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Abstract. We consider a class of Gibbs measures on self-affine Sierpinski carpets

and perform the multifractal analysis of its elements. These deterministic measures

are Gibbs measures associated with bundle random dynamical systems defined on

probability spaces whose geometrical structure plays a central rôle.

A special subclass of these measures is the class of multinomial measures on

Sierpinski carpets. Our result improves the already known result concerning the

multifractal nature of the elements of this subclass by considerably weakening and

even eliminating in some cases a strong separation condition of geometrical nature.

1. Introduction

The singularity spectrum of a finite positive Borel measure on Rd is defined as the

mapping

α ≥ 0 7→ dim Eµ(α), Eµ(α) =

{
t ∈ supp(µ) : lim

r→0+

logµ
(
B(t, r)

)

log r
= α

}
,

where dim stands for the Hausdorff dimension. This function has been studied

extensively for measures obtained as geometric realization of Gibbs measures

defined on a symbolic space ([5, 27, 4, 14, 22, 9, 24, 25, 12, 1]). These measures

possess a kind of self-similarity property. This paper deals with the case when

the self-similarity is relaxed in self-affinity property and computes the singularity

spectrum of a class of Gibbs measures on Sierpinski carpets.

Special elements of this class of measures are studied in [17] (and in [22] on

Sierpinski sponges in Rd). These measures are multinomial measures distributed
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2 J. Barral and M. Mensi

on the (rectangular) cells of the carpet (see Section 1.3.1). Due to the self-affinity

property of the carpet, the multifractal analysis of these measures meets the same

difficulties as the computation of the Hausdorff dimension of the Sierpinski carpet

([19, 2]) and more general self-affine sets (see [6, 7, 15, 10] and references therein),

and it is a delicate issue. Moreover, in [17] and [22] a rather strong separation

condition is assumed in the construction of the carpet. Let us also mention that

[28] studies the singularity spectrum for multinomial measures on more general self-

affine sets: Fixing a probability vector (pi)1≤i≤m and a family (T1, . . . , Tm) of linear

contractions on Rn such that ‖Ti‖ <
1
3 , the authors obtain for almost all vectors

(a1, . . . , am) ∈ Rnm a part of the singularity spectrum of the unique probability

measure µ on the attractor of the IFS {S1 = T1 +a1, . . . , Sm = Tm +am} satisfying

µ =
∑m

i=1 piµ ◦ S−1
i . In [8], Gibbs measures including multinomial measures are

considered on these attractors (under the weaker assumption ‖Ti‖ <
1
2 ) and almost

sure results are obtained for the generalized dimensions of these measures. It will be

seen in Section 1.3.2 that when the attractor is a Sierpinski carpet, these measures

form a subclass of the class studied in this paper.

Another special subclass of the set of Gibbs measures considered in [8] consists

in self-affine generalized Riesz products on [0, 1]2: Let W : R2 → R∗
+ be 1-

periodic with respect to the first and second variable. Suppose that there exists

α ∈ (0, 1] and C > 0 such that if z, z′ ∈ R2 then |W (z) −W (z′)| ≤ C‖z − z′‖α

(‖ · ‖ being some norm). Let 2 ≤ r1 ≤ r2 be two integers. Then, the Ruelle-

Perron-Frobenius Theorem [23] applied for the dynamical system
(
(R/Z)2, σ

)
, with

σ(x, y) = (σ1(x) = r1x mod 1, σ2(y) = r2y mod 1), and the potential logW

ensures that the sequence of measures on [0, 1]2 defined by

νn(dxdy) =

∏n−1
k=0 W (rk

1x, r
k
2y)∫

[0,1]2

∏n−1
k=0 W (rk

1x
′, rk

2y
′) dx′dy′

dxdy (1.1)

converges weakly to a measure ν supported by [0, 1]2. The measure ν is a Gibbs

measure associated with
(
(R/Z)2, σ

)
and the potential ϕ(x, y) = logW (x, y). We

also use the terminology ”generalized Riesz product” for ν by reference to the Riesz

products in dimension 1, and also in order to underline the fact that these measures

form a strict subclass of the objects we shall consider in this paper. If r1 = r2,

the measure ν possesses some self-similarity property and the singularity spectrum

of such a measure is obtained by considering a family of auxiliary measures νq,

q ∈ R, obtained as follows ([9, 25]): νq is a Gibbs measure associated with the

potential qϕ and the same dynamical system
(
(R/Z)2, σ

)
, and it is supported by

the singularity set Eν(α(q)), where α(q) = (P (1) − P ′(q))/ log(r1), P (q) being

the topological pressure of qϕ; moreover, the Hausdorff dimension of νq is that

of the set Eν(α(q)). In this case the auxiliary measures are exactly of the same

nature as ν. When r1 < r2, the measure ν possesses a self-affine rather than self-

similar property, and the situation is subtler. This cannot be perceived immediately

for self-affine multinomial measures supported by [0, 1]2 (and more generally by

a Sierpinski carpet) because their multifractal analysis is performed by using a

family of auxiliary measures νq constructed exactly in the same way. For self-affine
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Gibbs measures on self-affine Sierpinski carpets 3

generalized Riesz products, it turns out that computing their singularity spectrum

leads us to adopt the following point of view. Let ν be a self-affine generalized Riesz

product as constructed above. The projection of ν on the first axis is equivalent

to a ergodic measure P on (Ω = R/Z, σ1), and ν is equivalent to a Gibbs measure

associated with the dynamical system (R/Z, σ2), considered as a random bundle,

on the probability space (Ω,P) and the random potential ϕ(x, ·), in the sense of

[3, 16, 13]. Then, for q ∈ R, the auxiliary measure νq involved in the multifractal

analysis of ν is a Gibbs measure associated with the potential qϕ(x, ·), but with a

different random dynamical system, in the sense that the probability P is replaced

by another one Pq, in such a way that the random dynamical systems involved in

the problem are all of the same nature. A remarkable fact is that a central rôle is

played by the geometric properties of the measures Pq. Indeed, they possess the

so-called quasi-Bernoulli property (see (1.3) and Section 2.2). Thus, our study

provides a frame in which quasi-Bernoulli measures are naturally involved and

generated. A natural way to obtain such measures on (Ω, σ1) is to consider Gibbs

measures on (Ω, σ1). But there is no obvious argument ensuring that conversely a

quasi-Bernoulli measure like P or Pq is equivalent to a Gibbs measure on (Ω, σ1).

Consequently, since we have no way to prove that Pq is a Gibbs measure, contrarily

to what happens when r1 = r2, the measure νq on [0, 1]2 cannot be obtained as a

generalized Riesz product (see Section 1.3.3 for more details) and belongs to an a

priori larger class of Gibbs measures.

This class forms a subset of the Gibbs measures on general Sierpinski carpets

rather than only on [0, 1]2 considered in the sequel. Let µ be such a Gibbs measure.

The singularity spectrum of µ will be obtained as the Legendre transform of some

function β (which, up to an affine transformation, coincides with a topological

pressure function when r1 = r2). While β is analytic for a self-affine multinomial

measure, another delicate point in this paper is to establish the differentiability of

this function in the general case. This uses some ideas from [11].

Also, while (as we already mentioned) in [17, 22] a rather restrictive separation

hypothesis is assumed in the Sierpinski carpet construction for the computation of

the singularity spectrum of self-affine multinomial measures, our results improve

those established in [17, 22] by assuming a considerably weaker assumption (see

Remark 1.4 and Theorem 1.2). More precisely, without assuming any restriction in

the carpet construction we determine the whole decreasing part of the singularity

spectrum as well as a lower bound for the increasing part which is sharp under our

weak technical assumption.

For Gibbs measures associated with potentials satisfying some Dini and

periodicity conditions, our results hold without any geometrical assumption (see

Corollary 1.1).

