) then Fz = 0.

(2) Suppose limsup,_,gev([e,1]) < oo, @ = @ € (0,00) and a # 1. With
probability one, for all v € R such that 1 + @(a” — 1 — va” loga) > 0,

dim Fy10g(a)+1-0 = 1 +@(a” — 1 — ya" loga);

moreover, if v € R is such that 1 + @(a” — 1 — ya"loga) < 0 then
Fox log(a)+1—a = 0.

This result is in fact a consequence of [BFal] because in the particular case
of Theorem 4.6, log Q. (t,a)/A(C.) is closely related to the number of intervals
[tasr — Anr,tar + Anr) associated with points M of the Poisson process S such that
Am > eand t € [ty — Apa,tar +Anr). One of the main tools in proving Theorem 4.6
is the family of measures pu” associated with the family Q.(¢,a”) with T = R and
o = £. Tt turns out that with probability one, y” exists as a non-degenerate limit
for all v such that 1 + @(a” — 1 — va”loga) > 0 by Theorem 4.2, and a lower
bound for the dimensions of sets Fj follows from Theorem 4.4 after showing that
:U’W(Faﬂ 10g(a)+1—a) > 0.

Theorem 4.6(1) is illustrated by v = 3 ., 1, and Theorem 4.6(2) by

n log(n)
v = anz (5%

More general results are obtained in [BFa2] for the examples of Section 3.

5. SELF-SIMILARITY IN M; NON-DEGENERACY, MOMENTS, DIMENSION OF
THE CARRIER, AND MULTIFRACTALITY

In all this section we assume that o is the Lebesgue measure £. We consider an
element @ - £ of the subclass M such that Q1(¢) = 1 almost surely for all ¢ € [0, 1]
and which satisfies the stationary condition (P5) with D = [0,1]. Moreover we
suppose that (). satisfies the following self-similarity property in distribution:

(P6) There exists an integer b > 2 such that, for all w € A*, the stochas-
tic processes (QE(t))te[O,l], cc01] and (Qb"‘"',b““"s(fw(t)))te[o,1], cc01] have the
same probability distribution, where f,, is the increasing affine function that maps
[0,1] onto I,. Moreover, the probability distribution of the stochastic process

(Qb_l(t))te{k/b’(kﬂ)/b) does not depend on k € {0,---b— 1}.
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In this case we say that the limit measure p is weakly statistically self-similar,
because the affinities involved in (P6) depend on the base b. The subclass of M
of such weakly statistically self-similar measures p is denoted by M'.

Define on R the concave function

7(q) = —-1+qg—log, E (1{Qb_1(t)>0}Qb—1(t)q)
. 1
= —14q-— 21_1}(1) m log E (1{Q€(t)>0}Qs(t)q)
with the convention 0 X co = 0 (the second equality above holds because of

(P2),(P3),(P5) and (P6)).

In [ManNoR], a class of self-similar constructions which intersects M’ is also
considered. For the elements of this class, [ManNoR] discusses the L? convergence
and also gives necessary conditions for non-degeneracy and finiteness of moments
of positive orders in terms of 7 that extend those of [M2, M3, KP] for CCM. Of
course, one expects the strong counterpart of such necessary conditions to hold,
that is these conditions to be also sufficient. This is the subject of this section in
the class M'.

It is shown in [BM1] that, with some effort, it is possible for the study of
MPCP to use arguments developed for the study of CCM (in particular in [KP]).
The key point is to relate the more difficult functional equation satisfied by MPCP
(6.2) to the simple one satisfied by CCM (6.1). The importance of these functional
equations is due to the self-similarity of the constructions. It turns out that the
functional equation satisfied by MPCP and the approach in [BM1] to relate MPCP
to CCM are general enough to derive general results on non-degeneracy, moments,
and multifractal analysis for elements of M’. Before stating these results, we specify
the general functional equation (4.3) in Proposition 5.1 and use it to derive from
the theory in [K3] a key argument in the study of non-degeneracy.

5.1. Self-similarity of the limit measure and a fine point in [K3] the-
ory. Remember the definitions of Section 4.1. Given two random variables X and

d
Y, their identity in distribution is denoted by X =Y.
An immediate consequence of properties (P3) and (P6) is the following propo-
sition.

