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Techniques for the Study of Infinite Products of
Independent Random Functions
(Random Multiplicative Multifractal Measures, Part IIT)

Julien Barral

ABSTRACT. This is the third of three papers devoted to a class of random
measures generated by multiplicative processes. Part I surveys the main mo-
tivations which led B. Mandelbrot to introduce such statistically self-affine
multifractal measures. These measures inspired Kahane’s general theory of
T-martingales. Part II completes this theory by exhibiting a class of T-
martingales for which several fundamental problems, namely non-degeneracy,
finiteness of moments, dimension of the carrier and multifractal analysis can be
studied and solved. This class contains the already known examples of statis-
tically self-similar T-martingales, and is also illustrated by new constructions.
This Part III provides the proofs of the main results obtained in Part II.

1. INTRODUCTION

This paper is devoted to the proofs of the main results of Part II [BM3].
Techniques developed to study the “Canonical cascade measures” (CCM) [M1,
M2, KP, Bi, WaWi, Mol, B2, B3, Lil, Li2] and their refinements for the
study of “Multifractal products of cylindrical pulses” (MPCP) [BM1] are shown to
also work in a larger class of measures, which is a subclass of T-martingales ([K1]).
Apart from CCM and MPCP, this class includes in particular the “Multifractal
products of pulses” introduced with MPCP in [M3], as well as the extension of
MPCP performed in [BaMu], namely the “Log-infinitely divisible cascades”.

2. PROOF OF THEOREM 4.1

Theorem 2.2 follows from the computations performed in proving Theorem 4.1,
and in particular (2.1) below. Other results of Section 2 and 3 are corollaries of
Theorem 2.2 and we leave the verifications to the reader.
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2 Techniques for random multiplicative measures

Theorem 4.1 is a consequence of the following proposition and its corollary.
For w € A*, ¢ € (0,1] and v € T define

Ye(w,7) = /7:—|w|5(-'4w) = | Qp-1w1(t,7) do(t).

PROPOSITION 2.1. Assume (A1) holds and T' is an open set. For every w €
A*, with probability one, the function Y.(w,-) converges uniformly on the compact
subsets of T', as € — 0, to a nonnegative analytic function Y (w,-). Moreover, if
o(Iy) >0 and (t,7) € I, x ' — Qc(t,7) is positive almost surely for all € € (0,1],
then Y (w,-) is almost surely positive.

COROLLARY 2.2. Assume (A1) holds. With probability one, for all v € T,
the measure [i) converges weakly, as € — 0, to a measure i such that " (Ay,) =
Y(w,v) for every w € A*. Consequently, the measure u) converges weakly, as
e—=0,top” =" omr L.

Proof of Proposition 2.1. Fix K a compact subset of I'. Let Uk and b be as in
(A1). For any w € A* and any m > 0 consider the function Y, (w, z) of z € Uk
defined by

~

Vnw,2) = [ Qurreron(t,2)do(0)

Now fix K’ a compact subset of Ux (in C?), w € A*, and p € (1,2] as in
(A1)(4ii). Also fix 3 as in (P’4) and define &, = b~/wI-m=1,

First step. We prove that there exists a constant C = C(8, p,b) such that
(2.1)

sup E(|Vmi1 (w,2) = Y (w,2)|P) < C sup Y ()P~ / Q<. (t, 2)|P do(t).
z€EK' z€EK' vEAR Lo

In order to prove (2.1), we use (P’2) to write

~ ~

Tots(w,2) = Vlw,2) = [ U@V do(t
Ly
with U(t) = Qse,, (t,2) and V(t) = Qpe,, ., (t,2) — 1.
We divide I, into b™ equal subintervals denoted Ji, 0 < k < b™ — 1. Now let
N = Ng be the smallest integer larger than or equal to 8 and write

N-1

Prir(,2) = Tp(w, )= Y /J OV do(t)

i=0 0<Nk+i<bm—1

It is immediate that

N-1 P

i1 (,2) = T(w,2)P < NPT S S /J OV () do(t)

i=0 |0<Nk+i<bm—1

By construction, the functions U(t) and V(¢) are independent (due to (P’3)).
Moreover, it follows from assumptions (P’1) and (P’4) that for each 0 < i < N—1,
the restrictions of the function V' to the Jyg4i’s, 0 < Nk+4 < b™ — 1, are centered
and mutually independent. So we are in a position to apply the following lemma.
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LEMMA 2.3 ([vBahrE]). Let (V;)i>o be a sequence of mutually independent
complez random variables. Assume that 3,5, V; is almost surely defined and that
Vi is integrable with mean 0 for all i > 0. Then, for every p € [1,2]

p
E|Y Vi <2°) EVif”

i>0 i>1
For each 0 < 4 < N — 1, conditionally on the g-algebra U generated by the
function U (t), the random variables Viyg4; = fJNk+i U@)V(t)do(t), 0 < Nk +i <
b™ — 1, satisfy the assumptions of Lemma 2.3. So
P
E Z VNk+i |U <2° Z E(|VNetilP|U) -
0< Nk+i<bm —1 0< Nk+i<bm —1

By taking the unconditional expectation and summing over ¢ we get

UV (t) do(t)
T

)

E(Tns1 (w,2) = P (w,2)/7) <2NPL S E (
vEA™

For each v € A™ such that o(I,,,) > 0, the Jensen inequality yields

UtV (t) do(t) SU(IW)”_I/I TPV @)P do(t)-

Ly

Therefore,

B(| Vg1 (0, 2) = Vi (w, 2)[P) < 2PNP71 D" (I )P /I E|U (¢)|PE|V ()|P do(t).
vEA™ wy

The conclusion comes from the factorization property and the fact that
E[V (£)/P <277 (1 4+ ElQber, e (1, 2)I7) < 2°E| Qb o (8 2) P
since ]E(Q\bsmsm (t,z)) =1and p> 1.

Second step. We follow an idea of Biggins [Bi]: apply the Cauchy formula to
get the uniform convergence, as m — oo, of }A’m(w, -) on the compact subsets of Uk.

Fix an arbitrary non-empty compact polydisc D(zo,2p) C Uk. For z € D(zo, p)
and m > 0 the Cauchy formula yields

~

Vo1 (w, 2) = Y (w, 2)|

= . : = . . dt dt
< / V1 (w, 204+2p(e™, . .., €4)) =V (w, 20+2p(e™, . . ., efta))| == ... =2,
[0,27]d T

- 7r

It follows that
E sup [Vir1(w,2) = Vi (w, 2)]
2€D(20,p)
< 2d sup IE(l?rm+1 (waz) - ?m(waz)l)
2€D(z0,2p)

< 24 sup (El?m—{—l (w,z) — i}m(wazﬂp)l/p-
ZED(ZO’2P)



4 Techniques for random multiplicative measures

By the estimate (2.1) obtained in the first step and assumption (A1)(iii) for
the compact D(zg,2p), we get

oo
(2.2) E Z sup  |Ymg1(w,2) = Y (w, 2)| < 0.
m=0 2€D(20,p)

It follows that almost surely V,,(w,-) converges uniformly on D(z,p), and more

generally on any compact subset of Ug. Due to the analyticity of the Vin (w,-), the
limit function Yy, (w,-) is almost surely analytic on Ug.

Now, fix an increasing sequence (K,)n>1 of compact subsets of I' such that
each K, is the closure of its interior and (J,,~, Kn = I'. For every n > 1 denote

by Yk, (w,-) the restriction of ?an (w,-) to K,,. Each Yk, (w,-) is analytic in the
interior of K,, and is the uniform limit of Y;-= (w,-) on K, as m — oco. Conse-
quently, with probability one, the family of functions Yk, (w, -) possesses an unique
analytic extension to I, namely Y (w, -).

Third step. Now we prove that almost surely the function Y (w,-) converges
uniformly on any compact subset K of T to Y (w,-), as € = 0. Indeed what we
proved in the second step is the convergence as ¢ — 0 along the discrete sequence

(bim)mZO-
From (2.2) we learn that

(2.3) B sup [¥ (w,) = Yi 7)) < oo

For t > 1, denote by F; the sub-o-field of the Borel o-field of (C(K,R),|| ||o0)
generated by the random continuous functions

YyEK = Yip(w,y), 1<t<t.

Also denote respectively by M; and M the random functions Y} /4(w,-) — Y1 (w,-)
and Y(w, ) — Y1 (w,-). Then the martingale {E(M|]Ft),]Ft}t>1 is well defined due
to (2.3). It follows from Proposition V-2-6 of [N] that any right-continuous mo-
dification of that martingale converges almost surely, as ¢ — oo, uniformly to M.
Consequently, the conclusion will follow from (A1)(7) if we show that for every
t > 1, with probability one, E(M|F;) = M;. This indeed holds: By construction of
the conditional expectation, for every ¢ > 1 and v € K one has, with probability
one, E(M|F;)(v) = E(M(v)|F:). Moreover, it follows from the second step that for
every m > 0, with probability one, E(M (y)|Fym ) = Mpm (7). By using the density
of the countable set K N Q? in K and the continuity in vy of the functions we deal
with (we use (A1)(i)) we deduce that, with probability one, E(M|Fym ) = Mym.
Then the martingale properties of {IE(M |Fy ), Fy and {Mt,Ft } ;> yields the
conclusion. B

}t21

Fourth step. Assume that o(I,) > 0. We prove that if t € I, = Q(¢,7)
is positive almost surely for all v € T and ¢ € (0,1] then, with probability one,
Y (w,~) > 0 for every v € T.

It suffices to prove this property for any compact subset K of T' instead of T.
Fix such a set. We assume without loss of generality that K is the hypercube [0, 1]¢.
For any sub-hypercube C' of K let
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Sg={weQ: IyeC, Y(w,v) =0}
It is an event since v — Y (w,7y) is continuous. Moreover, due to the factorization
property (P’2), it is straightforward to verify that for every m > 0, Sg belongs to
the o-algebra generated by the random functions (¢,7v) = Qp-m p—«(t,7), k > m. So
S& is a tail event with respect to (o((t,7) € DXK = Qp-x p-x-1(t,7) : k >n)) -
Due to the property of independence (P’3) and the Kolmogorov zero-one law, its
probability is 0 or 1. We claim that P(S%) = 0.