Let us now introduce some definitions and notations. Then, in Sections 1.1 and

1.2 Gibbs measures on the product of two symbolic spaces will be defined as well

as their natural projection on a Sierpinski carpet. Section 1.3 details the special

examples mentioned above. Eventually, Section 1.4 provides our main results, and

the rest of the paper is devoted to the proof of these results.
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4 J. Barral and M. Mensi

Definitions and notations.

Let 2 ≤ r1 < r2 be two integers. For i ∈ {1, 2} let Ai denote the set {0, . . . , ri−1}.

Let A∗
i =

⋃
k≥0 A

k
i (A0

i = {∅}) and let Ai denote the symbolic space AN
∗

i . The

length of an element w of A∗
i ∪Ai is denoted |w|. The set A∗

i ∪Ai is endowed with

the concatenation operation: if w ∈ A∗
i and w′ ∈ A∗

i ∪ Ai , then w · w′ denotes the

word obtained by juxtaposition of w and w′.

Then, for w ∈ A∗
i , [w] stands for the cylinder w · Ai = {w · w′, w′ ∈ Ai}.

If z = z1z2 · · · zp · · · ∈ Ai and n ∈ N then z|n stands for the prefix z1 · · · zn of z

if n ≥ 1 and the empty word otherwise.

For z, z′ ∈ A∗
i ∪Ai, let z ∧ z′ stands for the word u of maximal length in A∗

i ∪Ai

such that u is a prefix of z and z′.

The set Ai is endowed with the ultrametric distance di : (z, z′) ∈ A2
i 7→ r

−|z∧z′|
i .

Let σi stand for the shift transformation on Ai and denote by σ the

transformation (σ1, σ2) on A1 × A2.

The product A1 × A2 is endowed with the ultrametric distance

d
(
(x, y), (x′, y′)

)
= max

(
d1(x, x

′), d2(y, y
′)
)
.

For every n ≥ 1, let Fn be the set of balls of radius r−n
2 in (A1 × A2, d). Let

g(n) be the smallest integer m such that r−m
1 ≤ r−n

2 . It is easy to see that

Fn =
{

[w1 · w̃1] × [w2] : (w1, w̃1, w2) ∈ An
1 ×A

g(n)−n
1 ×An

2

}
. (1.2)

1.1. Construction of Gibbs measures on A1 × A2.

Let A be a non-empty subset of A1 ×A2 and define [A] = {[i]× [j] : (i, j) ∈ A}.

Then define the compact subset K of A1 × A2 by K =
⋂

n≥0 σ
−n([A]).

Let ϕ : A1 × A2 → R ∪ {−∞} be a function such that K = {(x, y) ∈ A1 × A2 :

ϕ(x, y) > −∞}. We assume that

(H1) ϕ satisfies the Dini condition
∫

[0,1]

sup
z,z′∈K

d(z,z′)≤r

|ϕ(z) − ϕ(z′)|
dr

r
<∞.

Then, let Ã1 = {i ∈ A1 : ∃ j ∈ A2, (i, j) ∈ A} and Ã2 = {j ∈ A2 : ∃ i ∈

A1, (i, j) ∈ A}.

In order to avoid trivial cases in the sequel, we assume

(H2) min(# Ã1,# Ã2) ≥ 2, where #S denotes the cardinality of the set S. We

set r̃1 = #Ã1.

For i ∈ {1, 2} let Ã∗
i =

⋃
k≥0 Ã

k
i and let Ãi denote the symbolic space ÃN

∗

i .

We have

K ⊂ Ã1 × Ã2,

and the sets Ã1 and Ã2 are the projections of K on A1 and A2 respectively.

From now on, the space (Ã1, σ1) plays a particular rôle, but we explain in

Remark 1.3 that favoring (Ã2, σ2) yields the same result.
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Gibbs measures on self-affine Sierpinski carpets 5

Let P be a ergodic probability measure on (Ã1, σ1) and suppose that P obeys

the quasi-Bernoulli property ([4]):

(H3) There exists C > 0 such that for every n, p ≥ 1, for every (w1, w̃1),∈

Ãn
1 × Ãp

1 one has

C−1 ≤
P
(
[w1 · w̃1]

)

P
(
[w1]

)
P
(
[w̃1]

) ≤ C. (1.3)

Let ℓi stand for the Haar measure on the compact set Ãi considered with its natural

structure of additive group.

For i ∈ Ã1, let Ã2(i) stand for {j ∈ A2 : ϕ|[i]×[j] 6≡ −∞}. Then for

x = x1x2 · · ·xp · · · ∈ Ã1 and n ≥ 1 let

Kx = {y ∈ Ã2 : (x, y) ∈ K} and Ã2(x|n) =

n∏

k=1

Ã2(xk).

By construction

Kx =
⋂

n≥1

Kn
x , with Kn

x =
⋃

w2∈ eA2(x|n)

[w2].

In particular,Kx is a compact set. We then denote by ℓ2,x the (unique) ”branching”

measure on Kx such that

ℓ2,x([w2] ∩Kx) =
n∏

k=1

(
# Ã2(xk)

)−1
, n ≥ 1, w2 ∈ Ãn

2 (x|n).

Remark 1.1. If K = Ã1 × Ã2 then Kx = Ã2 and ℓ2,x = ℓ2 for all x ∈ Ã1.

Definition 1.1. For n ≥ 1 and (x, y) ∈ A1 × A2, let

Snϕ(x, y) =

{∑n−1
k=0 ϕ

(
σk

1 · x, σk
2 · y

)
if (x, y) ∈ K

−∞ otherwise
.

Also, for n ≥ 1 and x ∈ Ã1 define on Kx the measure

µx
n(dy) =

exp
(
Snϕ(x, y)

)
∫

Kx
exp

(
Snϕ(x, u)

)
ℓ2,x(du)

ℓ2,x(dy).

Then define on K the measure

µn(dx, dy) = P(dx)µx
n(dy) (1.4)

and denote by M the set of weak limits of subsequences of (µn)n≥1.

We shall relate M to the concept of Gibbs measure, and then describe the

multifractal nature of the elements of M. The following proposition, which is a

simple consequence of (2.4) in the proof of Lemma 2.2, shows that all the elements

of M have the same multifractal nature.
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6 J. Barral and M. Mensi

Proposition 1.1. There exists C > 0 such that for every µ, ν ∈ M and Borel set

E in K one has C−1ν(E) ≤ µ(E) ≤ Cν(E).

Before considering multifractal analysis, let us examine sufficient conditions on

the set A for M to be a singleton (Proposition 1.2) and relate this property to the

notion of Gibbs state. This uses the Ruelle-Perron-Fröbenius theorem established

in [3] and requires to use double-ended infinite words on Ã1 to get an invertible

shift operation.

Let A1 = ÃZ
1 , let σ1 be the extension of σ1 to A1 and let σ be the transformation

(σ1, σ2) on A1 × A2. If x = · · ·x−1x0x1 · · · ∈ A1, we set x+ = x1 · · · , Kx = Kx+

and ℓ2,x = ℓ2,x+ , and if y ∈ A2 we set ϕ(x, y) = ϕ(x+, y). Also, we set

K = {(x, y) ∈ A1 × A2 : (x+, y) ∈ K}.

If i ∈ Ã1, let m(i) = min
j∈ eA2(i)

j and M(i) = max
j∈ eA2(i)

j. Then define the random

transition matrix

B(x) =
(
1 eA2(x1)

(j1)1 eA2(x2)
(j2)

)
j1∈ eA2∩[m(x1),M(x1)]

j2∈ eA2∩[m(x2),M(x2)]

(x = · · ·x−1x0x1x2 · · · ∈ A1)

By construction

Kx =
{
y ∈ Ã2 : Byk,yk+1

(σ
(k−1)
1 x) = 1 ∀ k ≥ 1

}
. (1.5)

We denote by P the ergodic extension of P to A1, which we also denote by Ω.