PROPOSITION 5.1 (Self-similarity). Fiz w € A*. With probability one, for
every e € (0,b1*1],

e(Ly) = / Qo1 (8) ditl, (1),
where t — Qp—jw (t) is independent 01} the plv ’s. Moreover, for all f € C(I):
(1) fy, F(t) phe (dt) £ L] fg 1y o Fult) pe(dt) for alle € (0,1]. In particular,
ke | £ [T e -
(2) [y, F(t) " (dt) = Lo fig 4y Fofult) pl(dt). In particular, ||u" || £ |L| ||l

Now let us establish an important fact that will play a fundamental role in pro-
ving sufficient condition for non-degeneracy. Since the random functions Qy-x p-»-1(t),

Il
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k > 1, are mutually independent, it follows from [K3] (Theorem 4) that the oper-
ator on non-negative measures on 9A*

L:p—EQ - p)
is a projection. (By definition if f € C(0A*) then

FOEQp)(dt) =E( [ () Q-p(dt)).)
aA* 8A*

Here, because of (P6), the probability distribution of (A, ) depends only
on |w|. Moreover, since 0A* is totally disconnected, we have ||g|| = |lul|| =
> weam B(Ay) for all m > 0. Consequently, E(u(Ay)) = E([|p|)b~1! for all
w € A* and

(5.1) E(fi) = E(||ul)?.
The operator L being a projection, this yields
(5.2) E(llpll) € {0,1}.

5.2. Non-degeneracy, moments, and dimension of the carrier. Our
results involve certain of the following conditions, which are inspired from the study
of MPCP [BM1]. Let ¢t € [0,1) and for every n > 0 let I, be a closed b-adic
subinterval of [0, 1] of the n'" generation.

(C1) E(sup,er, Qp-=(s)) = ¢(n), where p(n) = o(n);
(C2(q)) ¢ € Ry and

E (sup Qe (s)q) < S ME(Qyn (1)),

s€l,

where @, (n) = o(n);
(Cs(q)) ¢ € Ry and

E( inf Qe (s)q) > e ME (Qyon (1)),

where 4(n) = o(n);

(Cs(a)) g € Ry, and there exists a random variable @), and a stochastic process
t € I, = @,(t) such that Qp--(t) = Q,Q,,(t) for every t € I,,, @, and Q,, are
independent, and there exists a function ¢4(n) = o(n) such that for every ¢ € I,

E(Q4)E(Q.(1)" > e e E(Qp-(1)");

(Ca(q)) Qp-1 >0, ¢ <0, and there exists n > 1 such that

E (( inf Qb—n(s))q> < +oo0.

sel,

REMARK 5.2. In the terminology used in the study of certain dynamical sys-
tems, the above conditions can be viewed as a kind of principle of bounded distorsion
in the mean.

Let p be in M.

THEOREM 5.3 (Non-degeneracy).
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(1) Suppose (C1) holds. If 7'(17) > O then the martingale ([0, 1]) converges
to u([0,1]), as € = 0, almost surely and in L' norm. In particular u is
non-degenerate. Moreover, if Q. is positive, P(u # 0) = 1.

(2) Suppose there exists h < 1 such that (C2(h)) holds. If u is non-degenerate
then 7'(17) > 0.

THEOREM 5.4 (Moments of positive orders). Let h > 1.
(1) SupposeT(h) > 0. Ifh € (1,2], or (C2(q)) holds for every q € {h} (2, h)N
N, then 0 < E(u([0,1])") < +oc.

(2) Suppose 0 < E(u([0,1])") < 400 and (Cs(h)) or (Cs(h)) holds. Then
7(h) > 0.

THEOREM 5.5 (Moments of negative orders). Suppose u is non-degenerate.
Let g < 0. Suppose 7(q) > —oo and (C4(q)) holds. Then E(u([0,1])9) < +oo0.

THEOREM 5.6 (Dimension of the carrier). Assume there exists h € (1,2]
such that 7(h) > 0. Assume also that (C2(h)) holds for every h < 1 close enough
to 1. With probability one, conditionally on pu # 0,

o Jog (A (D)

nn0  —nlog(h) =7'(1) Ji — almost everywhere

and
log p(In(t))
im —————~
n—0 —nlog(h)
In particular, i (resp. p) is carried by a Borel subset of 0A* (resp. [0,1]) of
Hausdorff dimension 7'(1); moreover, any Borel subset of Hausdorff dimension
less than 7' (1) has a null p-measure (resp. p-measure).

=17'(1) p— almost everywhere.

REMARK 5.7. (1) At this level of generality, it is difficult to obtain a more
specified result for finiteness of moments of negative orders. Indeed, CCM and
MPCP already show very different issues with respect to this question. This will
be specified in Section 6.3.