Otherwise, S% has probability one. Then, there necessarily exists a closed
dyadic sub-hypercube of K of the first generation, namely C1, such that P(Sg, ) > 0.
By the above remark, this probability must be 1. This implies the existence of a
closed sub-hypercube C> C C; of the second generation such that P(S¥,) = 1, and
so on. Hence, there exists a decreasing sequence (Cy,)n>1 of closed sub-hypercubes
of [0, 1] such that P(C,,) =1 for all n > 1. Let o be the unique point in (5, Cy.
By the continuity of ¥ (w,-), we have P(Y (w,y,) = 0) = 1. However, Y (w, 7o) is
the limit in L? norm of an LP-bounded martingale with mean o(I,) > 0 by the
second step. So Y (w,y) cannot be zero almost surely. This proves that P(S%) = 0.

Proof of Corollary 2.2. Since A* is countable, the conclusions of Proposition 2.1
hold almost surely for all w € A*. It follows that, with probability one, for all v € T,
the family of additive functions on cylinders (A, ﬁ'g(Aw))EE(O,l] converges, as
€ — 0, to the additive function A, — Y (w,~). Since dA* is totally disconnected,
each of these additive functions extends uniquely in a measure f” on (0A*, A*).
Moreover, by construction, with probability one, for all v € T, 17 is the weak limit
of Y as € — 0. This yields the almost sure weak convergence, for all v € T, of p?

topu” =" o1, since p) = Y o L.

3. PROOF OF THEOREM 4.2
For w € A*, ¢ € (0,1] and v € T" define

Ze(w,7) = o(Iy) B2 (Ay) = ’ Q1w p-1w(t,7) o)

if 0(I,) > 0, and Z.(w,v) = 0 otherwise.

PROPOSITION 3.1. Suppose I is an open set and assumptions (A2)(i)(ii) hold.

(1) With probability one, for every w € A*, the function Z.(w,-) converges
uniformly on the compact subsets of T', as e — 0, to a nonnegative analytic
function Z(w,-); moreover, if o(L,) > 0 and (¢,7) € I, xT' — Q(t,7) is
positive almost surely for all ¢ € (0,1], then Z(w,-) is positive.

(2) Let K be a compact subset of T, and fix the associated p € (1,2]. One has

o7 P
sup  E(Z(w,7)?) < oo, sup  sup E(‘—(w,’y) ) < 0.
weA* yeK 1<i<d weA* yeK 07;
Proof. We proceed as in the proof of Proposition 2.1. For w € A* such that
o(Iy) > 0 and m > 0, consider the function Z,,(w,7) := Zy-m (w,7). It possesses
the following analytic extension
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Zm(w,2) = /Iw Cij—lwl,b—\m—m(t, 2) j?—r(z))

It follows from computations similar to those performed in the first step of the proof
of Proposition 2.1 that for some constant C = C(8, p, b)

(3.1) (| Zm 1 (w, 2) = Zim (w, 2)|P)
< CE (1@t pmrwi=mes (62)P) D (0T o (L))"
vEA™
Define exr = —3®) (p) — sup, ez 00 (2,p). Our assumption (A2)(ii)(c) is

ek’ > 0. Moreover, by our assumption (A2)(i¢)(3), there exist C' > 0 and ng > 0
such that for all w € A* with |w| > ng and z € K', we have

(3.2) E (|©b—|w|’b—\w|—m—1 (t, Z)|p) Z (0(Iyw)/o(Iy))* < C'p~(mHDexr /2,
vEA™

Then (1) follows from the same arguments as in the proof of Proposition 2.1.

To get (2), let Z(w,-) be the limit of Z,,(w,-) on K', which is chosen to be a
closed polydisc D(zg,2p) as in the proof of Proposition 2.1.

It follows from (3.1), (3.2), the triangle inequality for the L? norm, and the
fact that Zg(w,-) = 1 together, that
(3.3) sup E(Z(w,z)p) < oo.

weA* 2zEK'

Moreover, applying the Cauchy formula to the partial derivatives %L(w z), 1<

i <d, we get

oz P\ /P 2¢ 1/p
E( swp |S%w2)| | <5 swp (E(Zn(w,2)P))
z€D(z0,p) Zi P z€D(z0,p)
2¢ ~ 1/p
< = sw (B(Zo(w,2))
p 2€D(20,p)

~ i/p
dz sup  (Bl|Znir (w,2) = Zun(w, 2))
m=07€D(z0:p)

So we deduce from (3.1) and (3.2) that

(3.4) sup sup B |=—
1<i<d weA*,z€D(z0,p)

(2) is a consequence of (3.3) and (3.4).

Proof of Theorem 4.2. The fact that (A1) holds is a consequence of the estimate
obtained in the proof of Proposition 3.1(1). The lower bound for the lower Hausdorff
dimensions are consequences of P(v), P'(y) and a Billingsley Lemma ([Bil] pp 136—
145).

Proof of (1). We treat the case where I is not a singleton. We can assume that C
is a compact subset K of T', and that there exists a C* function g : [0,1] = K such
that K = ¢([0,1]).
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To prove the result on P(7), it is enough to show that

(3.5) P—as. VyeK, p”"#0 implies " (lim sup Efw(fy)> =0,

n—oo

where ( ~)
L log 0 (Au(D)
Ene(v) = {t € OA* : Tog (A () > D(v,0) _E} '

In order to prove (3.5), by the Borel-Cantelli lemma, it suffices to show that for
every € > ()

(36) P—as. VyeK, p”#0 implies Z Y (lim sup Efw(v)) < oo0.

n>1 n—00

Consider X : t — o(A,(?)) D(vo)te gy (An(t)) as a random variable with respect
to the probability measure 17 /||i27|| whenever ||f27|| # 0. The definition of E,, ()¢
means that X () > 1. For any positive number 5 > 0, the Tchebitchev inequality
leads to

Ene)) < [ ol o A, 0) 0 0D

> o) PO G (A,

weA™

(3.7)

where the last inequality is due to the fact that the random variable X is constant
on each n-cylinder.

Now we use the construction of §7(A4,,) and (A2)(v) to get, for w € A* such
that o(Ay) > 0,

(3.8) Y (Aw)'™ < Moy () (Q11 (1)) 7 5 (Aw) 7 Z (w0, 7) 7
where Z(w,~y) was defined in Proposition 3.1. This, together with (3.7) yields

B (Bne(7)°) < fan()
with
Frn@) = 3 5(A) RO M ) (Qypu (fay 1)) Zawy7) 1.
weA™

The positive number £ being fixed, the problem is reduced to find a positive
number 7 such that

P—a.s. Vzel01], Z fanog(z) < .
n>1
This will be done if we find n > 0 such that

(1) There exists a constant C = C'(K,n) > 0 such that for all n > 1

Ofnn
Yi

2o (1t)ne

(3.9) sup sup E (‘ (’Y)D <0

1<i<dyeK
(2) Let 9 = ¢(0). We have

(3.10) P-a.s. Z frn(v) < .
n=1
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Indeed, if (1) holds, by using the Fubini Theorem we get

1 oo df og 1 oo d (9f
Ef Y2200 ar< [0S B\ T (g(a) | gi(o)] da < .
0 n=1 dz 0 n=1i=1 i
' & dfpnog P
Therefore P-almost surely Z ——=(z)| de < oo. This yields P-almost
0 =

surely for all v € K

Z |fn,17(7) - fn,n(70)| S~/0 Z

This, together with (2), allows us to conclude:

P-a.s. sup Z Frn(y) < oco.
’YEKnZl

Proof of (3.9): for w € A*, 7 > 0 and v € T define

dfrgigog(x) dr < .

Tw,n(Y) = E(Aw)1+’7(*2(%a)+s+1) ‘

We have
B (|%220) ) < Faal) + (141G + H )
with
Fral) = 3 | %5500 B (M) @ (b0 ) E (20, 2) ).
weEA™ v
Gny(y) = Z Ow,n(7)
wEA™
0Qyr 1
B M) Qurn (101" | 22 (tw,v)DE(Z(w,‘/) ),
o) = Y GunE (Mu)Qure (i) *") B (209" S2 0, ).
weEA™ ?

We now give estimates for the above quantities in the case (A2)(v)(8) (the
other case (A2)(v)(a) is simpler and left to the reader).
Let us make the following remarks:
(1) Tt follows from Proposition 3.1 that if 5 is small enough, E(Z(w,v)**7) and
E (Z(w,fy)’7 ‘ 0Z (4, 7)‘) are uniformly bounded over v € K and w € A*.

0v;
(2) We have
0.y _1 | &% _ (e
; _ 1Mot " L) D(y,0)+e+1)
52200 = i |y (10| 0B G (A

Consequently, due to the assumption (A2)(ii4) and the atomless of &
(—ps(11) > 0), there exists a constant C' = C(n, K) such that

()

0Gw,n

S| < 05 PO (e K, w e A%, (AL) >0,




Julien Barral 9

(3) In order to control

A(w,) =E (Mwm)czb-n (s )"

0Qp-n
o)

we apply the Holder inequality with a pair (h,h') of positive numbers, to
be specified later, and such that % + # =1. We get
h,> ) 1/h

By using the factorization property (P’2) and the differentiability prop-
erty involved in (A2)(v)(8)(2), we get (since K is included in the interior
of some compact subset of T')

h’ aQb—n

a’Yz (tw Y ’)/)

A(w, ) < (E(Mu(m)"))"" (E (Qb—"(tw>7)n

hl
0Qp—n g = 0Qp-r y-r1 =
» = T (¢, vt e (b,
o) g 3 o) [T Qur o)
k' #k
’ 8Qb kb k—1 Won-t !
< h twa’Y) H Qb—’c' b—k'—l(twafy)h
k=0
K #k
Hence
| 0Qy-n "
E -n tw; eI twa
(Qb (tw,7) 3, (tw,7)
o1 — k! 6Qb—k’b—k—1 W
< n ZE Qp—r p—+—1(tw, ) T(tw;'}’)
pard Vi
n—1
T (@t
k'=0
K #k

Now, we use the fact that 1 <E (Qb b p—r—1 (tw )(1+’7)h ) and
(A2)(v)(8)(1)(2) together to conclude that 5, h and h' being chosen

N\ 1/0
A(w, ) <exp ( H E(Qb b p—k=1(tw L) (MR ) .
(4) h and h' being choosen as in (3), we have

1/n’

E (Mo () Qp-1w1 (tu, 7)) < exp (0 H]E(Qb e () )

If follows from the above remarks that 7 > 0 and A’ > 1 being fixed, uniformly
over K



10 Techniques for random multiplicative measures

E(‘%(V)D < eXp(o(n))E<Qb_n(t,’y)(1+n)h,)1/h,

2
x E: 1+n D(’Ya0)+5+1)*rl
wEA"

We fix i’ = 1+ 7%, and use (A2)(iv)(a) to get no(n) > 1 such that for all
n > no(n) and v € K,

1 )
~log, E (Qb—" (t,~)HHEm(t4n )) <O(v, X +n)A+n%) +7?
and

1 log,, 3 G A (oL (1) 46, (1) +e+1) —n
wEAT

< ¢ (1+n(=D(yv,0) +e+1) —n°) +n°.