In the setting of [3], the set K is a compact bundle over Ω with fibers (the sets

Kx) in Ã2. For x ∈ Ω let φ(x) be the restriction to Kx of the function σ2. The

map φ(x) is continuous from Kx to Kσ1x. It follows that in the setting of [3] the

functions φ(x) define a bundle random dynamical system on Ω× Ã2. Moreover, due

to (1.5), the maps φ(x) and the matrices B(x) define a random subshift of finite

type. Let us introduce the following assumption on the set A:

∀i ∈ Ã1, Ã2(i) = Ã2 ∩ [m(i),M(i)]. (1.6)

Remark 1.2. Instead of considering random subshifts defined with random

alphabets of the form {1, . . . , l(ω)} inside N∗ (that is made of the l(ω) first positive

integers) as in [3] and [13], we work with the random alphabets Ã2∩[m(x1),M(x1)]

made of integers belonging to Ã2.

It is easily seen that (1.6) is the necessary and sufficient condition for B(x) to

satisfy the aperiodicity condition of [13] (which weakens that of [3]): For P-almost

every x ∈ A, there exists N(x) ≥ 1 such that all the entries of B(x) · · ·B(σ
N(x)−1
1 x)

are positive. Moreover, under (1.6), we can take N(x) = 1.

Property (1.6) obviously holds if K = Ã1 × Ã2. This is the case for generalized

Riesz products considered in Section 1.

The following result is then a consequence of the random tranfer operator

theorem obtained in [3] (Theorem 2.3 (iv)) for the random Perron-Fröbenius
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Gibbs measures on self-affine Sierpinski carpets 7

operator from C(Kx) (the space of continuous functions onKx) to C(Kσ1x) defined

for x ∈ Ω by

Lx
ϕ(g) = y 7→

∑

y′∈Kx: φ(x)(y′)=y

eϕ(x,y′)g(y′).

Proposition 1.2. Assume that (1.6) holds and that ϕ is a Hölder function, i.e.

there exists α ∈ (0, 1] and C > 0 such that if z, z′ ∈ K then |ϕ(z) − ϕ(z′)| ≤

Cd(z, z′)α. Then, for P-almost every x, the measures µx
n converge weakly to a

probability measure µx on Kx as n tends to infinity. Consequently, the sequence of

measures µn converges weakly to the measure P(dx)µx(dy) as n goes to infinity and

M is a singleton.

Proof. For x ∈ Ã1 and n ≥ 1 let Lx,n
ϕ = L

σn−1
1 ·x

ϕ ◦ · · · ◦ Lσ1·x
ϕ ◦ Lx

ϕ. An elementaty

computation shows that if f ∈ C(Kx+) then

∫

Kx+

f(y)µx
n(dy) =

∫
Kx

Lx,n
ϕ f(u+)ℓ2,x(du)

∫
Kx

Lx,n
ϕ 1(u)ℓ2,x(du)

,

where 1(·) stands for the function identically equal to 1. The assumptions C1, C2

(slightly weakend here) and C3 of Section 2.5 in [3] are fullfilled by the random

potential ϕ(x, ·) and the random matrix S(x) (respectively denoted by φ(ω) and

A(ω) in [3]). Thus, due to [3] (Theorem 2.3 (iv)), for P-almost every x ∈ A1, for

every f ∈ C(Kx+), the sequence

R
Kx

Lx,n
ϕ f(u+)ℓ2,x(du)

R
Kx

Lx,n
ϕ 1(u)ℓ2,x(du)

converges. Since the limit

depends only on x+, if follows that µx
n converges weakly for P-almost every x. The

weak convergence of µn to µP,ϕ is then immediate. 2

If (1.6) holds and ϕ is a Hölder function, it is P-almost sure that the measure

µ
x+
n converges weakly to a measure µx+ (see the proof below). Then, the measure

P(dx)µx+(dy) is a Gibbs measure on K in the sense of [3]. By extension, we call

P(dx)µx(dy) a Gibbs measure on K, as well as any element of M even if (1.6) does

not hold. Thus:

• We fix an element µP,ϕ of M and denote by µ the extention of µP,ϕ to the

Borel subsets E of A1 × A2 defined by µ(E) = µP,ϕ(E ∩K).

• We denote also by P the extension of P to the Borel subsets B of A1 defined

by P(B) = P(B ∩ Ã1).

Remark 1.3. By analogy with the construction of the previous bundle random

dynamical system, for j ∈ Ã2 let Ã1(j) stand for {i ∈ A1 : ϕ|[i]×[j] 6≡ −∞}.

Then for y = y1y2 · · · yp · · · ∈ Ã2 and n ≥ 1 let Ky = {x ∈ Ã1 : (x, y) ∈ K}

and Ã1(y|n) =

n∏

k=1

Ã1(yk). Also let ℓ1,y be the unique measure on Ky such that

ℓ1,y([w1] ∩ Ky) =

n∏

k=1

(
# Ã1(yk)

)−1
for all n ≥ 1 and w1 ∈ Ãn

1 (y|n). Then for
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8 J. Barral and M. Mensi

n ≥ 1 and y ∈ Ã2 define on Ky the measure

µy
n(dx) =

exp
(
Snϕ(x, y)

)
∫

Ky
exp

(
Snϕ(u, y)

)
ℓ1,y(du)

ℓ1,y(dx),

Then, considering the measure P on (Ã1, σ1) is equivalent to chosing it on

(Ã2, σ2) if (1.3) holds. Indeed, computations similar to those done in Section 2.1

show that:

(i) the projection P2 of µ on Ã2 is quasi-Bernoulli (and thus equivalent to a

ergodic quasi-Bernoulli measure (see [11] for instance));

(ii) Any weak limit of the sequence P2(dy)µ
y
n(dx) is equivalent to µ.

(iii) A sufficient condition for P2(dy)µ
y
n(dx) to weakly converge is that Ã1(j) =

Ã1 ∩
[

min
i∈ eA1(j)

i, max
i∈ eA1(j)

i
]

for all j ∈ Ã2.

1.2. Gibbs measures on the Sierpinski carpet.

Let µ be the extension to A1 × A2 of the Gibbs measure µP,ϕ considered after

the statement of Proposition 1.2. Let

πi : z ∈ Ai 7→
∑

k≥1

zkr
−k
i (i ∈ {1, 2}) and π = (π1, π2).

The measure µ̃ = µ ◦ π−1 is the natural projection of µ on [0, 1]2 and its support

is the Sierpinski carpet π(K). The set π(K) is also the attractor of the iterated

function system composed by the affine transformations

fi,j : (x, y) 7→ (ir−1
1 + r−1

1 x, jr−1
2 + r−1

2 y), (i, j) ∈ A.

The measure µ̃ is called a Gibbs measure on the Sierpinski carpet π(K).

1.3. Basic examples.

1.3.1. Self-affine multinomial measures. This corresponds to the measures

considered in [19, 2, 17, 22] which are obtained by taking ϕ constant equal to

a value ϕi,j over each product K ∩ [i]× [j] ((i, j) ∈ A) and P the Bernoulli measure

such that P([i]) =

∑
j∈ eA2(i) expϕi,j∑

i′∈ eA1

∑
j∈ eA2(i′) expϕi′,j

for i ∈ Ã1. In this example, M is

reduced to one point even when (1.6) does not hold.