(2) For the class of measures it considers, [WaWi] introduces a “size-biasing”
approach for non-degeneracy and finiteness of moments of positive orders problems.
This method proved to be powerful for CCM. It was used in [BM1] and [BCM]
to show the necessity of 7/(1) > 0 for non-degeneracy under some assumptions. It
seems difficult to exploit the “size-biasing” approach and derive a result of the type
of Theorem 5.3(2) in full generality in M’. Indeed, the example of MPCP shows
that this method uses very specific properties of the construction (see [BM1] or the
proof of Theorem 6.6 in [B7]). Nevertheless it will be used to derive the necessity
of this condition for products of non-cylindrical pulses in Sections 6.1 and 6.2. The
size-biasing method is not adapted to the finiteness of moments of positive orders
problem for MPCP.

(3) If one assumes only 7(h) > 0 in Theorem 5.6, one obtains almost surely
p-almost everywhere 7/(1) as lower bound for the logarithmic density of p; this is
Theorem 4.4.

(4) It is certainly possible to extend the results of this section to the case where
the measure £ on 9A* is replaced by an ergodic invariant Markov measure. Indeed,
for this choice of ¢, problems of non-degeneracy and moments of positive order are
solved in [Fa6] when Q). is the martingale associated with CCM.
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(5) More connections with previous works are provided in Section 6.

5.3. Multifractal analysis. In this section we consider a non-degenerate el-
ement p of M’ and assume 7'(1) > 0.

The Hausdorff and packing dimensions of a subset of R (resp. 0A*) are con-
sidered with respect to the usual distance (resp. d), and denoted respectively by
dim and Dim (see [F2] for definitions).

For t € [0,1] and r > 0 let I(¢,r) denote the interval [t —r,t +r] N[0, 1].

The multifractal analysis of i and p aims at computing the Hausdorff and
packing dimensions of sets of points where these measures possess a given Holder
regularity. Recall that there are two main points of view in studying this problem,
namely the box-multifractal analysis, and the centered multifractal analysis. Both
coincide for g, and among the sets of regularity of particular interest, we select the
following.

For every a > 0, define

= - 1 1 n .E

E, ={t€dA*: limsup log i An(t)) _ al,
n—00 —-n log Q

~ N log ii

E,={t€dA*: liminf log A(An(?)) = a},

_ n—oo  —nlogb

Ela =E, ﬂ Ea-

For p, box and centered multifractal analyses differ. In this paper, the first one will

be concerned with the sets (a > 0)

log (I (1))

«={t€[0,1) im sup _n(log( g) a},
_ e e log p(In(t)
E, ={te[0,1): llnn—l>1c>%f losb - a},

Ea :Eanﬁa;

the other one with
log p(I(t,r))

F,={te0,1]: limsup -2 — 41
el lrn—lmlipl lojgr }

F,={te€[0,1]: lim inf 28 AUIET) _ al,
_ r—0+ logr

F, = FanEa_

Also define the so-called large deviation spectrum of i (for more on large de-
viation spectra, see [R, F2, L-VVoj, Z])
- 1 c A" - b—n(a—i—e) < i Ay) < b—n(a—s)
a >0+~ f(a) = lim limsup og #H{w < fi(Aw) < }
=0 o0 nlog(b)
and the analog of ¢, (see Section 2.3 for the definition of ¢,) for p:
~ . 1 ~
Pr(q) =limsup —log, D fi(Au)".

n—o0 ’LUEA"
REMARK 5.8. (1) The reader is referred to [BrMiP, Be4, 02, BeBh, H,
BeBhH, BBeP)] for theoretical results on box and centered multifractal analyses

of measures. The function ¢, has two counterparts in the centered multifractal
formalism, namely b, and B,, which will be involved in Theorem 5.12. These
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functions are introduced in [O2] in order to respectively estimate Hausdorff and
packing dimensions of the sets S,, S € {F, F, F'}, defined above.

(2) The random measures in the class M’ we are interested in are not covered by
theoretical results mentioned above. It is important to explain why. [BrMiP] and
[02], respectively devoted to box-multifractal analysis and centered multifractal
analysis, compute the dimensions of the above sets for classes of measures y such
that for every q € R, there exists a Gibbs measure p, and a constant C;, > 0 such
that for every ¢ in the closed support of y and n > 1

1 /,L(In(t))qb_"""(‘n
— < <C,
Cq ~ Hq (In(t)) -

(5.3)

in [BrMiP] and

—n\\9p—nBu(q)
1 < w(I(t,0=™))"b <c,
Cy Hq (I(t, bi"))

(5.4)

in [02].