(for the second estimate we used the fact that ¢, is by definition the uniform limit
of convex functions on the compact subsets of Ry ). Thus, for n > ng(n)

(3.11) E (‘%m‘) < exp (ofn) +nlog®)B(x. )
with

2 2
By = f (1 +Z)$1;n ) +1

Due to (A2)(iv)(8) we have

0(v, 1 +n)(1+7) +7°
1 +n?

+@s (L+0(=D(v,0) +e+1) = n*) +n°.

(3.12) =16, (17) + o(n)

where o(n) does not depend on v € K. Moreover,

(3.13) ¢, (L+n(—=D(v,0) +&+1) = 1*)+7" = 19, (17) (=D(v, 0)+e+1)+o(n)
where o(7n) does not depend on v € K. Now choose initially n small enough so
that o(n) < |¢s(17)[en/8. Then choose ny > ng(n) such that in (3.11) o(n) <
nlog(b)|p, (11)|en/4 if n > ny. It follows from (3.12) and (3.13) and the definition
of D(v,o) that for n > n{

of +
E n,n < nee(1 )511/2_
(‘ i (7)‘) <0

Proof of (3.10): computations similar to the previous ones show that

(3.14) sup B fr,q (7)) < Cb™0=0e0/2,
yeEK

The result concerning P’(7y) is obtained similarly; the proof is left to the reader.
Proof of (2). We only establish the result concerning P(v). The case of P'(vy) is
left to the reader, as in the proof of (1).
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It follows from the previous computations that under (112), for every compact
subset K of ', (3.14) holds if 7 is small enough. Consequently, for such a pair

(K,m),

E ( /K n;(fn,n(v) dfd(7)> < 00,

where /4 is the Lebesgue measure on R?. This shows that with probability one,
there exists a subset K (w) of K of full £g-measure such that > ° | fn.n(7) < 00;
hence P(v) holds for every « such that 7 # 0. The conclusion follows by writing
T" as a countable union of compact subsets.

4. PROOFS OF THEOREMS 5.3, 5.4, 5.5, AND 5.6

We mimick the proofs in [BM1] for the first three results. We say once again
that the approach consists in reductions to the CCM case. Theorem 5.6 is estab-
lished in [KP] for CCM, and it is implicit in the multifractal analysis of MPCP
in [BM1]. We do not use the so-called Peyriére probability to show this result,
preferring here a method like the one used in the proof of Theorem 4.2.

For n > 0 define Y;, = ||us-=|| and notice that by construction E(Y,) = 1.
Remember that Vg denotes the smallest integer larger than or equal to the constant
B in (P4).

Proof of Theorem 5.3(1). It follows from equation (4.1) in Part IT ([BM3]) and
Lemma C of [KP] that if h < 1 is large enough and n >m >1

41) VIS S (L) = (1 =h) D e (L) T (1)

wEA™ wHVEA™

Moreover, the Jensen inequality yields py-n (L))" > fu,n,m(h), with

Iy
p Mpm—n (dt)
I,
|t |l

fumm®) = [k / Qe (1)

m—1 I
My —n (dt)
e | / | O =aC
I

I,
. Tocen]
if ||u£;”n_n [| > 0 and 0 otherwise. This yields almost surely if ||p£z_n |>0
furmm(17)
m—1 m—1
= Z / Qp-r p—r-1(t) log (Qp-r p-r-1(t)) H Qpr w1 (t) pyan (dt)

k=0 VT K'=0

K £k

+10g (lnfacall) [ Qo (®) sl ()
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Now taking the expectation by using properties (P1), (P3), (P5), (P6) and
Proposition 5.1(1) in Part IT gives

E(fimm(17))
= mb "E(Qp-1(t)log Qp-1(t)) + b "E(YVp—m logYn_m) — mb~ " log(b)E(Y,—m)
—mlog(b)b™" 7 (17) + b "E(Yn—m log Yn_m).
Returning to (4.1) we get

E(Y,!) = Y ueam E(fu,nm(h) <Sm= Y E(ﬂb—"(Iw)%ﬂb—"(Iv)%)

h—1 wHVEA™

and letting h tend to 1 and using the value of E(f}, ,, ,,(17)) we get
m log (b) 7'(17) + B(Y;, log V) — E(V,_p log Yn_m) < > _(1).

By the martingale nature of (Yy,)n>1, E(Y, log Y3) —E(Y,—m log Y, —pm) > 0. Hence
m log (b) 7'(17) < 32(1).

In order to evaluate >(1), we invoke assumption (C1). Then, for every (w,v) €
A™)2 by using the independence and the Cauchy-Schwarz inequality, we get
Y g

E (tp-r (1) b= (1))

1 1
2 2 1 1
< E((sup %n(9) (500 Qrn(9) ||u£i”n_n||2||u£;_n||2>
s€l, sel,
2 I 1.1, 1
< |E( sup Qpr() ) E( sup Qurn(s) )| E (lisfics I3 lisncn¥)
s€l, sel,

1 1
= o(m)E (Ilugnn s 12 -

By assumption (P4), for each w € A™, there are at most 2Nz elements v € A™

distinct of w such that ||/,¢£z_n|| and ||/,¢£31_,,|| are not independent. In this case,

by the Cauchy-Schwarz inequality and Proposition 5.1, E (||M£%_n 112 g ||%) <

2
b=, Otherwise, E ([l || lspsn—. 1) = b~ (B(Y,Z,,)) . This yields

1 2
Z(l) < p(m) <2N/3bm X b 4+ b2 x b ™ (E(Yf_m)) ) .
Finally,

m[log(b)r' (17) — 2Ngep(m)/m] < b™ (JE(Y,%_M))2
and since 7/(17) > 0 and (m) = o(m), taking m large enough so that log(b)7'(1~)—
2Ngp(m)/m > 0 yields inf,>; ]E(Yn%) > 0. Following [KP] we remark that since
the supermartingale (Yn%)nzl is bounded in L? norm by E(Y,,) = 1, it is uniformly

integrable; so E(lim,,_,o, Y;2) > 0. But lim, _,, Y, = ||u|| almost surely, so u is
non-degenerate.

The fact E(p) = 1 follows from Section 5.1. of Part II. The fact P(||u|| > 0) =1
if the martingale (Q.) is positive follows from the fact that in this case {||u|| > 0}

is a tail event with respect to (0(Qy-+ y-+-1(-) : k>mn)) _ .
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Proof of Theorem 5.3(2). Fix h as in the statement. By using (4.3) in [BM3],
the sub-additivity of z — 2", (P6), Proposition 5.1(2) in [BM3] and Cz(h) to-
gether, we get

E([|ull") < 5™ e ME (Qp-m (1)) b7 E(|ul|")-

If p is non degenerate this yields

1<p™ [ (h)—"_::}llo(;'(lb)):l
Since @p(m) = o(m) this forces 7(h) < 0. Since 7 is a concave function and
7(1) =0, we get 7/(17) > 0.
Proof of Theorem 5.4(1). It suffices to show that (Y,),>1 is bounded in L"
norm. The case h € (1,2] is a consequence of Corollary 2.3 in [BM3].

Fix n > m > log,(Ng). Number the intervals I,,, w € A™, as they follow one
another from 0 on the real line, and write {I, : w € A™} = {J;; 0 < i < b™}.
Then, for i € {0,...,Ng — 1} define

Zin = > po=n (INgk+i)
k: 0<Ngk-+i<b™

and
Ni=#{k: 0<Ngk+i<b™} -1
We have
(4.2) B < NEU Y E(ZE).
1=0

Now we adapt the approach of [KP]. Let h be the integer such that h < h <
h + 1 and use the sub-additivity of z — z/(*+1) on R, to write

N; h+1
Zt, < ZMb‘"(JNﬁk+i)h/(h+l)] :
k=0

It follows that

Ni Ni
e
E(Z!,) <Y B (tp-n (Inpksd)") + D o jn, (H pio=rn (INghti)’ ”+1> ;
k=0 k=0

where in the last sum the j;’s are < E, Jo+---+in;, = E+1, 41> 0and Zajo...jm =
(Ni + 1)) — (N; +1).

On the one hand, given such a jo,...,jn, we have
h
N; N N; k7T N; J h
Tk 7 Ngk+i | jp w2
I I Hp—m (JNﬁk+i) Rt < I I sup Qb_” (S) I I ”:ubm—n R,
- —0 \5€INgh+i k=0

where the ||,ubN’3k+i||s are i.i.d. by (P4) and Proposition 5.1 in [BM3], and are
_h

N; Jegg
also independent of H ( sup Qb_m(s)> by (P3). Moreover, the random

k=0 SEJN6k+i
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variables sup,¢ Inghi Qp-n(s) have the same probability distribution. Applying
the generalized Holder inequality, C2(h) and the definition of 7 successively, we get

N; ]’“h+1
E H( sup Qb-m<s))

k=0 \$€INghti

IN

B ( sw Q9"

s€l,

< e ME(Qy-m (t)")
= on(m)ymm(i=htr(h)

where I, is one of the I,,, w € A™, and t € (0,1).
Moreover, by using the independence, the Jensen inequality and Proposition
5.1 successively, we have

JNﬁk+z
H” iy
N; ix _h
JN k+i B\ B A+1
HE(H 1)

= pmh (E(Yﬁ_m))h/h .

N; 7
Ngk+i
) - HlE(H ol

IN

n

Thus, we obtained

N; ) - h/h
E (H ub-n(JNﬁkH)“ﬂil) < eor(mip=m(itr(h) (E(Yn’zm)) :

k=0
On the other hand, for every 0 < k < N,

E (Nb—" (JNﬁk-H')h) < ewh(m)b*m(HT(h))E(ynh_m) < e«ph(m)b*m(1+T(h))]E(Ynh)7
by the submartingale property of (Y,%),>1.