1.3.2. Self-affine generalized Riesz products – Gibbs measures of [8]. Let ν be a

generalized Riesz product as constructed in the introduction. Computations similar

to those performed in the proof of Proposition 2.1 show that the projection ρ of

ν on the first axis is equivalent to the image by π1 of an ergodic quasi-Bernoulli

measure P. As a result the measure ν is equivalent to the projection of the measure

µP,ϕ defined in the previous section, where ϕ = logW ◦ (π1, π2). Recall that in this

Prepared using etds.cls



Gibbs measures on self-affine Sierpinski carpets 9

case the support of ν is [0, 1]2 and that of µP,ϕ is A1 ×A2 (in particular (1.6) holds

and M is reduced to one point).

In [8], the more general following construction is considered, which is also a

special case of our setting.

Let ϕ as in Section 1.1. Let m = #A. There is a natural homeomorphism h

between the symbolic space I∞ = {1, . . . ,m}N
∗

endowed with the shift operation s

and the set (K,σ|K), such that h ◦ s = σ ◦ h. A Gibbs measure ν on (I∞, s) can be

associated with the potential ϕ ◦ h, and in our setting the measure considered in

[8] on the carpet π(K) is the measure µ̃ = µ ◦π−1, where µ := ν ◦h−1. Here again,

it is not difficult to see, using computations similar to those used for the proof

of Proposition 2.1, that the projection ρ of µ on Ã1 is equivalent to an ergodic

quasi-Bernoulli measure P and that µ is equivalent to the measure µP,ϕ.

1.3.3. Comment. In each example, the multifractal analysis of the measure µ

requires us to consider a family {µq}q∈R of auxiliary measures. For multinomial

measures µ, each µq is itself multinomial. If ν is a generalized Riesz product

associated with the function W then νq takes the form µ̃q, where µq = µPq,ϕq

for some quasi-Bernoulli and ergodic measure Pq and the potential ϕq = q logW ◦

(π1, π2) (see Section 2.2). If we knew that any quasi-Bernoulli measure is equivalent

to a Gibbs measure, µq could be obtained as a generalized Riesz product. Indeed,

since the quantity Iq,n introduced below in Section 1.4 also possesses a quasi-

Bernoulli structure (Lemma 2.1), we see on the Definitions 1.1 and 2.1 that there

would exist a 1-periodic potential ψq on [0, 1] such that Pq([x|n])/Iq,n(x|n) ≈

exp(
∑n−1

k=0 ψq(π1(σ
k
1x)). Then, νq = µ̃q would be the generalized Riesz product

associated with Wq such that Wq(x, y) = exp (ψq(x))W (x, y)q. This expression

strongly differs from the case r1 = r2 [4, 9, 25] for which the term ψq vanishes.

The same remarks hold for the Gibbs measures considered in [8].

1.4. Main results.

The measure µ and its projection µ̃ are respectively defined as at the end of

Section 1.1 and as in Section 1.2.

Let s = log(r1)/ log(r2). For n ≥ 1, w1 ∈ Ãn
1 and q ∈ R, let

Iq,n(w1) =
∑

w2∈ eAn
2 (w1)

sup
(x,y)∈[w1]×[w2]∩K

exp
(
qSnϕ(x, y)

)
. (1.7)

Then define

ρq,n([w1]) = P([w1])
q

(
Iq,n(w1)

I1,n(w1)q

)s

, (1.8)

βµ,n(q) = −
1

n
logr1

∑

w1∈ eAn
1

ρq,n([w1])

and

βµ(q) = lim inf
n→∞

βµ,n(q).
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10 J. Barral and M. Mensi

For f : R → R ∪ {−∞}, the Legendre transform of f is defined by f∗ : α ≥ 0 7→

infq∈R αq − f(q).

Theorem 1.1. (Singularity spectrum of µ)

(i) The concave function βµ is differentiable and non decreasing.

(ii) For every α ∈ R+, one has dim Eµ(α) = β∗
µ(α) if β∗

µ(α) > 0 and Eµ(α) = ∅

if β∗
µ(α) < 0.

Let us introduce on the set A three types of properties, respectively denoted

(G1), (G2) and (G3). Property (G1) is a strong separation condition of

geometrical nature which weakens that of [17, 22] (see Remark 1.4 below).

Property (G2) is a weak separation condition of geometrical nature, but neither

(G1) implies (G2) nor (G2) implies (G1). Property (G3) is a king of weak

periodicity condition on the potential ϕ and the Sierpinski carpet, and it excludes

(G2).

(G1) |i− i′| ≥ 2 for every pair (i, i′) of distinct elements of Ã1.

(G2) {0, r1 − 1} ∩ (A1 \ Ã1) 6= ∅.

(G3) {0, r1 − 1} ⊂ Ã1 and for all q > 0,

lim
n→∞

1

n
log Iq,n(0·n) = lim

n→∞

1

n
log Iq,n((r1 − 1)·n), (1.9)

where for j ∈ Ai and n ≥ 1, j·n stands for the word of length n whose letters are

all equal to j (the limit exist in (1.9) thanks to Lemma 2.1).

Theorem 1.2. (Singularity spectrum of µ̃)

(i) (Lower bound) For every α ∈ R+ such that β∗
µ(α) > 0, one has dim Eeµ(α) ≥

β∗
µ(α).

(ii) (Upper bound: Case α ≥ β′
µ(0)). If α ≥ β′

µ(0) then dim Eeµ(α) ≤ β∗
µ(α) and

Eeµ(α) = ∅ if β∗
µ(α) < 0.

(iii) (Upper bound: Case 0 ≤ α < β′
µ(0)). Suppose that one of the properties

(G1), (G2) or (G3) holds.

If 0 ≤ α < β′
µ(0) then dim Eeµ(α) ≤ β∗

µ(α) and Eeµ(α) = ∅ if β∗
µ(α) < 0.

The following corollary shows that our work yields the singularity spectrum of

Gibbs measures directly constructed on a Sierpinski carpet in the torus (R/Z)2 (like

generalized Riesz products) without particular geometrical assumptions.

Corollary 1.1. Let W : R2 → R+. Suppose that π(K) = {z ∈ [0, 1]2 : W (z) > 0}

and W is 1-periodic with respect to the first and second variables. Suppose also that

∫

[0,1]

sup
z,z′∈π(K)∪(π(K)+(−1,0))

‖z′−z‖≤r

∣∣∣∣log
W (z′)

W (z)

∣∣∣∣
dr

r
<∞.

If ϕ is taken to be equal to ϕ̃ ◦ π over K and −∞ elsewhere, then for every

α ∈ R+, one has dim Eeµ(α) = β∗
µ(α) if β∗

µ(α) > 0 and Eeµ(α) = ∅ if β∗
µ(α) < 0.
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We leave the reader verify that this result follows from Theorem 1.2 and the fact

that either (G2) or (G3) holds due to the periodicity and Dini assumptions.

Remark 1.4. In the case of Example 1.3.1, i.e. self-affine multinomial measures,

the function βµ takes the simple analytic form

βµ(q) = − logr1

∑

i∈ eA1

[ ∑
j∈ eA2(i) expϕi,j∑

i′∈ eA1

∑
j∈ eA2(i′) expϕi′,j

]q



∑

j∈ eA2(i) exp qϕi,j
(∑

j∈ eA2(i) expϕi,j

)q




s

obtained in [17].

The strong separation assumption considered in [17, 22] requires that for every

pair (i, i′) of distinct elements of Ã1 one has |i − i′| ≥ 2, and if i ∈ Ã1 then if j

and j′ are two distinct elements of Ã2(i)) one has |j− j′| ≥ 2. Thus property (G1)

weakens this assumption and property (G2) describes a large class of configurations

which are completed by property (G3), which holds if Ã2(0) = Ã2(r1 − 1) 6= ∅ and

ϕ(0, j) = ϕ(r1 − 1, j) for all j ∈ Ã2(0).