[Bed4], [BeBh] and [BeBhH] find weaker sufficient conditions than in [BrMiP)]
and [02] to compute these dimensions. In particular, their results also cover classes
of measures such that for some ¢ there is no Gibbs measure as above. It is in practice
impossible to decide whether the random measures in M’, like CCM and MPCP,
satisfy these conditions. On the other hand, it will be seen in Part III [B7] (Lemma
5.2 and 5.3) that when p belongs to M', it satisfies properties closely related but
weaker than (5.3) and (5.4).

(3) [BBeP] establishes connections between the approach in [BrMiP] and
[02] and gives sufficient conditions, namely “neighboring boxes conditions”, that
make it possible to perform both multifractal analyses simultaneously. Results are
obtained for quasi-Bernoulli measures as well as CCM. We will adopt this approach
in proving Theorems 5.11 and 5.12 in Part III.

(4) Computing the Hausdorff and packing dimensions of the sets Fo [ F 4 for a < 8
would give the best multifractal description. This was done in a deterministic
context for example in [OW].

Define J = {q eR: ]E(l{||””>0}||u||q) < OO}

Define J = {g € R: 7(q) > —o0, 7'(¢)g — 7(¢) > 0}. We notice that if
T > —o0 in a neighborhood of [0,1], then J contains a neighborhood of [0, 1].

REMARK 5.9. If the condition (Cz(q)) is satisfied for every ¢ € JN(2, oc), then
JNRy C J. This is due to Theorem 5.4 and the fact that condition 7'(¢)g—7(g) > 0
implies 7(gq) > 0 for ¢ > 1. If Q3-1 > 0 and the condition (Ca4(q)) is satisfied for
every g € JNR_, then 7NR_ C J. This is due to Theorem 5.5.

The following conditions (C) and (C’) will be assumed in Theorem 5.11 and
5.12 respectively:

(C)(1) @p-+ > 0.

(C)(2) The condition (C2(q)) is satisfied for every ¢ € J \[1, 2], and the condition
(C4(q)) is satisfied for every g € T NR_.



26 Non-degeneracy, moments, dimension, and multifractal analysis

(C)(3) For every compact subinterval K of 7, if n > 0 is small enough then for
every n > 1 and w € A™, there exists a random variable M, (n) such that for all
ge K

63 (500 Qe 0) (sup Quea) ™) < Mul)Qor ()
and either (o) My (n) is independent of Qy-n(t,) and E(M,(n)) = exp(o(n)), or
(B) E(My(n)") = exp(o(n)) for all h > 1.

If v € A* let i(v) stand for the unique integer such that I, = [i(v)b~1*l, (i(v) +
1)b~1*1]. Then for v,w € A* such that |[v| = |w| define §(v,w) = |i(v) —i(w)|.

(€©)(1): (©)(1).

(C)(2): (C)(2).

(C?)(3) For every e > 0 and every compact subinterval K of JNR* (resp. JNR}),
if n > 0 is small enough then

(i) for every n > 1 and every pair (v,w) € (A™)? such that §(v,w) < b’ = 3 (resp.
b' = 4b + 2) there exists a random variable M, ,,(n) such that for all ¢ € K

(5.6)
1+
@wmwmmﬂ"GwmwwﬂSmemﬁmmmmwmw

tel, tel,

and either (@) M, () is independent of (Qp—n (tw)Qp-n(ty)) and E(M, ,(n)) =
exp(o(n)), or (B) E(My,.(n)") = exp(o(n)) for all h > 1. Moreover, o(n) is uniform
over these pairs (v, w).

(#4) In every neighborhood of 11 there exists h’ such that for all ¢ € K

(5.7)

1 , 1/hl
Z (E (Qb—" (tw)(l-‘rﬂ)qh Qb_" (tv)—ﬂqh )) =0 (b—n(T(Q)—Q—ns/4)> ’
the O being uniform over n > 1 and ¢ € K. Moreover,

v,wEA™
hl
(5.8) sup

0<4(v,w)<b’
qeK, k>1 E (Qp-r p-r—1(tw) DI Qpi o1 (t,)~19h")
v,w€A™, 0<3(v,w)<b’

AQy—k p—k—1 (tw)(l_H')qu—k,b—k—l (tn)™™
dgq

< 0.