Returning to (4.2), we have now

() < e MNEL ST (N + )b Ry
=0

(N + 1)(ﬁ+1)b7m(1+7'(h)) (E(Yng_m))h/h
— ecph(m)Ng—lb—mr(h)E(Ynh)
Ng—1 i i Wi
+ | epntmpmtrm) NA-L N (v 1)) (E(Ynh_m)) .
=0
Since 7(h) > 0 and 7 is concave with 7(1) = 0, we have 7(¢) > 0 for all
€ (1, h). Moreover, pp(m) = o(m) so for m large enough e“’h(m)Ng’lb_mT(h) <1
therefore
e#n(m)p—m(i+r(h) Nh—1 5~ No =L nr 4 gy (R+1) ; h/h
E(Y,)) < oo Wit DT gy )",
1 — e#n(m) N2~ p=mr(h)
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It follows that sup,~; E(Y;") < oo by induction on A as in the proof of Theorem 2
in [KP]. -

Proof of Theorem 5.4(2). Assume Cz(h). By the super-additivity of z +— z"
on R, and Proposition 5.1, for every n > m > 1 we have

EV,) > S E(m (L)) > Y E(;&i Qb-m<s>h)E(||ugz_,.||h)

wEA™ weEA™
e MR (Qp-m (1)) TRV )
= e ermp—mr@gyh

v

Since 0 < E(||u||*), u is non-degenerate, and we saw that E(u) = 1. Consequently
the martingale (Y,),>1 is uniformly integrable and E(||x||") < oo implies that Y,
converges in L? norm to ||u|| as n — oco. This yields 1 > e~#»(m)p=m7(2) via the
previous inequalities, and forces 7(¢q) > 0 since ¢p(m) = o(m).

Now assume Cj(h). Denoting by I, an interval among the I,,s, w € A™, one
has

E(pp—n (Im)") = E(Q,)E ( /I ’ Q. (t) . (dt)) "

By using the Jensen inequality for conditional expectations and the independence

successively, we get
h
E ((/I Qun (1) u{:_n(dt)) ‘?b—m>

(E ( / Q) (dt)\?b—m))h

( / E(Q,, (1) ui:_n(dt))h

—= h
= E(Qun®)" llugm-nll™
It follows that here again
E(Yh) > emenmp—mr@pyh ).

One concludes as under Cg(h).

vV

Proof of Theorem 5.5. Fix n > 1 such that E((infscz, @3-~ (s))?) < 0o. Due
to (P2), (P3) and (P6), the same property holds for the positive multiples of n.
Fix such a number m such that moreover, b™ > 2Ng. Then, let Jy = [0,b~™] and
J1 =[1—5b"™,1]. As in the proof of Theorem 5.4(2), we can get

> i —m Jo i o T
Yo 2 inf Qp-r(s) liym-nll + Inf Qpr (5) ll1s5m-n
Then, letting n tend to co and using Proposition 5.1 yields
Y = lull > inf Qpm(s)b™Yy + inf Qo (s)b™™Y;
s€Jo seJy

where Y; and Y7 are independent copies of Y (because of d(Jo, J1) > Ngb~™ and
(P4)), and Y, and Y; are also independent of

(Bo, B1) = (siélfo Q- (s), inf Qp-n(3))-
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Since By < By and E(B{) < oo, the approach used in [Mol] for generalized CCM
yields E(Y'?) < co. Let us give the proof. From the relation
Y > BoYo + B1Y1 > 24/ BoYo B Y1,

and the fact that Y > 0 almost surely (the martingale (Q.) is positive), we get for
any h > 0

(43) EY ") <27'E (BO_%BI_%) (E(Y—%))2 < 27"E(By ") (E(y—%))2

Assume we have shown that E(Y ~¢) < oo for some ¢ € (0, —¢/2). Using k times
(4.3) successively with h = 2%, 1 < i < k and 2%e > —¢/2 > 2k~ le yields E(Y 9/?) <
0o. A last application of (4.3) with h = —q yields the conclusion. The iterations
stop because we only know that E(B{) < oco. If, for example, By and B are
independent,

2 2

R(Y ") <27 (B(By %)) (B —9))
and one gets E(Y 2%) < oo. This is what happens for CCM but not for MPCP (see
Section 6.3 for more details).

To show the existence of an € as above, one uses the Laplace transform ¢ of YV
([K2, Mol, B1, B2, Lil, Li2]) which satisfies

#(t) < E(p(Bot)op(B1t)) -

The most elegant approach is the one of [Lil, Li2]. Let p € (0,1) be a number
small enough so that pE(B§) < 1. The Cauchy-Schwarz inequality gives

6(t)” < (E(¢(Bot)’))” = o (E(#(Bot)?)) -
So there exists tg > 0 such that for all ¢t > tq

$(t)* < pE($(Bot)?).
Let ¢ = ¢2. Let (Ei)iZI be a sequence of independent copies of By. Since ¢ < 1,
for t > t,

Y(t) < pP(Bot < to) + pE (1{Byi>4,1¢ (Bot))
< PE(BY)(t/t0)" + P°E (1 (myzt0)¥(BoBit))
< PE(BY)(t/t0) +p’E (v(BoBut))
< PB(BY) (/)" + GE(BY))” (t/t0)" + P’ (11, 5,11 (BoBrt)
< t/to"zn: (PE(BY)) +p"1E(1{3051,,,En_ltZto}w(Boél---En,lt))

for every n > 1. Smce ¢ <1 and p and pE(Bj) are in (0,1), it follows that for
t>to
PE(BF)
< q
so (t) = O(t9/?). Then it is standard that E(Y —¢) < oo for all € € (0, —q/2).

Proof of Theorem 5.6. The approach used in the proof of Theorem 4.2 allows
to reduce the problem to showing that for every € > 0, there exists n > 0 such that
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Z Z E(ﬁ(Aw)H_") bn"(T’(l)_E) +]E(I~L(Aw)1_") b—nn(r’(1)+s) < .

n>1weAn

Fix n > 0 and n > 1. On the one hand, for every w € A™ we have almost surely

A =t ([ Qb-n(t)uizmut))m

m—0o0

IN

m—o0

lim ||, ||" / Qoor (8)*7 ul,. (d),

by the Jensen inequality. Consequently, by the Fatou Lemma used together with
the independence and Proposition 5.1 of [BM3] we get

E(A(Au)7) < 07 OEDE(Qpen (017) E([lull*)
e (e g ).

On the other hand, if 7 is small enough, by using Ca(1 — 1) we get

E ((Aw)' ") < 9= (L0 g n).
Moreover, if h is as in the statement, it follows from Theorem 5.4 that

sup E([|u|™) < oo.
R €[0,h]

)

So we are led to show that

Z(n) — Zb—n‘r(l—i-n)bnn('r'(l)—s) + e‘Pl—n(")b—nT(l—Tl)b—n’ﬂ(TI(l)"‘E) <

n>1

for n small enough. We first fix n small enough so that —7(1 + 1) + n7'(1) — ne <
—ne/2 and —7(1 —n) — n7'(1) — ne < —3ne/4. Then, from ¢;_,(n) = o(n) we

get that for n large enough e#1-n(m)p=nr(1=n)p—rn (7’ (1)+¢) < b=™</2_ Therefore

>-(n) < oc.

REMARK 4.1. Since the proofs of Theorems 5.3 and 5.4 are inspired from those
of corresponding results for MPCP, for the convenience of the readers of [BM1],
we mention three minor blemishes in [BM1]: the first blemish concerns the proof
of Theorem 1(7), which corresponds to Theorem 5.3(1). Instead of writing “letting
h tend to 17 as we do here, we wrote “letting h tend to 0”.

The second one concerns the proof of Lemma 6 involved in adapting the size-
biazing method of [WaWi] for CCM to get the converse of Theorem 1(i) under
some additional conditions. A random variable Xj; and a probability measure P
are defined. The explanation of the fact Ep,(X?) > 0 is confused. In fact, if
Ep,(X?) = 0 then, with the notations of part II, log Q-1 (t) = log(b) almost surely.
This contradicts E(Qp-1(t)) = 1 (see also the proof of Theorem 6.6 of [BM3] in
this paper).

The third one concerns the proof of Theorem 2(i7) (it corresponds to the proof of
Theorem 5.4 under (C§(h)), which involves a Lemma 4(7)(c). The proof of Lemma
4(7)(c) uses the conditional expectation with respect to o(F. : 0 <e < b™™) (F. is
defined as in [BM3] ). The correct o-field to consider is of course Fy-m, as here.
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5. PROOFS OF THEOREMS 5.11 AND 5.12

Assertions (3) of these results are standard (adapt the proof of Lemma 4.4
in [O] for box-multifractal analysis and use this lemma for centered multifractal
analysis).

Proof of Theorem 5.11 (1)(2). We begin by invoking a standard series of
inequalities that may be found for example in [BrMiP], [F] and [P] (see also
[L-VVoj]). We write these relations for i but they hold for any positive Borel
measure on (0A*, A*). With probability one, for every a > 0 and S € {E,E,E}
one has

dim S, < Dim S, < (—¢5)* (@),
and

dim Eq < f(a) < (—=¢5)"(a).

Now we show the following proposition.

PROPOSITION 5.1. Assume Qp—1 > 0, the condition (C2(q)) is satisfied for
every g € JNRy \[1, 2], and the condition (C4(q)) is satisfied for every ¢ € TNR_ .
With probability one, ¢5(q) < —71(q) for allg € J.

Proof. We first notice that an alternative definition for ¢;(q) is

¢r(q) = inf{t : limsup Cr(g,t) =0},

n—oo
where
Cnl(g,t) = Y Hi(Ay)%b™.
weA™

The function —7 being convex and @5 almost surely convex, it is enough to
show that $5(q) < —7(q) for every ¢ € J \ {0} almost surely. For such a ¢ ¢ (0, 1),
we have seen (Remark 5.9 of [BM3]) that E(||u||?) < oco. Moreover, since the
mapping x — z? is convex on (0,00), we can use the computations done in the
proof of Theorem 5.6. This yields fort e Rand n > 1

]E( > ﬁ(Aw)qb"t> < bR,
weA™

It follows that E} - -, Cn(g, —7(q) +¢) < oo for every € > 0, hence ¢z(g) < —7(q)
almost surely. For ¢ € (0,1) use property Cz2(q) as in the proof of Theorem 5.6
and proceed as above.

We continue the proof of Theorem 5.11. It follows from Proposition 5.1 and
assumption (C)(1)(2) that with probability one, for all ¢ € 7, (—¢z)*(7'(q)) <
7*(7'(q)). Tt remains to show that with probability one, for all ¢ € 7, dim ET/(q) >
7'(q)g — 7(q). According to [BBeP], it is enough to establish the following lemma.

LEMMA 5.2. For every € > 0, with probability one, for every q € J there exists
a positive Borel measure [ig on OA* such that

. fig (An ()
(51) llzn_f;p ﬁ(An (f)) q pr(r(a)+e)

< oo [i; —almost everywhere.
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Indeed, this lemma implies (see [BBeP]) that, with probability one, for every
q € J, pg(Er(q)) > 0and dim(fg) = 7'(¢)g—7(q); hence dim E.(y) > 7'(q)g—7(q).-
Then, the equality of ¢ and —7 on J follows, and assertions (1) and (2) of Theorem
5.11 are established.