Remark 1.5. Condition (G3) is also illustrated by potentials ϕ for which (1)

Ã2(0) = Ã(r1 − 1) 6= ∅; (2) there exist an integer p ≥ 1 such that for every

w2 ∈ Ã2(0
·p) = Ã2((r1 − 1)·p), the restrictions of ϕ to [0·p] × [w2] ∩ K and

[(r1 − 1)·p] × [w2] ∩K are constant and take the same value.

In the sequel, in order to simplify the computations, we slightly modify the

definition of the quantity Iq,n(w1).

If n ≥ 1 and (w1, w2) ∈ Ãn
1×Ã

n
2 is such that [w1]×[w2]∩K 6= ∅ (i.e. w2 ∈ Ã2(w1))

let (w1, w2) be an element of [w1] × [w2] ∩ K. Then, due to (H1), a bounded

distortion principle yields C > 0 depending on ϕ only such that

C−|q| ≤ Iq,n(w1)
−1

∑

w2∈ eAn
2 (w1)

exp
(
qSnϕ(w1, w2)

)
≤ C|q|.

Consequently, from now on we set

Iq,n(w1) =
∑

w2∈ eAn
2 (w1)

exp
(
qSnϕ(w1, w2)

)
(1.10)

without affecting our results.

2. Auxiliary functions and measures

2.1. Four basic properties.

Lemma 2.1. Let L be a compact subset of R. There exists a constant C > 0 such

that for every n, p ≥ 1, q ∈ L, and (w1, w̃1) ∈ Ãn
1 × Ãp

1 one has

C−1 ≤
Iq,n+p([w1 · w̃1])

Iq,n([w1])Iq,p([w̃1])
≤ C. (2.1)

The following lemma provides an extension to µ of (1.3) (which holds for P).
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12 J. Barral and M. Mensi

Lemma 2.2. There exists C > 0 such that for every n, p ≥ 1, for every

(w1, w̃1, w2, w̃2) ∈ An
1 ×Ap

1 ×An
2 ×Ap

2

such that [w1 · w̃1] × [w2 · w̃2] ∩K 6= ∅ one has

C−1 ≤
µ
(
[w1 · w̃1] × [w2 · w̃2]

)

µ
(
[w1] × [w2]

)
µ
(
[w̃1] × [w̃2]

) ≤ C. (2.2)

Lemma 2.3. There exists C > 0 such that for every n ≥ 1, for every [w1 · w̃1] ×

[w2] ∈ Fn such that [w1 · w̃1] × [w2] ∩K 6= ∅ one has

C−1 ≤
µ
(
[w1 · w̃1] × [w2]

)

µ
(
[w1] × [w2]

)
P([w̃1])

≤ C.

Lemma 2.4. There exists C > 0 such that for every n ≥ 1, for every (w1, w2) ∈

An
1 ×An

2 such that [w1] × [w2] ∩K 6= ∅ and every (x, y) ∈ [w1] × [w2] ∩K one has

C−1µ([w1] × [w2]) ≤ P([w1])
exp

(
Snϕ(x, y)

)

I1,n(w1)
≤ Cµ([w1] × [w2]).

Proof of Lemma 2.1. Let q ∈ L, n, p ≥ 1 and (w1, w̃1) ∈ Ãn
1 × Ãp

1. Recall (1.10).

Iq,n+p([w1 · w̃1]) =
∑

(w2, ew2)∈ eA2(w1)× eA2( ew1)

exp
(
qSn+p(w1 · w̃1, w2 · w̃2)

)

=
∑

(w2, ew2)∈ eA2(w1)× eA2( ew1)

exp

(
n−1∑

k=0

qϕ(σk
1 · w1 · w̃1, σ

k
2 · w2 · w̃2

)

× exp

(
n+p−1∑

k=n

qϕ(σk
1 · w1 · w̃1, σ

k
2 · w2 · w̃2

)
.

Since ϕ satisfies the Dini property (H1), a standard bounded distortion principle

implies that there exists a constant c such that for all q ∈ L one has
∣∣∣∣∣

n−1∑

k=0

qϕ(σk
1 · w1 · w̃1, σ

k
2 · w2 · w̃2) −

n−1∑

k=0

qϕ(σk
1 · w1, σ

k
2 · w2)

∣∣∣∣∣ ≤ c

and

∣∣∣∣∣

n+p−1∑

k=n

qϕ(σk
1 · w1 · w̃1, σ

k
2 · w2 · w̃2) −

p−1∑

k=0

qϕ(σk
1 · w̃1, σ

k
2 · w̃2)

∣∣∣∣∣ ≤ c.

This yields the conclusion. 2

Proof of Lemma 2.2. For k ≥ 1 we denote by fk the function exp(Skϕ). Let n ≥ 1,

m ≥ 0 and (w1, w2) ∈ An
1 ×An

2 such that [w1]× [w2]∩K 6= ∅ (notice that w1 ∈ Ãn
1

and w2 ∈ Ã2(w1)).

µn+m

(
[w1] × [w2]

)
=

∫

[w1]×[w2]

fn+m(x, y)∫
Kx

fn+m(x, u) ℓ2,x(du)
ℓ2,x(dy)P(dx). (2.3)
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Again because of ϕ satisfies (H1), a standard bounded distortion principle

implies that there exists C > 0, independent of n,m and (w′
1, w

′
2) ∈ An

1 × An
2 ,

such that for all (x, u) ∈ [w′
1] × [w′

2] ∩K,

C−1 ≤
fn+m(x, u)

fn

(
w′

1, w
′
2

)
fm(σn

1 x, σ
n
2 u)

≤ C.

Consequently,

C−1 ≤

∫
Kx

fn+m(x, u) ℓ2,x(du)
∑

w′

2∈
eA2(w′

1)

fn

(
w′

1, w
′
2

) ∫

[w′

2]∩Kx

fm(σn
1 x, σ

n
2 u)ℓ2,x(du)

≤ C.

On the other hand, one has
∫

[w′

2]∩Kx

fm(σn
1 x, σ

n
2 u)ℓ2,x(du) = ℓ2,x([w′

2] ∩Kx)

∫

Kσn
1

x

fm(σn
1 x, v)ℓ2,σn

1 x(dv),

and we see on the right hand side that due to the definition of ℓ2,x this quantity

does not depend on w′
2. Incorporating the above estimates in (2.3) yields

C−1 ≤ µn+m

(
[w1] × [w2]

)
∑

w′

2∈
eA2(w1)

fn(w1, w′
2)

fn(w1, w2)P([w1])
≤ C.

In other words (recall (1.10))

C−1 ≤ µn+m

(
[w1] × [w2]

) I1,n([w1])

fn(w1, w2)P([w1])
≤ C (2.4)

Moreover, it follows from the proof of Lemma 2.1 and the quasi-Bernoulli

property of P that there exists a constant C1 > 0 independent of n, p and

(w1, w̃1, w2, w̃2) ∈ An
1 ×Ap

1 ×An
2 ×Ap

2 such that if [w1 · w̃1]× [w2 · w̃2]∩K 6= ∅ then

C−1
1 ≤

I1,n+p([w1 · w̃1])/fn+p(w1 · w̃1, w2 · w̃2)P([w1 · w̃1])(
I1,n([w1])/fn(w1, w2)P([w1])

)(
I1,p([w̃1])/fp(w̃1, w̃2)P([w̃1])

) ≤ C1.