REMARK 5.10. Properties (5.5), (5.6) and (5.7) are some kinds of principles of
bounded distorsion, and although reasonable, are supplementary assumptions. It
is the price to pay to obtain general results. Nevertheless, it will be seen that they
are satisfied by CCM and certain products of functions, and also by MPCP under
strong assumptions on the random weight W. The fact that weaker hypotheses
on W are assumed in [BM1] to derive the multifractal analysis of MPCP comes
from a direct use of the specificities of the construction, that is the properties of
the Poisson point process.
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Multifractal analysis on 0A*. Define the Legendre transform of a function
h from R to RU {—o00} by

h*: inf ag — h(q).
o inf ag — h(q)
Define amin = inf 7/(J) and amax = sup 7' (7).
THEOREM 5.11. Suppose 7 > —oo in a neighborhood of [0,1] and (C) holds.
With probability one:
(1) —@5(q) = 7(q) for allg € J.
(2) For every g€ J and S € {E,E,E},
dim S;1(q) = Dim Sp(q) = f(r'(a) = 7' (@)g — () = 7 (~'(a))-

(3) One has 0 < amin < Amax < 0. If 7*(min) (resp. T*(aLnax)) =0, then
=0 for all a € (0, min) (resp. (Qmax,0)) and F € {E,E, E}.

Multifractal analysis on [0,1].

THEOREM 5.12. Suppose 7 > —oo in a neighborhood of [0,1] and (C?) holds.
With probability one:
(1) ¢u(q) = bu(g) = Bu(a) = —7(q) for every g € J.
(2) For everyqe J and S € {E,E,E,F,F,F},

dim S;(g) = Dim S;1(q) = (qQ)g—71(q) = 7" (T'(q)).

(3) One has 0 < amin < Gmax < 0. If 7*(Qmin) (resp. T*(_()émax)) =0, then
So =0 for all a € (0, min) (resp. (Omax,0)) and S € {E,E,E,F,F,F}.

REMARK 5.13. Of course, because of Theorem 5.11, assertions (2) and (3) of
Theorem 5.12 hold for S € {E, E, E} under (C).

6. PRODUCTS OF PULSES ASSOCIATED WITH STATISTICALLY SELF-SIMILAR
POINT PROCESSES

In this section we apply results of Section 5 to fundamental examples that
belong to the class of Section 3.1. The log-infinitely divisible cascades of [BaMu]
will be specifically studied in [BaBMu].

6.1. Geometric b-adic tree. We consider the following geometric realization

of the b-adic tree:
S = {(k_znl/{%) :n>1, k=0,...,b”—1},

and the combination of the associated constructions in Section 3.1. We get the mar-
tingale @E = QE@E. Taking wW=1 yields the construction of CCM. Taking W =1
yields a new construction which is a kind of completely decorrelated counterpart
of the generalized Riesz products with random phases described in Remark 2. 3 In
order to fulfill property (P6), we redefine this martlngale as follows: Q. := Q. /2-
Then properties (P1) to (P6) are fulfilled and p = Q - € belongs to M'.

The associated function 7 is given by
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7(q) = —1+ g —og, (E(1 w0y W) — log, (E(1 7.0, 7)) ,

where

E(l{W>o}Wq) = /[0 1 I{W(t)>0}W(t)q dt

(we choose the normalization E(W) = f[o 1] W(t)dt =1).

We shall make one of the following assumptions on W:if W is positive, let

P(n) = kZ:O | mseu[op’l] ‘log (W(t)) —log (W(s)) ‘ .
t—s|<b™"

(H1) W is positive and ¢(n) = log (o(n)).
(H2) W is positive and Y(n) = o(n).

~ Notice that under each of these principles of bounded distorsion the function
W is continuous.

The following proposition makes it possible to apply Theorem 5.3, 5.4, 5.5, 5.6,
5.11 and 5.12 to the measure p.

PROPOSITION 6.1.

1) (C1) holds if (H1) holds.

2) (Cz(q)) holds if (H2) holds.

3) (Cs(q)) holds if (H2) holds.

4) (Ca(Qq)) holds if W > 0 and E(W?) < co.

5) Suppose E(W?) < oo for q in a neighborhood of [0,1] and (H2) holds.
Then (C) and (C’) hold.

REMARK 6.2. Theorem 5.3(2) can be improved as follows:

THEOREM 6.3. Suppose W > 0 and ¥(n) = o(v/nloglogn). If 7'(17) = 0 then
1 is degenerate.

6.2. Statistically self-similar Poisson point processes. We consider a
Poisson point process whose intensity is either given by
dtdA
tX (>0

Ay(draN) = £ =3

or
K=teo) glog(b)bnéb—n (p>0),
n>1

as well as the combination of the associated constructions in Section 3.1. We get
the martingale @5 and the limit measure p = Q - £ which belongs to M'. The so
obtained subclass of M’ is the Multifractal products of pulses, MPP, introduced
in [M4]. Taking W = 1 yields either MPCP or PCCM of Part I ((BM2]). Taking
W = 1 emphasizes a phenomenon already observed in the discussion of Part I:
associating a deterministic object, here W, with the realizations of a Poisson point
process, suffices to create random multifractal measures.
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For both intensities, the associated function 7 does not depend on b and is
given by

(@) = ~1+q [1+p (BWIEW) - 1)] = p (B(Liws0y WHEL 5,0, W) ~ 1) .