Proof of Lemma 5.2. Construction of (lig)qes- For every w € Q, t € [0,1],
€€ (0,1) and g € J, define

— Q —"(taw)q
Q:(t,q,w) = m

Q:(t,q,w) is denoted by Q.(t,q) in the sequel.

The family {Q.(:,-,-)} satisfies condition (A1) of Section 4.2 with I' = J:
since the function 7 takes finite values on 7, the analyticity of z € C — Q. (t,w)?
at fixed (¢,w) and the dominated convergence Theorem imply that for every non-
trivial compact subinterval K of 7, there exists a deterministic neighbourhood of
K, namely Uk, such that the mapping ¢ € K — E(Q;-1(t)?) possesses the ana-
lytic extension z € Ux +— E(Q4-1(t)?). Morever, choosing Uk small enough, the
modulus of this extension takes only positive values. Then, it is straightforward
that properties (A1)(i) and (i¢) hold with

(ifee (™ 10", n>0).

Qb—" (ta w)z
(E(Qp-1(t)*))"
Now we show that Uk can be chosen so that (A1)(4i¢) holds. Because of (P2),

(P3), (P5) and (P6) and the fact that o = £ here, property (4.4) in [BM3] means
that for every compact subset K’ of Uk, there exists p € (1, 2] such that

@b_" (ta 2, CU) =

~ P
sup 1 —p+10gb]E(‘Qb_1(t,z)‘ ) <0,
z€K'

~ P
For z = q € K, using the definition of 7 shows that 1—p+logb]E(|Qb_1 (t, z)‘ ) <0

is equivalent to pr(q) — 7(pq) < 0. Since T is twice continuously differentiable, we
have

pr(q) —7(pg) = 1 —p)(7'(@)a — 7(@)) + O((p—1)*) (V¢ € K),

where O((p—1)?) is uniform over K. It follows from the definition of 7 that if p is
close enough to 1, we indeed have sup, ¢ i p7(q) — 7(pg) < 0. This makes it possible

to choose the neighborhood Uk such that sup, ¢, 1—p+log, E ( ‘Q\b—l (t, 2) ‘p) < 0;
hence (A1)(ii%) is fulfilled.

It follows from the above remarks and Theorem 4.1 that, with probability one,
for all ¢ € J, the measure u? converges weakly, as € — 0, to a measure p? whose
support is 0A*. Due to the self-similarity property, properties (A2)(4)(i%) hold, so
Proposition 3.1 can be applied. We denote ¢ by jig.

End of the proof. The approach is as in the proof of Theorem 4.2. Given £ > 0,
applying almost surely for every ¢ € J the Tchebitchev inequality to the random
variable X, : = [ig(A,(f)) in order to bound fig({f € 0A* : [g(An()) >

fi(An(F)) 7@+ 1) | we reduce the problem to proving the following fact: for
every € > 0 and every nontrivial compact subinterval K of 7, there exists n > 0
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such that with probability one, for all ¢ € 7,
D falg) < o0
n>0

where

Fulg) = bR N G (A) T g (Aw)

weA™

Fix such ¢ > 0 and K. We give the proof under (C)(3)(8). Under this
assumption, with the notations of the proof of Proposition 3.1, for every n > 0

falq) p—nn(r(a)+e) Z (sup Qp-n ()~ nq> b Z (w, 1)~

wEAn tel

IN

SUp;er, Qo—n (t)(:r")q p—n(1+1) 7

(E(Qp—»(t)1) ™"

Qp—n (ty,) 10 (1+n(1=0))
b—n(l+m)(1—g+7(q))

(w,q)' ™"

< pmr(a)te) Z My (n)
wEA™
= @) S My (1) Qe (1) 2w, 1) M7 (w,0)
wEA™
pr(rl@=a=n2) g (4).
The same approach as in the proof of Theorem 4.2 shows that it suffices to

prove that if  is small enough, there exists C' = C(K,n) > 0 such that for every
n>1,

Z(w,1)""Z(w,q)"*"

(5.2) sup b"(T@=1=m)R(g! (q)) < Cb"E/2
gEK

(5.3) sup bY@ =41 E(g, (q)) < CbE/2,
geK

For every w € A™ and ¢ € K, the random variables M, (7)Qp-= (t,)? and
Z(w,1)" " Z(w,q)*" are independent by construction. Moreover, since K is bounded
and ||p|| possesses finite moments of negative orders (by assumption the hypothesis
of Theorem 5.5 are fulfilled for every ¢ € J NR_), it follows from Proposition 3.1
and Holder inequalities that for 1 small enough,

) <o

dZ(w,1)""Z(w, q)" "
dgq

sup  E(Z(w,1)""Z(w,q)'t") +E (‘
weA*, geK

So we are led to show (5.2) for

= > My(n)Qp—n(tw)"-

wEA™
The same computations as in remarks (3) and (4) in the proof of Theorem 4.2
together with properties (P2),(P3),(P5) and (P6) show that for 5 small enough,
h,h' > 1 such that 1/h+1/h'=1,and ¢ € K

E (Mw(n) ‘% ) < (B (Mu(p)")) """ Aw, g) /"

where
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- - (Qb_k’b_k_l (tw)qh, | log(Qb—k,b—k_l (tw)) |hl)
k=0 E (Qyr p-t-1 (tu) ™)

X Tﬁ E (Qb—k’ b=k =1 (tw)th)
k'=0

| log(Qp-1 (1)) (e

Q-1 (t)™))"

= n p—n(1—ah'+7(qh"))

On the one hand, (E (Mw(n)h))l/h = exp (o(n)) by (C)(3)(B) with o(n) uniform
over w € A™ (notice that here the probability distributions of the random variables
we are dealing with do not depend on w). On the other hand, due to the fact
that 7 is finite in a neighborhood of 0, all the moments of |log(Qb—1(tw))| are
finite. Consequently, if A’ is chosen close enough to 1, an application of the Holder
inequality yields

< 0.

E Qo (ta) ™ | 10g(Qu-1 (20))| ")
sk E(Qp (tu)™)

From now on take h' = 1+ 7. Including n" in exp (o(n)) we get a constant
C = C(K,n) > 0 such that for every ¢ € K,

_plza4n®)+r(a(14n?))
2

K(|g), (9)]) < Cb" exp (o(n))b = Cexp (o(n))p= (Sot7@+00")

where O(n?) is uniform over ¢ € K. Consequently, for ¢ € K one has

@1 E(| ¢! ()]) < C exp (o(n))p~" (1+00).

To conclude, choose 1 small enough so that O(n?) < ne/4. Finally, since for n large
enough one has also o(n) < log(b)nen/4, (5.2) follows. (5.3) is obtained similarly.

Proof of Theorem 5.12(1)(2). It follows from the definitions of the functions b,
and B, in [O] that b,(q) < B,(q) < ¢,(q) (see Lemma 4.2 in [BBeP]). Moreover,
Theorem 5.11 applied with ¢ = 1 shows that g is almost surely atomless. Since
p = fion !, the analog of Proposition 5.1 for u instead of fi holds. This yields
oy < —7 on J almost surely by using (C’)(1)(2).

Then, due to [BBeP], the conclusion follows from the following Lemma.

LEMMA 5.3. For every € > 0, with probability one, for every q € J there exists
a Borel measure pg on [0,1], such that

L,(t
lim sup ak (qn( )) < oo g —almost everywhere
n—00 /,L(In(t)) b"(T(Q)'H':)
(5.4)
lim sup Ha (Ir (t))) < 0o g — almost everywhere.
r—0 p(IL(t )q r—(T(a)+e) 1
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Indeed, it then follows from Lemma 4.6 in [BBeP] that, with probability one,
for every g € J, b,(q) > —7(q) for every g € J; so all the functions mentioned above
coincide on 7 and are differentiable. Moreover, one gets the correct lower bound for
the Hausdorff dimensions of the sets S/, for ¢ € J and S € {E,E,E,F,F,F}
(see the proofs of Lemma 4.7 and Theorem 4.8 in [BBeP]). The correct upper
bounds follow from Theorem 1 in [BrMiP] and Propositions 2.5 and 2.6 in [O].

Proof of Lemma 5.3. A family of positive measures on (0A*, A*), (liq)qe, Was
constructed in the proof of Lemma 5.2. Let (114)qes be the family of measures on
[0,1] obtained as p, = fi; o m~!. We have seen that, with probability one, for all
g € J, dim(u,) = 7'(¢)g — 7(¢) > 0. In particular the u,’s are atomless and the
useful (for computations) relation pq(ly) = fig(Aw) holds for every w € A*.

It follows from the proofs of Lemmas 4.4 and 4.6 in [BBeP] that we only have
to prove that for every € > 0 and every nontrivial compact subinterval K of 7 NR*
or J NR,, there exists 7 > 0 such that with probability one, for all ¢ € K,

Z fn(g) < o0

n>0

where
Falg) = b7 DT N (1) T g (1) .

v,weA™
§(v,w)<d’

with o' = 3 if ¢ < 0 and 4b + 2 otherwise.
By using (C?)(3)(¢) as (C)(3) in the proof of Lemma 5.2 the problem is reduced
to showing that for n small enough there exists C = C(K,n) > 0 such that

(5.5) sup (T (D=1 E(! (q)) < Ch"en/2
€K
(56) sup b"(T(Q)*Q*TIE)E(hn (q)) < bensn/2
€K
where
h(@) = Y Myu(m)Qyn (t) M Qy—n (tw) M Z(v,1) ™ Z(w, q) 7.
v,wEA™
§(v,w)<b’

The proof ends in the same way as that of Lemma 5.2 by using (C?)(3) ().

6. PROOFS OF PROPOSITION 6.1 AND THEOREM 6.2

Proof of Proposition 6.1. The density of j1;-» can be reformulated as follows:
there exists a sequence of independent copies of W, (Wy,)wea+, and a sequence of
independent random phases (¢ )weax, such that o(W,, : w € A*) and o(¢dy, : w €
A*) are independent and for every n > 1 and w = wy - - - w, € A",

(6.1) Qper (B = T Woanw W (B ((F) + b)) (¥ E € Ay).
k=1

This, together with the definition of ¢ yield for ¢,¢' € R, n > 1 and v,w € A™
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’

sup Qpn ()7 sup Qp—n ()"

tEly, terl,

!