(2.5)

Let now n, p ≥ 1 and (w1, w̃1, w2, w̃2) ∈ An
1 × Ap

1 × An
2 × Ap

2 such that [w1 · w̃1] ×

[w2 · w̃2] ∩K 6= ∅. Due to (2.4) and (2.5), for all m ≥ 0 one has

(C3C1)
−1 ≤

µn+p+m

(
[w1 · w̃1] × [w2 · w̃2]

)

µn+m

(
[w1] × [w2]

)
µp+m

(
[w̃1] × [w̃2]

) ≤ C3C1. (2.6)

Since the indicator function of any cylinder of the form [w1] × [w2] is continuous,

letting m tend to ∞ in (2.6) yields the result. 2

Proof of Lemma 2.3. Let us write

µ
(
[w1 · w̃1] × [w2]

)
=

∑

ew2∈A
g(n)−n
2

µ
(
[w1 · w̃1] × [w2 · w̃2]

)
.

The result is then a simple consequence of Lemma 2.2 and the fact that P is the

projection of µ on A1. 2

Proof of Lemma 2.4. Let m tend to ∞ in (2.4).
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14 J. Barral and M. Mensi

2.2. Auxiliary measures.

Proposition 2.1. Let q ∈ R. There exists a quasi-Bernoulli ergodic measure Pq

and a constant C > 0 such that for all n ≥ 1 and w1 ∈ Ãn
1

C−1r
nβµ(q)
1 ρq,n([w1]) ≤ Pq([w1]) ≤ C r

nβµ(q)
1 ρq,n([w1]) (2.7)

Definition 2.1. Let q ∈ R. Let Pq be the measure obtained in Proposition 2.1.

We set ϕq(x, y) = qϕ(x, y) if (x, y) ∈ K and ϕq(x, y) = −∞ otherwise. Then, µq

stands for the measure constructed from (Pq, ϕq) as µ is constructed from (P, ϕ).

By construction µ and µq have the same support K.

The proof of Proposition 2.1 requires the following lemmas whose proofs are

postponed to after that of Proposition 2.1.

Lemma 2.5. For every compact subset L of R, there exists C > 0 such that for all

q ∈ L and n, p ≥ 1

C−1 ≤
exp

(
(n+ p)βµ,n+p(q)

)

exp
(
nβµ,n(q) + pβµ,p(q)

) ≤ C. (2.8)

Consequently, βµ,n converges uniformly to βµ on L and ‖n(βµ,n−βµ)‖∞,L ≤ logC.

Definition 2.2. For q ∈ R and n ≥ 1, let ρ̃q,n be the probability measure defined

on Ã1 by

ρ̃q,n = r
nβµ,n(q)
1

∑

w1∈ eAn
1

ρq,n([w1])r̃
n
1 ℓ1|[w1],

where ℓ1|[w1] stands for the restriction of ℓ1 to [w1] and r̃1 = #Ã1.

Lemma 2.6. For every compact subset L of R, there exists C > 0 such that for all

n, p ≥ 1, q ∈ L and w1 ∈ Ãn
1

C−1 ≤
ρ̃q,n+p([w1])

ρ̃q,n([w1])
≤ C.

Proof of Proposition 2.1. Let ρ̃q be the weak limit of a subsequence of (ρ̃q,n). It

is immediate from the definition of ρq,n and Lemmas 2.1, 2.5 and 2.6 that ρ̃q is a

quasi-Bernoulli measure and that there exists C > 0 such that for all n ≥ 1 and

w1 ∈ Ãn
1 we have

C−1r
nβµ(q)
1 ρq,n([w1]) ≤ ρ̃q([w1]) ≤ C r

nβµ(q)
1 ρq,n([w1]).

Now, since ρ̃q is quasi-Bernoulli, it follows from [11] that it is equivalent to a

quasi-Bernoulli ergodic measure Pq. 2

Proof of Lemma 2.5. Property (2.8) is a consequence of the definition of βµ,n,

Lemma 2.1 and the quasi-Bernoulli property of P. Then, the uniform control of

n(βµ,n(q)−βµ(q)) over L follows from the standard fact that un/n converges to its

infimum if the sequence (un)n≥1 is subadditive. 2
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Proof of Lemma 2.6. Let q ∈ L, n, p ≥ 1 and w1 ∈ Ãn
1 . By definition we have

ρ̃q,n+p([w1]) =
∑

ew1∈ eAp
1

ρ̃q,n+p([w1 · w̃1]) =
∑

ew1∈ eAp
1

r
(n+p)βµ,n+p(q)
1 ρq,n+p([w1 · w̃1]).

It follows from Lemma 2.1, Lemma 2.5 and the quasi-Bernoulli property of P that

there exists C > 0 independent of q, n and p such that for all w̃1 ∈ Ãp
1 we have

C−1 ≤
r
(n+p)βµ,n+p(q)
1 ρq,n+p([w1 · w̃1])

ρ̃q,n([w1])ρ̃q,p([w̃1])
≤ C.

We conclude by using the identity
∑

ew1∈ eAp
1
ρ̃q,p([w̃1]) = 1. 2

2.3. Comparing βµ with the Lq-spectrum of µ. Differentiability of βµ.

Definition 2.3. Let ν be a positive finite Borel measure on A1 × A2. The Lq-

spectrum τν of ν is defined by

τν(q) = lim inf
n→∞

τν,n(q), where τν,n(q) = −
1

n
logr2

∑

C∈Fn

ν(C)q

with the convention 0q = 0 (recall that Fn is defined in (1.2)).

Let ρ be a positive finite Borel measure on A1. The Lq-spectrum τρ of ρ is defined

by

τρ(q) = lim inf
n→∞

τρ,n(q), where τρ,n(q) = −
1

n
logr1

∑

w∈An
1

ρ([w])q .

Proposition 2.2. One has βµ ≥ τµ. Moreover, if P is the Lebesgue measure and

ϕ does not depend on the first variable, then βµ = τµ.

Remark 2.1. The case when P is the Lebesgue measure and ϕ does not depend on

the first variable is the extension to our general setting of the case when the column

vector (ϕij)0≤j<r2 does not depend on i in [17, 22] (see Section 1.3.1).

Proposition 2.3. The function τµ is differentiable at 1, and so is βµ, with

β′
µ(1) = τ ′µ(1).

Proposition 2.4. For all q, r ∈ R one has

βµq (r) = βµ(qr) − rβµ(q). (2.9)

Corollary 2.1. The function βµ is differentiable.
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Proof of Proposition 2.2. Let n ≥ 1. Due to Lemmas 2.3 and 2.4 we have

[
∑

C∈Fn

µ(C)q

]s

=




∑

(w1, ew1,w2)∈An
1 ×A

g(n)−n
1 ×An

2 ,
[w1· ew1]×[w2]∩K 6=∅

µ([w1 · w̃1] × [w2])
q




s

≥ C−s




∑

(w1, ew1,w2)∈An
1×A

g(n)−n
1 ×An

2 ,
[w1· ew1]×[w2]∩K 6=∅

P([w1])
q
P([w̃1])

q exp
(
qSnϕ(w1, w2)

)

I1,n(w1)q




s

= C−s




∑

ew1∈ eAg(n)−n
1

P([w̃1])
q




s 


∑

w1∈ eAn
1

P([w1])
q Iq,n(w1)

I1,n(w1)q




s

for some positive constant C. The concavity of the function x 7→ xs on R+ implies

(via Jensen’s inequality applied with the probability measure Pn on Ãn
1 defined by

Pn({w1}) = P([w1])
q/
∑

w1∈ eAn
1

P([w1])
q)




∑

w1∈ eAn
1

P([w1])
q Iq,n(w1)

I1,n(w1)q




s

≥




∑

w1∈ eAn
1

P([w1])
q




s−1

∑

w1∈ eAn
1

P([w1])
q

(
Iq,n(w1)

I1,n(w1)q

)s

.