PROPOSITION 6.4.

1) (C1) holds if (H1) holds.

2) (Cz(q)) holds if (H2) holds.

3) (Cs(q)) holds if (H2) holds.

4) (Ca(Qq)) holds if W > 0 and E(W?) < co.

5) Suppose that all the moments of W are finite and (H2) holds. Then (C)
and (C’) hold.

(
(
(
(
(

REMARK 6.5. (1) The comment in Section 2 of Part I concerning the self-
similarity property of PCCM and MPCP holds for the combination of cylindrical
and non-cylindrical pulses here: in Proposition 5.1(1)(2), if A = INXp we can replace
the b-adic intervals I,, by nontrivial intervals of length a negative integer power of
b, and if A = A,, we can take any nontrivial subinterval of [0, 1].

(2) As for the martingale considered in the previous section, Theorem 5.3(2) can
be improved as follows:

THEOREM 6.6. Suppose there ezists v > 0 such that E((1+ W)|log W |>*7) is
finite. Suppose, moreover, that W > 0 and there exists € > 0 such that ¥(n) =
O(n%_s). If 7'(17) = 0 then u is degenerate.

(3) Proposition 6.4(5) shows that the general point of view adopted in Section 5 is
applicable here, only under a strong assumption on W. Moreover, it turns out that
exploiting directly the specificities of our particular examples makes it possible to
avoid the verification of (C) and (C’) in dealing with multifractal analysis. Indeed

THEOREM 6.7. Assume p is non-degenerate, (H2) holds and E(W?) < oo for
q in a neighborhood of [0,1]. Then the conclusions of Theorems 5.11 and 5.12 hold.

6.3. Remarks and comments. (Complementary information on CCM can
be found in [P5]).

REMARK 6.8 (Non-degeneracy). The NSC 7/(17) > 0 for non-degeneracy is
obtained in [KP] for CCM. It is obtained for MPCP in [BM1] when W > 0 and
E((14W)|logW|**7) < oo for some v > 0. Notice that now the case P(W = 0) > 0
is taken into account for MPCP in Theorem 5.3.

For CCM, the functional equation (4.3) takes a simpler form whose expression
in probability distribution is

b—1
(61) Il =¥ £ iy S W )

where the random variables W;, Y (i), 0 < ¢ < b — 1, are mutually independent,

d d
with W; = W and ¥; = Y. Under the condition 7/(17) > 0, the construction of
CCM provides nontrivial with finite first moment non-negative solutions of (6.1).

Non-degeneracy of p is connected to the more general question of the possible
existence of nontrivial nonnegative solutions for (6.1). This problem was studied
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successively in [DL], [Gu], [Li2] and [Li3] (in [DL], the equation takes the slightly
general form presented in [M2]; [Li2] and [Li3] consider the generalized equation
when the b-adic tree is replaced by a Galton-Watson tree; solutions with finite first
moment for the generalized equation are obtained via martingale construction in
[P2] and [Bi1]).

It turns out that if E(W|log(W)|) < oo, (6.1) possesses a non-trivial non-
negative solution if and only if there exists @ € (0,1] such that 7(a) = 0 and
7'(a)) > 0 (a is unique). Moreover, if such an a exists: (i) if @ < 1, B(Y?) < 0o
for all B € (0,a) and E(Y®) = co. (i) If a = 1 and 7'(1) = 0, E(Y?) < oo for
all 8 € (0,1) and E(Y) = oo. (iii) If & = 1, 7/(1) > 0 and E(W") < oo for some
h > 1, the solutions have finite first moment and coincide with the probability
distributions of positive multiples of ||u||.

For PCCM and MPCP, (4.3), can be rewritten as follows

62 Il =t Y Quue [ Qprene, o w1 Ym2 1

weEA™
where by definition for every bounded Borel subset B of the upper half-plane

H WM;

MeBNnS

Th = ﬂ Cp—1w1 (2)
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F1GURE 1. : Tllustration of the sets defined above.

REMARK 6.9 (Moments of order > 1). Under some assumptions, Theorem 5.4
concludes on the necessity of 7(p) > 0 as well as the sufficiency of 7(p) > 0 for a
non-degenerate ||u|| to have a finite moment of order p > 1. The NSC 7(p) > 0
is obtained in [KP] for CCM. Theorem 5.4 is obtained for MPCP in [BM1] when
W > 0 (result extended in [BaMu]), but the (strict) positivity plays no role in
this problem. The proof of Theorem 5.4(2) for MPCP in [BM1] uses the fact that
MPCP satisfy property (C5(q)) for ¢ > 0. Our proof in [B7] will use the different

property (Cz(q))-
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Notice that if u € {PCCM, MPCP} is non degenerate, ||u|| € L? if and only if
7(2) > 0, by Theorem 3.6(3).