< el v H b Wi W (0 (b + Burv)) W (0 (b + )
= ollaHd Do) Qb—"( 0)1Qyn (£,)7
Moreover,

(D> eG4 ya
tlefyf Qo (t)? > e Qp—n (tw)

This is enough to get assertions (1), (2), (3) and (4), as well as (5) for (C)
and (C?)(1)(2)(3)(4). Notice that we are in the cases (C)(3)(«) and (C*)(3)(%)(a).
Therefore, due to the proof of Theorem 5.12, we can assume that h' = 1 in estab-
lishing (C’)(3)(4¢). To do this, we have to estimate

> H WA IW W (6 (b + Guie)) DI (5 (b + $ope) ™|
v,wEA™ k=1
0<d(v,w) <P’

where for every v € A* of length > 1 and 1 < k < |v|, v|k denotes the word v - - - vg.

As in [BBeP], we begin by a preliminary remark: if v and w are words of
length n, and if ¥ and w stand for their prefixes of length n — 1, then 6(v,w) > k
implies §(v,w) > bk. It results that, given two integers n > m > 0 and two words
v and w in A™ such that ™1 < §(v,w) < b™, there exist two prefixes ¥ and @ of
v and w respectively of common length n — m such that §(7, @) < 1.

Consequently, due to the independence and assumptions on moments of W
and W, in the above sum we can assume that b’ = 1. The pairs (v, w) such that
d(v,w) = 1 will be represented as follows. Define pj;, to be the word consisting of k
consecutive zeros and A to be the word consisting of k consecutive b—1 (considered
as a letter from the alphabet {0,1,2,...,b—1}). A representation of the set of pairs
(v,w) in A™ such that §(v,w) =1 is:

n—1
(6.2) U U {@idu@+1)p): 0<j<b—2}
k=0 yc An—1-k
For every g € R, we denote by E(Wq) the moment f[o,1] W(t)q dt.
Denote
S | LW W (0t + 6 )T + 641)
v,weA™ k=1
§(v,w)=1
by > (n,q,n). Using (6.2) and taking into account the independence we get

> (n,q,m) —2ZBnkZ > Cuni

] =0 ycAn—1- k
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with

))k+1

B = (B(W9))=1= (B(W (00 B(3w =)+ (BT 400 )m(i-m)) "

Crk,j = H?glk_l E (W(bi(tu.j.Ak + ¢u|i))(1+n)qW(bz(tu.(j+1).pk + ¢u|i))7nq) .

For every u € A" '=% and 0 < j < b—2, since |(tu.j.r, +Puli) — (bu. (1) a0 +Pu)i)| <
bF+1-7 by definition of ¢ we have

n—k—1

H W(bi(tu.j.xk + ¢u|i))(Hn)qw(bi(tu.(ﬂl)-pk + ¢“|"))7W
i=1
n—k—lﬂv )
< eﬂ|‘1|¢(n*k71) H W(bz(tu]/\k + ¢u‘z))q7
i=1
hence k
~ \n—k-1
Cppj < enlald(n=k=1) (E(Wq)) .

It follows from previous computations and the definition of 7 that

> (n,q,m)

n—1
< 2(b-2) Z pr—1—kenlgle(n—k—1)
k=0
(kD) (1-gr()) = (D) [(1—(1+n)q+T((1+n)q)) +(1+nq+T(—nq))]
n—1
= 2(b-2)p (@09 Z el ¥ (n—k=1)(k+1)(=2-7(0)+0(n))
k=0
with O(n) uniform over ¢ € K. Notice that 7(0) = —1. Finally, applying the

Cauchy-Schwarz inequality to the last above sum yields the desired control since it
is straightforward that 3, €27141¥(n—k=1) = exp (2p|q|o(n)) and
SRy bREFD(-2-7(0)+0() i hounded for 7 small enough.

It remains to verify property (5.8) of [BM3]. This is elementary and left to
the reader.

Proof of Theorem 6.2. We use the size biasing method involved in [WaWi] for
CCM.

For every n > 1, define P, the probability measure on (2, Fy») with density
with respect to PP equal to Y, = pp-n([0,1]). Since (Yn,Fp-n)n>1 is a l-mean
martingale, {P,} is a consistent family of probability measures. Let P be the
Kolmogorov extension of the P,’s to (€, Foo = 0(Fp-» : n > 1)). By Theorem
2.5.20 of [D-CDu], Y,, = 42 converges 1 (P+P)-almost surely to a random variable
Y in Ry U {oo} and if P(Yy = 00) = 1 then P(Y,, = 0) = 1. Since ||u|| = Yoo
P-almost surely, it is enough to show that P(limsup,, . Y, = 00) = 1 to get the
conclusion.

For every t € [0,1] and n > 1, define the measure P;,, on Fy—» by

dPy p, ~
—L2(0) = Gy (t,0).
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Since (@b-n(t),fb-n)nzl is a 1-mean martingale, {P; ,} is a consistent family of
probability measures. Let P; denote the Kolmogorov extension of the P; ,, to Fuo.
Then for every n > 1 define on (Q x [0, 1], Fy—» ® B([0, 1])) the probability measure
Qn(dw x dt) = Py ,(dw)é(dt), and define Q on (2 x [0,1], Feo ® B([0,1])), the
Kolmogorov extension of (Qp)n>1.

Let mq be the first coordinate projection map on 2 x [0,1]. By construction,
for every n > 1, P, = Q, o7ng"' and so P = Q o 7;;'. Moreover Q(dw x dt) =
P (dw)£(dt). Consequently, P(limsup,, ., ¥, = 0o0) = 1 will follow after showing
that Py(limsup,,_, ., ¥n = 0co0) = 1 for f-almost every every ¢ € [0, 1].

Fix t = 372 teb™% € (0,1) (t, € A). We only have to show that

Py (lim sup pp—n (In(t)) = 00) = 1.
n—oo

It follows from (6.1) and the definition of 4 that for n > 1

(63) 108 (st (1 (1)) > () + 3" 10g (Wineon W (BE(t + f11.,)) ) — log(b).
k=0

Moreover, the random variables X}, = log (th...tkW(bk (t+ ¢t1...tk))) — log(b) are

i.i.d. with respect to Py with mean 7/(17)log(b) = 0 and positive variance. Indeed,
if the variance of X; vanishes then X; = 0 Ps-almost surely and so P-almost surely
by construction of P;. This implies Qp-1(¢f) = b almost surely and contradicts
E(Qp-1(t)) = 1. Finally, the assumption on ¢, the law of the iterated logarithm
applied to (Xj)r>o0 with respect to P, and (6.3) together yield the conclusion.

7. PROOFS OF PROPOSITION 6.4, AND THEOREMS 6.6 AND 6.7

Proof of Proposition 6.4. We begin by preliminary definitions and remarks, as
well as a lemma. .
We will work under assumption (H1) or (H2) so we assume that W is con-

tinuous and fix w and w two numbers such that 0 < w < W < W < o and
ww = 1.

For every w € A*, recall that
T = ﬂ Cp—1w (1),
tel,
and

B = (U C,,_w|(t)> \T"

tel,
(see Figure 1 of Part II).

For every n > 1 and w € A™ we have

Qprlt) = b0 ] WMW(

t—tm + AM)
MeSNTIw

21
~[t—1 A
x 11 Wy W (#) (V t € L),

MeSNBIwNC, _x (t)
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where V' = E(W)E(W), and t € L, — [Lycsnrro WauW (7t tM“M) and ¢ €
Ly = [yesnpronc, . 1) Wy W (W) are independent.

Now we write
n—1
~ (t—1 A t—t A
I waw (MM T [ waw (2w
2)\M 2)\M
MeSnT!w k=0 presnTiw
where T\ =TT 0 {(t,\) : bF"1 <A < bk}

Also notice that fort € I,, 0 < k<n—1land M € SN T,f’”, one has

s (t—tu+Am = (tw —tm + Am
- M TaM _ w ¥ M < —k—
log (W ( IV )) log (W ( ar ))‘ <h(n—-k-1)

where

h(k) = . sél[% . ‘log (W (u)) — log (W (v)) ‘ .
lu—v|<b™"

It follows that for every t € I,,
A t—1t A ~
G*H(W)Q(w) < H WMW (ﬂ) < eH(w)Q(w)
2A M
MeSNT!w

with

H(w) = L5 h(lw| —k— D# SN TS

Qw) = [1aresormn WuW (W) i

If Ky is a bounded subset of R, define

t—tM+)\M>q

M(Ky,w) = sup H ngW ( s

qE€EKo,t€1L, MESNBIwNC, _ |, (t)
—~ q
q t—tm+Am
, HMESOBIwan_|w| (t) WMW ( 2Am )
M'(Ky,w) = sup

cKy.tel, q 717 [ tw—tmM+Am l]'
w w ML AM
=70 [Iresnpra AC,— o] (Fw) Wy W ( 2\ 01 )

For k > 0 and ¢ € R define
h(k,q) = max(0,1 —w?l9p=*/2).
For k > 0 and ¢ € [0,1] define C(t) = Cy-r-1(t) \ Cp-r(t). For A € {A,,A,},
the A-measure of C(t) does not depend on t; so we will write A(Cg).
Finally, if (¢,¢') € R? is so that E(W?) < oo, define
M(q,¢'w) = exp (45" A1) (") — 1) BW YE(W))
(q,¢',w) = exp (L} '0 " AClug-1-) (Rl @)esh® — 1) B B )) .

LEMMA 7.1. Let A € {A,,A,}.
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(1) For everyqe R, n>1 and t € [0,1],

~ (t—ty + I \?
]E( H WI‘{4W<72)\M ))

MESNey—n ()
= exp [A(Cb_n(t)) (]E(WQ)E(WQ) _ 1)] _ pro(ROWORW) 1)
(2) For every (¢,¢') € R?,
E (e Qu) )
exp (A (Cpmte (b)) (EOWE )BT ) ~ 1))

b~ (g, q' w) < <V M(q, ¢, w).

(3) For every ¢ >0

tel, 2A
MESNBIwAC, _|u () M

. — (t—tu+ I\’
E ( inf II wiLW (M> ) > exp (A(B™) (B(W,) — 1)),
where Wy = min(1, wIW?9).
(4) Let Ky be a bounded subset of R and wr, = 1 4+ w'™ Ko 4 55up Ko,

()
E(M (Ko, w)) < exp (A(B™) (E(Wi;) 1)),

where WKO = wK0(1 4+ Winf Ko WsupKO).
(it) For every h > 1,

E (M'(Ko,w)") < exp (A(B™) (E(Wi,) - 1)),
where W;{O — w%{i;(l + WhinfKo 4 yy7hsup Ko | 7 —hinf Ko . W—hsupKo)_

REMARK 7.2. The following lines show that the equality in Lemma 7.1(1) is
valid for any locally bounded Borel intensity A invariant by horizontal translations.