Now recall that due to the quasi-Bernoulli property of P there exists C > 0

such that C−1 ≤ r
nτP(q)
1

∑
w1∈ eAn

1
P([w1])

q ≤ C for all n ≥ 1 (this is due to the

subaddivity property of nτP,n(q)) so there exists C′ > 0 such that for all n ≥ 1


∑

ew1∈ eAg(n)−n
1

P([w̃1])
q




s 


∑

w1∈ eAn
1

P([w1])
q




s−1

≥ C′. The previous estimates yield

lim sup
n→∞

1

n
logr2

∑

C∈Fn

µ(C)q ≥ lim sup
n→∞

1

n
logr1

∑

w1∈ eAn
1

P([w1])
q

(
Iq,n(w1)

I1,n(w1)q

)s

.

2

Proof of Proposition 2.3. τµ is a linear combination of τP and the function

τ̃µ(q) = lim inf
n→∞

−
1

n
logr2

∑

(w1,w2)∈An
1 ×An

2 ,
[w1]×[w2]∩K 6=∅

µ([w1] × [w2])
q.

Indeed, it follows from Lemma 2.3 that

τµ = sτP + τ̃µ. (2.10)

We know that τP is differentiable at 1 because P is quasi-Bernoulli (Theorem 3.1

in [11]). Moreover, since the measure µ is quasi-Bernoulli on products of cylinders
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by Lemma 2.2, the same arguments as those used in proving Theorem 3.1 in [11]

show that τ̃µ is also differentiable at 1. This yields the existence of τ ′µ(1).

We have βµ ≥ τµ, βµ and τµ coincide at 1, and the both are concave. So the

differentiability of τµ at 1 implies that of βµ as well as the equality β′
µ(1) = τ ′µ(1).

2

Proof of Proposition 2.4. This is a simple consequence of the definitions of βµq and

Proposition 2.1. 2

Proof of Corollary 2.1. Fix q ∈ R \ {0}. We can apply Proposition 2.3 to µq.

Differentiating βµq at 1 and using (2.9) at r = 1 yields the existence of β′
µ(q) and

the relation

β′
µq

(1) = qβ′
µ(q) − βµ(q). (2.11)

The differentiability of βµ at q = 0 follows from the relation (2.10) and an

argument very similar to that of [11] using the second part of Lemma 2.5, the

concavity of the functions τP,n, τP, τ̃µ,n and τ̃µ and the fact that τP,n(0) = τP(0)

and τ̃µ,n(0) = τ̃µ(0) for all n ≥ 1. 2

3. The singularity spectrum of the measure µ

If (x, y) ∈ A1 × A2 and n ≥ 0, let Cn(x, y) stand for the unique element of Fn

containing (x, y). We have Cn(x, y) = B((x, y), r−n
2 ). Also, for every α ≥ 0,

Eµ(α) =
{
z ∈ supp(µ) : limn→∞

log µ(B(z,r−n
2 ))

log r−n
2

= α
}

.

3.1. Upper bound for dim Eµ(α). Our approach is similar to that used in

[17, 22].

Proposition 3.1. Let q ∈ R. For all (x, y) ∈ K, one has

lim sup
n→∞

(
µq(Cn(x, y))

µ(Cn(x, y))q
∣∣Cn(x, y)|−βµ(q)

)1/n

≥ 1.

Then, using the same approach as in [22] one gets

Corollary 3.1. For every α ≥ 0 one has dim Eµ(α) ≤ β∗
µ(α).

Proof of Proposition 3.1. Let (x, y) ∈ K. The set Cn(x, y) takes the form

[w1 · w̃1]× [w2], where (w1, w̃1) ∈ Ãn
1 × Ã

g(n)−n
1 and w2 ∈ Ã2(w1). In the sequel, the

symbol ≈ means that the quantities in the both sides of ≈ differ from a constant

which depends only on ϕ, P and q. By construction, due to Lemma 2.3 and

Proposition 2.1 we have

µq(Cn(x, y)) ≈ Pq([w̃1])µq([w1] × [w2])

≈ Pq([w̃1])Pq([w1])
exp

(
qSnϕ(x, y)

)

Iq,n(w1)

≈ r
g(n)βµ(q)
1 P([w̃1])

q
P([w1])

qIq,n

exp
(
qSnϕ(x, y)

)

Iq,n(w1)
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where

Iq,n =
Iq,g(n)−n(w̃1)

s

I1,g(n)−n(w̃1)sq

Iq,n(w1)
s

I1,n(w1)sq
≈

Iq,g(n)(w1 · w̃1)
s

I1,g(n)(w1 · w̃1)sq

(due to Lemma 2.1). Thus

µq(Cn(x, y)) ≈ r
g(n)βµ(q)
1 P([w̃1])

q
P([w1])

q Iq,g(n)(w1 · w̃1)
s

I1,g(n)(w1 · w̃1)sq

exp
(
qSnϕ(x, y)

)

Iq,n(w1)
.

On the other hand

µ(Cn(x, y))q
∣∣Cn(x, y)

∣∣−βµ(q)
≈ r

nβµ(q)
2 P([w̃1])

q
P([w1])

q exp
(
qSnϕ(x, y)

)

I1,n(w1)q
.

This yields

µq(Cn(x, y))

µ(Cn(x, y))q |Cn(x, y)|−βµ(q)
≈

I1,n(w1)
q

Iq,n(w1)

Iq,g(n)(w1 · w̃1)
s

I1,g(n)(w1 · w̃1)qs
(3.1)

≈
I1,n(x|n)q

Iq,n(x|n)

Iq,g(n)(x|g(n))s

I1,g(n)(x|g(n))qs
. (3.2)

Thus, denoting un =
I1,n(x|n)q

Iq,n(x|n)
, there exists c = c(q, ϕ,P) such that

µq(Cn(x, y))

µ(Cn(x, y))q
∣∣Cn(x, y)

∣∣−βµ(q)
≥ c

un

u
n/g(n)
g(n)

u
n/g(n)−s
g(n) . (3.3)

Now, since by construction there exists 0 < a < b < ∞ independent of x such

that an ≤ un ≤ bn for all n ≥ 1, and |n/g(n) − s| = O(1/n), there exists c′ > 0

such that u
n/g(n)−s
g(n) ≥ c′. The conclusion then comes from the fact that since

s = limn→∞ n/g(n) < 1, we have that lim supn→∞
u1/n

n

u
1/g(n)

g(n)

≥ 1 for any positive

sequence (un)n≥1 such that u
1/n
n is bounded away from 0. 2

3.2. Lower bound for dim Eµ(α).

Proposition 3.2. Let q ∈ R∗. The set Eµ(β′
µ(q)) is of full µq-measure.

Consequently, dim Eµ(β′
µ(q)) ≥ qβ′

µ(q) − βµ(q).

Proof Let us begin with the case q 6= 0. Proposition 2.3 claims that τ ′µq
(1)

and β′
µq

(1) exist and are equal. The differentiability of τµq at 1 implies that

limr→0
log µq(B(z,r))

log r = τ ′µq
(1) µq-almost everywhere (by [20]). So µq is carried

by sets of Hausdorff dimension at least τ ′µq
(1) = qβ′

µ(q) − βµ(q) (by (2.11)).

To conclude, it is enough to show that limn→∞ n−1 log
µq(Cn(x,y))

µ(Cn(x,y))q|Cn(x,y)|−βµ(q) =

0 µq-almost everywhere.

Prepared using etds.cls



Gibbs measures on self-affine Sierpinski carpets 19

Due to (3.2), this amounts to showing that

lim
n→∞

n−1 log
I1,n(x|n)q

Iq,n(x|n)

Iq,g(n)(x|g(n))s

I1,g(n)(x|g(n))qs
= 0 Pq- a.e. (3.4)

Due to the submultiplicative property established in Lemma 2.1, the ergodicity

of Pq, and the fact that limn→∞ n/g(n) = s, the result follows from Kingman’s

subadditive ergodic theorem ([18]).