For CCM, Guivarc’h ([Gu]) showed that if the law of log(W) is non lattice and
if divergence of high moments holds, i.e. there exists an h > 1 (necessarily unique)
such that 7(h) = 0, then lim;_,, t"P(Y > t) exists and is positive.

REMARK 6.10 (Dimension of the carrier). Theorem 5.6 was conjectured in [M2,
M3] and proved in [KP] for CCM, under the assumption (H): E(||u|| |log ||pl]]) <
oo (it holds automatically if 7(h) > 0 for some h > 1). The tool is the often called
“Peyriére probability” measure Q on (2 x [0, 1], B® B([0, 1]) defined as

Q(4) =E ( /[ Lt u(dt)> ,

which is appropriate for studying the logarithmic densities of u, almost surely, u-
almost everywhere via the law of large numbers ([KP] involved a weaker martingale
property). [WaWi] shows that (H) holds if and only if E(W (log W)?2) < oo. [K4]
obtained the correct dimension with no assumption apart from the non-degenderacy
(that is avoiding the use of Q). The approach is based on some operations on
independent operators such as L in Section 5.1 (the reader can also consult [Fa3,
K5, Fa5, Fa6] for other examples of use of these operations). Theorem 5.6 for
MPCP is a consequence of the study in [BM1].

REMARK 6.11 (Non-degeneracy, moments of positive orders and dimension for
constructions on other structures). [P2] generalized results concerning these three
problems to the case of CCM like measures constructed on Galton-Watson tree
and their projections on [0, 1] (see also [LiRo, Lil, Li2, Li3]). Similar results are
obtained for such constructions on colored trees or graphs and their projections on
R?, [P3, P4, Bel, Be2, Be3).

As recalled in Section 1, [K2] obtained similar results for the three problems
in the context of Gaussian multiplicative chaos by relating the CCM constructed
on JA* with certain Gaussian random weights to “Gaussian multiplicative chaos”
on some other classical metric spaces. [K2] also studies moments of even orders for
general Gaussian structures. [Fal] studies this problem for moments of odd and
even orders. Lower bound for the dimension of the carrier are found in [K2] and
[Fa2, Fa4].

[Fa6] also obtained a definitive answer to these three problems when the con-
struction is done with CCM density and the measure { on OA* is replaced by an
ergodic invariant (under the shift operation) Markov measure (see also the remark
at the end of Section 5.2).

REMARK 6.12 (Moments of negative orders). Theorem 5.5 gives a simple suf-
ficient condition for the finiteness of a moment of negative order for ||u|| when
the density martingale is positive. Moreover, this result suffices to deal with the
multifractal analysis of non-degenerate limits of such densities. But at its level of
generality Theorem 5.5 does not capture the versatility of the question it deals with.
Indeed, CCM and MPCP exhibit very different behaviors, due to the difference bet-
ween their respective auto-correlation structures. Let us state complete results for
CCM (W is normalized to satisfy E(W) = 1), and for MPCP when W > 0.

THEOREM 6.13 (Moments of negative orders for CCM). Assume p is
non-degenerate. Fix h > 0.
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(1) Case P(W > 0) = 1: if E(W ") < oo then E(||u||~%") < co. Conversely,
if B(||ul|~") < oo then B(W =) < oo for all h' € (0,h/b).

(2) Case P(W = 0) > 0: if b'Fh(P(p = 0))%E(1{W>O}W’h) < 1, then
]E(].{||H”>0}||/l,||_h,) < oo for all W' € (0,h). Conversely, if (1 >0y llpll=")
< oo then bR (P(u = 0))$E(1{W>0}W’h) < 1.

THEOREM 6.14 (Moments of negative orders for MPCP). Assume p is
non-degenerate and W > 0. Fiz h > 0. E(||u||~") < oo if and only if E(W ") < co.

In the case P(W = 0) > 0, no result have been obtained yet.