Proof. (1) We will write A(Cy-n) for A(Cy-=(t)). We have

~ (t—ty+ s \?
E( H WXIW<72AM ))

MeSNC,—n (t)

[e's} ~ (t—tym + )‘M !
= Z]E (1{#sncb_n(t)=k}Wg4W (W) ) .

k=0

By construction, conditionally on #S N Cy-n(t) = k > 1, SN Cy-=(t) is a set of
k i.i.d. random variables M; whose probability distribution is the restriction of
A to B(Cy-~(t)) normalized by A(Cy-»). Moreover, the random variables Wy, are
iid. with W and independent of the Mjs. So writing A = £ ® v and defining
pr = P(#S N Cy-n(t) = k) we have
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— (t—tam+ A\’
® (w3 (S5
—~ bl a ¢
PeE(W ) [E (W (ttzMA—HM) )]
M;

A(Ct—n) /C » W (*) ’ E(ds)u(d)\)] k

Since Cp—n (t) = {(s A ERXx(0,00): b <A<, t—A<s<t+ A}, the change
of variable t' = =212 yields

/cb_n(t) w (*) {(ds)v(d)\)

prE(W)*

/ N [ W@y dt v
pny oy

— B /[b_n | 2@

= E(W9)A(Cp-r).
Therefore,

e (t—tu+ A \? ok Tk
E 1{#Sﬂcb_n(t):k}WMW T =pkE(W ) E(W ) .

k
Since py, = e MCyp—n) w

(2) We have

Jwl .
(eqH(w)Q ) HIIE ( H eh(|w|—1—k)qWJ(§W (tw _;T\JM-’- AM)q ) _

MesSnT»

, we get the conclusion.

Since Tf* = {(s,A) € R x (0,00) : b F 1 <A <b™® t, —A+bIW/2 <5<
tw + A — b71*l/2, computations similar to those done to get (1) yield for every

0<k<|w -1
w|—1— 1= (tw —tm + Am v
” h 1-k)ayy 9 7
E( et " i (— 2,\M> )

MeSNT™
W”Z Wl 1R ) (1 (k, ¢, w))?
with
1 —

I(k,q',w) = / 2\ W ()7 dt'v(d)).

( ) A(T) [b—’“—l,b—’“)( ) [b=wl /4, 1-b=1w1/4)] ©) ()
Since
max(0, 1 — w27 |10 HE+ 9 (70 ) < / W) dt' < B

[b=1wl/ax,1—b—1wl/4A]
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we get
e M) exp (R(f] = k= 1, )= =PI BT )AC) )
h(jwl=1=k)qrrd 77 [ tw = tv + Am ¢
< E H e wiw o

MeSNT™

< e M exp (e DR B )AC) ) -

w|

Returning to E (eqH (“’)@(w)q') we get the conclusion since Hlk
e AT™) and 0 < A(Cp-n) — A(TTw) < A(BT») < 2plog(b).

-1 _ I
TLe AT =

(3) This is due to the inequality

N(M)qz [ (min(,wwy))

q
Wy W Nar

MeSNBlw an_h,,‘ (t) MeSNBlw
for all t € I,,.
(4)(%) This is due to the inequality
— (t—ty+ A\’ - u
T wiw (552) < JT wweOewiswie ™)
MESNBIwNC, _|u) () M MeSnBIw

forallt € I, and q € K.

(4)(ii) Proceed as above after writing
—~ q
q t—tar+A
HMESI’WBIWOCb_|w‘(t) WMW ( 2A§\M M)
— 7
q tw—tar+A
HMESOBIwﬁCb_h“(tw) WMW ( 2¥M M)

q
) HMESOBIwﬂ(Cb_|w| (O\Cy— | () Wi
S H wKO H

Wq
MeSnBlw MeSNBIw N (Cyo ) (tu)\Cpmjw) (1) T M

forall t € I, and q € K.

We now prove the assertions of Proposition 6.4.

Proof of (1) and (2). Fix ¢ > 0, n > 1 and w € A™. We can assume that
E(W1?) < oo. Indeed if this moment is infinite, C2(q) holds automatically since
E(Qp-n (t)?) = 0o by Lemma 7.1(1), and the same holds for C; if ¢ = 1. From the
inequality

sup Qyn (5)? < b=V =968 ) Q)7 M ({g}, w)

s€l,
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together with the independences between random variables and Lemma 7.1(2)(4)(4),
we deduce that

£ sup Qe (5)

s€L,

IA

b M (g, ¢, w)B(M ({g}, w))b~"(V "V exp (A(Cyr) (BWEW?) — 1))

= ¥ M(q, 0, )EM({g},w)E (Qpr (t)?)

Now, on the one hand, A(B!*) being uniformly bounded (by 2plog(b)) over w € A*,
sois E(M({¢q},w)). On the other hand, A(Cy) being uniformly bounded (it is equal
to plog(b)) over k € N, due to the fact that h(j) — 0, as j = oo, we have

log M (g, ¢, w) = O(4(n))
uniformly over w € A™. This is enough to conclude.

Proof of (3). Proceed as previously and use Lemma 7.1(3) to get

B( jnf O (9)') 2 Clow)(-a0,0)8 (Qrmn (1)),

s€l,
with
C(q,w) = b~ exp (A(B™) (E(W,) - 1)).
The conclusion follows the same lines as in proving (1) and (2) since h(k,q) — 1 as
k — oo.

~ q ~
Proof of (4). Fix q < 0. Writing (infselw Qp-~ (s)) = (supseIw Qp—n (s)*l)
makes it possible to use computations similar to those used in proving (2) with
W1 instead of W and —q instead of q.

—4q

Proof of (5). We assume that all the moments of W are finite, and we begin by
proving that (C) holds. In fact, due to (2) and (4), we only have to prove (C)(3).
The inequality (5.5) of [BM3] is satisfied with the random variable

My(n) = MI(K'_777 w)MI(KH-na w)eCK(n)H(w)7

where Kg = {8g: g€ K} if B € R and Ck(n) = sup{q € K : (1+ 2n)|q|}
Lemma 7.1(2) and (4)(4i) together with any Holder inequality guarantee that prop-
erty (C)(3)(8) holds (all the moments of W are finite).

Now we prove (C’)(3). The inequality (5.6) of [BM3] is satisfied with the
random variable

M) = M (K g, 0) M (K g, ) DHO) ),
where Cx(n) =sup{q € K : n|q|} and Ck(n) =sup{g € K : (1+ n)|q|}. Here

again Lemma 7.1(2) and (4)(4¢) together with any Holder inequality insure property
(C*)(3)(4)(B) holds, yielding (C?)(3)(¢).

Now we establish (C’)(3)(i7). Here we only need E(W") < oo for r in a
neighborhood of [0, 1].

For n > 1, (v,w) € A™ such that 0 < §(v,w) < b', B’ > 1 and g € K define ¢, 4,
as the middle of [t,,,] and
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n—1
H(w,w) =6(w,w) > hn—k-D#SNTNT/",
b""“zklzf’s(z&
~ [ty —tr + A
Quwy=  J[  wWuW (W) '
MeSNTTNTIw "
— —t—tym+ A
Also define Wy = W(ﬂ) and
) 22
(My(n, I, v,w, K) = sup sup 11 Wil W
9€K €L, re o B, \BIw)NC,_|w| (t)
(1+m)h' 757 (L4m)h'q
- sup H Wi Whrs
tel, MEeSNBIvNTIwNC, _ || (t)
Ms(n, b, v,w, K) = sup sup H Wﬁ-i-n)h Q,Wvﬁjﬂ)h q
16K e lu presn(Brw\BI)NC, | (1)
—nh'qi37—nh'q
- sup H WM" WM’t
ey presnBre ATTvAC, ) (£)
\ Ms(n, h',v,w,K) = sup sup 11 Wi Wy
qgeK tel, MeSNBIv NBIw ﬂCb_|w\ (t)
(L+m)h' a757 (14n)h'q
. sup H Wy W
t€lw 11 s BIw NBIvNC, || (1)
My(n, B, v,w, K) = sup H W&Tlh a5t lal
Mesn (Tl \(Thw UBLw) )
Ms(n, b, v,w, K) = sup H WJ(\}Jr")h’qw(lJ"")hl‘q‘-
K
\ q€ Mesn (TIw \(Tto UBIU))

The random variables M;(n, h',v,w, K) are mutually independent. Define their

product
5

CD,U)(Tth) = H Mi(n: hI,U,U),K).

i=1
The random variable C, (7, h') is itself independent of e(!+2mlalh H(v.w) ;) 4y)ah’,
Moreover, for every q € K one has

(7.1) Qon (t0) T Qe ()
S Cv w (n, hl)e(1+2n)|q|h’H(v,w) bfnp(Vfl)qh’Q\(U, w)qh, .
This is obtained after writing for ¢ € R and € € {-1,1}
Qoen (8) " = V=D T, (0)TI (0TI (o)L (0)
where

MeSN(BIv\BIw)NCy—n (ts) M
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eq 57 tv_tM"l"AM <o
HZ(’U) = H Wﬂg w (T) 5

MeSNBIvNBIwNCy—n (ty)

i [ty —tar + Aar \ 7
I = wew (22 7Y
= I ww(hpee)
Mesn(TT\T"w )
and
e (to—tar + A\
M (v) = H Ww o T M T AM
2\
MeSNTI»NTw
—~ €q
~ ' HMeSnTIvaIw W(%)
= Qv,w)* ~ (b w—tartrar )7
HMeSmTIv arre W (W)

< Qo) o),
the last inequality is due, on the one hand, to the fact that TkI” N TkI“’ # () only for
b=k > %b_” (see Figure 1), and on the other hand to the definition of h(k)
and the fact that if M € SNT;* NT{* # 0 one has |%| < ) phti—n <
§(v, w)bkti—n,

A

1

=

0 I, I, 1

FIGURE 1. Tllustration (to complete with Figure 1 of Part II) of some sets involved

~

in the definitions of H (v, w), Q(v,w) and M;(n,h',v,w, K).