Moments of negative orders for CCM were initially studied in [K5] when W > 0.
It seems that the result of [K5] (included in a series of lectures) remained unknown
to other authors during almost ten years. This result claims that if P(0 < W <
r) = O(z") as ¢ — 0, then P(0 < Y < z) = O(2*") as ¢ — 0. [CoKo] and
[HoWa] obtained the existence of all moments of negative orders under the strong
hypothesis essinf (W) > 0. [Mol] obtained a result comparable to the one of [K5],
namely the first assertion of Theorem 6.13 when W > 0. Independently, [B1, B2]
obtained E(W~"") < oo for all ' € (0,h/b) if and only if E(Y ~*) < oo for all
h' € (0,h). [B1, B2] also obtained results in the case P(W = 0) > 0, in particular
the fact that in this case it is necessary that moments of negative high orders
always diverge. Theorem 6.13(2) is due to Liu [Li4, Li5] who considers, among
others, the problem of moments of negative orders in the more general context when
the functional equation is based on a supercritical Galton—Watson tree structure
instead of a b-adic structure.

For MPCP, Theorem 6.14 is established in [BM1]. Its extension to PCCM is
immediate.

REMARK 6.15 (Multifractal analysis). Theorem 5.11 for CCM and some of
their extensions is established in [B3] (except that [B3] is only concerned with
the Hausdorff spectrum associated with the level sets Ea; but this spectrum is
essential since it gives the correct lower bound for other spectra). Theorem 5.11
for the Hausdorff spectrum associated with the sets F,, is established in [BM1]
for MPCP when W > 0. Theorem 5.11 for CCM follows numerous works ([K5,
HoWa, F1, Mol, O1, ArPa, B2]) on the subject, whose major default is that
they only give, under more or less strong hypotheses, for every fixed ¢ € J N J,
almost surely the dimension of E . (.

Complications arise when the density martingale has positive probability to
vanish. Indeed, due to Theorem 5.4, one always has (JNRy) C J. Due to Theorem
5.5, one always has (JNR_) C J for positive densities. But due to Theorem 6.13(2),
it is possible that (7 NR_)\ J # (. For example, take e > 0, b =2, pp = 1/2 + ¢,
p1 =1/2—(3¢)/2, and €60 +pod1 /(2py) +P101/(2p,) as probability distribution for W.
If  is small enough, 7(1) > 0, J = R_, but necessarily E(1{y 53 W™") tend to oo
as h — 00, so JNR_ is bounded. Then, one reaches the inequality ¢(q) < —7(q)
only on J N J, and a piece of the spectra is missing.

[B3] also studies the endpoints of the Hausdorff spectrum and obtains

THEOREM 6.16 (Endpoints of spectra for CCM). Assume the hypothesis
of Theorem 5.11.
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(]-) Qmin -
(¢) If there exists go € Ry such that 7*(7'(qo)) = 0, then 7'(go) = Qmin-
Moreover, If E(W%) < oo for some § > 1 then, with probability ome,
conditionally on p #0, E # 0, and for F € {E,E,E}, one has
dim F, . =DimF,,_, = f(tmin) = 0.

Qmin

Qmin

(i) If Ry C J and 7*(amin) > 0 then, with probability one, conditionally

onpu#0, E,,_.. #0. Moreover, if F € {E,E,E}, one has
dim Famin = Dim Famin = N(amin) =7 (amin);
and Fp, = 0 for all a € (0, &min)-
(2) max-

(i) If there exists go € R_ such that 7 (7'(qo)) = 0, then 7'(go) = Cmax-
Moreover, if E(1{w oy W) < oo for some § > 1 and qo € J then, with
probability one, conditionally on pu # 0, E #0 and for F € {E,E,E},
one has

Qmax

=DimF, .. = f(Qmax) =0
and F, =0 for all a € (amayx, o0).

(1) If R C J and 7*(amax) > 0 then, with probability one, conditionally
onp#0, Eq,,, #0 and dimE, ., > 7" (max). Moreover, if W > 0,
then for F € {E, E, E}, one has

dim F;

Omax

dim F,_, = DimF,_,, = f(tmax) = 7" (max),
and F,, =0 for all a € (amax, 0).

It is shown in [OsWa)] that if the conditions of Theorem 6.16(1)(7) (resp. The-
orem 6.16(2)(i) with go € J) hold, then the function ¢, exists as a limit and is
linear on [gg,00) (resp. (—o0,qo]) with slope —amin (resp. —@max) (this improves
a first study in [Mol]).

Theorem 5.12 is established in [BBeP] for CCM. The technique establishes a
bridge between the [BrMiP] multifractal formalism using boxes, and Olsen’s cen-
tered multifractal formalism ([02]). In particular, CCM satisfy both multifractal
formalisms. For MPCP with W > 0, the result is proved in [BM1], also by using
results for the b-adic grid. But no relation between the various formalisms is es-
tablished in [BM1]. The proof of Theorem 5.12 will use the approach developed
in [BBeP].
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