Now, since E(W7) < oo forr € J and A(T*=\T"*) and |A(Cp-n ) —A(TTNT )|
are uniformly bounded over n > 1 and those (u,v) € A™ such that 0 < d(u,v) < ¥,
computations very similar to those done in proving Lemma 7.1 below show that if
n is small enough and A’ close enough to 1, then E(M;(n, h',v,w, K)) is uniformly
bounded over n > 1 and those (u,v) € A™ such that 0 < §(u,v) < b'; consequently,
the same holds for E(Cy,.(n,k')). On the other hand,

E (e(uzn)|q\h'H(v,w)b—nmv—l)qh'@(v,w)qh') < pom o ((V—1)an' —(EW ™ JEW ) -1))

where o(n) is uniform over ¢ € K and those (u,v) € A™ such that 0 < §(u,v) < b'.
Notice that

p((V = 1)gh’' — (E(W ™ YEW ™) = 1)) = r(qh') — qh' + 1.
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Moreover, by taking k' < 1+ 2, we can fix  small enough so that

sup |T(gh') — qh' = (1(q) — q)| <en/8
1<h' <1402 ,geK

(such a choice is possible because 7 is of class C?). Then, for n large enough the
function o(n) above is also less than enn/8. So, if 7 is small enough, there exists a
constant C = C(K,n) such that for all 1 < b/ < 141772,

E (e(1+2n)IQIh'H(vww)b—np(V—l)qh'@(U,w)qh’) < Cpn(r(@—ati-ne/4)
Finally, returning to (7.1), taking the expectation and summing over the right
pairs (u, v) whose quantity is less than (2b'+2)b", we get the first part of (C”)(3)(i7).
To get the second part of (C*)(3)(74), i.e. (5.8), write
Qp-r pmn=1 (tu) TP Qpn -1 (£,) 7" = b~ "V =UIIL, (¢TI, ()T5 (q)
with

—~ (1+n)q
_ (1+n) w—tar A
01(q) = [aresnc, ooty War W (t v M) ’

(14+n)g — —nq
_ tw—t A ty—ta+A
I2(q) = HMeSncAn(tw)ch,,(tu Wi W( M+ M) W( At M) ’

—ty i —nq
M3(9) = [aresnc, (t\G(tw) Wit W (tv éxz\j)\ ) :

The denominator (resp. numerator) of (5.8) has to be lower (resp. upper) bounded
uniformly over K if 5 is small enough and k' close enough to 1. For the denominator,
the proof uses the independence of II1, I and II3 as well as the same approach as in
the proof of Lemma 7.1(3), which gives a uniform lower bound for the expectation
of TI;(q)"" (one uses also the fact that A(C,) is uniformly bounded over n) For the

l h,
i)
The first expectation is controlled via the same computations as in the proof of

Lemma 7.1(4) (7). “(q) "

numerator, one needs an upper bound of the expectations of II; (q)

for

i =1 (cases i = 2 and 7 = 3 are treated similarly).
Conditionally on #S N Cp(tw) \ Cn(ty) = k > 1, let My,..., M}, be the points
of SNCp(tw) \ Cn(ty). One has

k
dll
@ = Xy oy Hy(”""’
1
= J#z
with . : A
yi = Wy W (Lo T IMs % Ay,

2,
Then, using successively the convex inequality | Y5, ;% < kKM ~1 % |a;|*| the
upper bound for W, and the fact that the Wjy,’s are i.i.d. we get
dIl ~
B (| T [#508ut) \Gut) = E)

b\ k-1
< (1+ n)h " (m(1+n)\tﬂh )k (E(W(Hn)qh ))

xE (W(H")th (|log(W)| + log(ﬁ))hl) )
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Define A = A(Cp(tw) \ Cu(t)), = = E(W(1+n)qh’(|log(W)|—}-log(m))h’) y =
wHmladh and z = B(W+mah"y | We obtained

2% @) = X gE(m@r 4t e\ =)
o o pt

Lk
(L+m)" ayre ™y 2 (Ow2)*

k=1

IA

It is standard that there exists a constant Cj such that >, %()\yz)k_l <
Cr (1 + Ayz)" +2 exp(Ayz). Our previous remark on the uniform boundedness of

A = A(Cn(tw) \ Cn(ty)) as well as the finiteness of E(WT) for all r € 7 yield the
conclusion.

Proof of Theorem 6.6. It suffices to show that for any ¢t € (0,1) one has
P.(lim sup,,_, o ps-» (In(t)) = 00) = 1, where the probability P; is constructed as
in the proof of Theorem 6.2 but with @ as defined in this Section 7. Fix t € (0, 1).
We have

~

Qp—n(3)

ca(In(t)) > b "Qp-n(t) inf = > b Q- H)Va (1),
e (1n(0) 2 0" Qen () S > 6 Qs (U OV (1)
with
W s_tﬁ;/\M
Un(t) = inf, 11 %ﬂ)
s€IlL( )MECb_n (t)an_n (s) %74 (#)
and

s—im+A
Vo(t) = inf aec, . one, ) Wl (M)
s€l, (t) HMer—n(t)\cb_n(s) WMW (W)

The same approach as in the proof of Theorem 6.2 shows that it remains to show
that

(7.2) [log(Un(t))] + | log(Va(t))| = o(v/nloglog(n)) Py — almost surely.

With the notations introduced for the proof of Proposition 6.4, we have

log(Un(t)] < Y~ h(n—k—1)#SNCi(t) N Ci(s)
k=0

< nih(n—k— D# SN Ce(t)
k:nO—l 1/p n—1 1/q
< (Z h(k)P) (Z ci) :
k=0 k=0

wherecy = # S ﬂ@k (t) and (p, q) is any pair of positive numbers such that %+% =1.
Fix such a pair (p,q). Due to the choice of A € {A,,A,}, the random variables o
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are i.i.d and integrable with respect to P;. So, by virtue of the law of large numbers,

n—1 1/q
(Z c%) =0 (nl/ 9) P, — almost surely.
k=0

Moreover,
n—1 1/p
<Z h(k)f’) =0 (n)'/?) = O(n% %)
k=0

by the assumption made on W. Therefore, choosing ¢ large enough yields

(7.3) |log(U,(t))| = O(v/n) P; — almost surely.
We claim that
(7.4) sup Ep, (|log(V,, (£))|*17) < oo.
n>1

Then, P;(|log(V,, ()| > 7""1%’%) = O(n~(+7/%) and due to the Borel-Cantelli

nv/(8+4v)

Lemma, (7.3) and (7.4) together imply (7.2).
Proof of (7.4): it is easily seen that
[log(Ve(£))| < An(t) + Bn(t)

with

{An(t) = ZMESO(BIn(t)\Cb_"(t)) |log Wt | + log(w)

Bn(t) = X mesn(c,—. i\ ) 108 War| + log(w).

The random variable A,,(¢) is independent of Qy-n (t) because B® \ Cp-= (t) and
Cy-n(t) are disjoint. Hence, defining p, = P(#S N (B™®) \ Cp-x(t)) = k) and

M, ..., My the elements of SN (B™(® \ C,—»(t)) conditionally on #S N (B™®) \
Cp-=(t)) = k, we get

Ep,(4,(1)*) = E(4,(t)*")

oo k
> pe(2R)T Y E(|log W, 7)) + (log (@)

k=0 i=1
> pi(2k)*T max (E(| log W[*|), (log(w))**™).
k=0

A(B™®\ Cy-n(t)) being bounded independently of n > 1 and E(|log W|**7|) finite
by assumption, it follows from the value of p; that sup,,>; Ep, (An()*7) < 00. Tt
remains to show that sup,>; Ep, (By(t)**7) < co. We have

Ep,(Bn(t)**) = E(Qy-n (t)Bn(t)**")
= Cu(t)Da(t)

IN

IN

where

Cn(t) — b—np(V—l)]E ( H WMW (t - tznf\ + )\M))
M

MeSNTn(t)
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is bounded independently of n by the computations performed in the proof of
Lemma 7.1(2), and

Dn(t) =E | B, (¢)*™ 11 Wy W (
MESN(Cymn (E)\TTn (1))

Let pr = P(#S N (Cp-n(t) \ T™»®) = k) and let M, ..., My be the elements of
SN (Cyn (t) \ T™"®)) conditionally on #S N (Cy-n (t) \ T™®)) = k. We have
t

t—tm +Am
2

D, (t)
oo k k
< SRS E(Wan [ llog Wi, I + (log(@))*+7]) [ EW, )@
k=0 i=1 j=1
J#i

< S (k) (EW)@) " max (WEW | log W|*+7), w(log(®@))HE(W)) .

Since A(Cy—n (t)\T'»()) is bounded independently of n > 1 and E(W|log W|?**7) <
00, it follows that sup,,»; Dn(t) < co. This yields sup,,>; Ee, (Bn(t)17) < 0.
Proof of Theorem 6.7. We already saw that it suffices to show that for every

€ > 0 and every nontrivial compact subinterval K of J, there exists n > 0 such
that with probability one, for all ¢ € 7,

an +fn <0

n>0
where
Falg) = b 1@ N Gi(A) " g (Aw) .
weEA™
and
fn(q)zb’""(T(‘IHE) Z (L) " g (I,) 7
v,weA™
§(v,w)<b’

with o' = 3 if ¢ < 0 and 4b + 2 otherwise.

The approach here consists in directly taking into account the specificities of
the particular construction we are dealing with. With the notations introduced in
establishing Proposition 6.4, if gx = max{|q|: ¢ € K}, we have for every ¢ € K

Falg) < pmT@=17m) g, (g)

with

gn(q) = b "1V N M(K_y, w) M (K, w)e? ) Q(w)? Z(w,1) ™ Z (w, q)*+"
wEA™

and R

Fnlq) < bT@=a=m9)G, (q)

with

Gn(q) =b 1D Ny (n, 1)elt 2N HER) Gy, )1 Z (v, 1) Z (w, g) .
v,weEA™
§(v,w)<b’

Now, recall that E(W7") < oo for all r € J. Moreover, A(B) and A(T'= \
(T*» N T*)) are uniformly bounded over n > 1 and those pairs (v,w) € (A™)?
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such that d(v,w) < b'. Consequently, for  small enough, the expectations of
M(K_,,w)M(Ki4y,w) and Cy,(n,1) are uniformly bounded over these pairs.
Then, by taking into account the independence, the problem is reduced as in the
proofs of Theorems 5.11 and 5.12 to showing that for n small enough there exists
C = C(K,n) > 0 such that

sup,e g bMTOITEE(|hy, (q)]) < Chmen/?
SUD,e i b"(T(q)*‘I*"E)]E(hn (9)) < Cb—nen/2
for h € {h1, ha}, where

hi: g p—mra(V—1) Z e‘”‘H(“’)@(w)q
wEA™

and
ho i g bm2V=1) z e(H2mac H(ww) B3y 4)4,

v,weA™
5 (v,w)<b’

The computations being very similar to those already done above, they are left
to the reader.
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