If q = 0, let us suppose for a while that there exists α ≥ 0 such that the set

Eµ(α) is of full µ0-measure. The measure µ0 is generated by the potential ϕ0 which

is equal to 0 on K and equal to −∞ elsewhere, as well as the measure ρ̃0. This

measure belongs to the class of self-affine multinomial measures and it follows from

[19, 17] that µ0 is supported by Eµ0(βµ(0)) (in particular, the value of βµ(0), which

only depends on the structure of A as well as r1 and r2, is equal to the Hausdorff

dimension of K). So dim Eµ(α) ≥ βµ(0). Moreover, it follows from Corollary 3.1

that if α 6= β′
µ(0) then dim Eµ(α) < βµ(0). So α = β′

µ(0). Since β∗
µ(β′

µ(0)) = βµ(0)

we get the desired lower bound.

The existence of α comes from Lemma 2.4 and the subadditive ergodic theorem

applied with the ergodic measure µ0. 2

4. The singularity spectrum of the measure µ̃

4.1. Intermediate results.

This section provides the versions of Propositions 3.1 (Proposition 4.3) and

Proposition 3.2 (Corollary 4.2) needed to establish Theorem 1.2 in Section 4.2.

We need the next proposition and its corollary which, for every q ∈ R, provides

precious information on the relationship between the measure µq and its projection

on the Sierpinski carpet.

Proposition 4.1. Let q ∈ R. For all (w1, w2) ∈ A∗
1×A

∗
2 one has µq({w1}×[w2]) =

µq([w1] × {w2}) = 0.

Corollary 4.1. Let q ∈ R. For all (w1, w2) ∈ A∗
1 ×A∗

2 one has

µ̃q

(
π([w1] × [w2])

)
= µq([w1] × [w2]).

If i ∈ {1, 2} and w ∈ A∗
i then w stands for w · 0, where 0 is the element of Ai

whose letters are all equal to 0. Also, recall that if j ∈ Ai and n ≥ 1, j·n stands for

the word of length n whose letters are all equal to j.

Proof of Proposition 4.1. Let (w1, w2) ∈ A∗
1 × A∗

2 and q ∈ R. We have

µq({w1} × [w2]) ≤ Pq({w1}). Thus µq({w1} × [w2]) = 0 follows from the fact that

the measure Pq is atomless because by construction it is supported by the full set Ã1

and we assumed that #Ã1 ≥ 2. Indeed, if Pq had an atom at x = x1 · x2 · · ·xn · · · ,

the sequence Pq([x|n])/Pq([x|n + 1]) would converge to 1 as n goes to ∞, so that

Pq([x|n])/Pq([x|n · yn+1]), yn+1 ∈ Ã1 \ {xn+1}, should converge to ∞. This would

be in contradiction with the property (1.3) satisfied by Pq.
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Let us show that µq([w1] × {w2}) = 0. We could use the fact, claimed in use

Remark 1.3, that the projection of µq over A2 is quasi-Bernoulli. Since this fact is

not established explicitely in this paper, we provide another instructive approach.

We leave the reader verify that we can assume without loss of generality that

w1 and w2 are of the same generation. Then, due to the factorization provided

by Lemma 2.2, to show that µq([w1] × {w2}) = 0 it is enough to show that

µq(A1 × {0}) = 0. Due to Lemma 2.4, this amounts to showing that

lim
n→∞

∑

w1∈ eAn
1 ,

[w1]×[0·n]∩K 6=∅

Qn(w1)Pq([w1]) = 0, (4.1)

where

Qn(w1) =
exp qSnϕ(w1, 0·n)∑

w2∈ eA2(w1) exp qSnϕ(w1, w2)
.

Two cases must be distinguished.

Case 1: The following property (P) holds.

(P): For every w1 ∈ Ã1, if [w1] × [0] ∩K 6= ∅ then [w1] × [w2] ∩K = ∅ for all

w2 ∈ Ã2 \ {0}.

Then (4.1) simplifies to be

lim
n→∞

Pq

(
{w1 ∈ Ãn

1 : [w1] × [0·n] ∩K 6= ∅}
)

= 0 (4.2)

Let Â1 = {w1 ∈ Ã1 : [w1]× [0]∩K 6= ∅}. Since #Ã2 ≥ 2, (P) implies that Â1 is

strictly included in Ã1. Moreover,

⋂

n≥1

⋃

w1∈ eAn
1 ,

[w1]×[0·n]∩K 6=∅

[w1] = Â1 := ÂN
∗

1 . (4.3)

On the other hand, if j ∈ Ã1 \ Â1, the expectation of the random variable

x ∈ Ã1 7→ 1{j}(x1) with respect to Pq is positive. Moreover, Pq is ergodic.

Consequently, Pq(Â1) = 0. We conclude by using (4.3) and (4.2).

Case 2: There exists j ∈ Ã1 such that [j] × [0] ∩ K 6= ∅ and there exists

l ∈ Ã2 \ {0} such that [j] × [l] ∩ K 6= ∅. Fix such a pair (j, l). The expectation

of the random variable x ∈ Ã1 7→ 1{j}(x1) with respect to Pq is positive. Let

us denote its value by cj . We now that for Pq-almost every x = x1 · · ·xk · · · ,

limn→∞
1
n#{1 ≤ k ≤ n : xk = j} = cj .

Let ε ∈ (0, 1). By the Egoroff lemma, there exists a Borel set B ⊂ Ã1 and an

integer N ≥ 1 such that for all x ∈ B and n ≥ N , #{1 ≤ k ≤ n : xk = j} ≥ cjn/2.

Now, for n ≥ N let w1 ∈ Ãn
1 such that [w1]× [0·n]∩K 6= ∅ and [w1]∩B 6= ∅. Let

x ∈ [w1] ∩B 6= ∅. For each value of k between 1 and n such that xk = j, the word

0·n(k) obtained by changing the kth 0 in 0·n by l is such that [w1]× [0·n(k)]∩K 6= ∅.

Moreover, since ϕ is bounded over its support, there exists a constant c > 0
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depending only on ϕ such that exp qSnϕ(w1,0·n)

exp qSnϕ(w1,0·n(k))
≤ c. It follows from the previous

remarks that

Qn(w1) ≤
exp qSnϕ(w1, 0·n)

∑
1≤k≤n,

xk=j
exp qSnϕ(w1, 0·n(k))

≤
2c

cjn
.

Then for n ≥ N
∑

w1∈ eAn
1 ,

[w1]×[0·n]∩K 6=∅

Qn(w1)Pq([w1]) ≤
2c

cjn
Pq(B) + Pq(B

c) ≤
2c

cjn
+ ε.

This yields (4.1). 2

Proof of Corollary 4.1. Let

D =
⋃

(w1,w2)∈A∗

1×A∗

2

{w1} × [w2] ∪ [w1] × {w2}.

For (w1, w2) ∈ A∗
1×A

∗
2, the set π([w1]× [w2]) is the rectangle R(w1, w2) obtained

as the product of the closed intervals π1([w1]) and π2([w2]). It is easily seen that

π−1
(
R(w1, w2)\∂R(w1, w2)

)
⊂ [w1]× [w2] and π−1

(
∂R(w1, w2)

)
⊂ D∪ [w1]× [w2].

Thus, the result follows from Proposition 4.1. 2

If (w,w′) ∈ An
i , πi([w]) = [kr−n

i , (k + 1)r−n
i ] and πi([w

′]) = [k′r−n
i , (k′ + 1)r−n

i ]

for some pair of integers (k, k′) ∈ {0, . . . , rn
i − 1}2; let δi(w

′, w) = k′ − k.

Conversely, given w ∈ An
i and k such that πi([w]) = [kr−n

i , (k + 1)r−n
i ], fixing

k′ ∈ {0, . . . , rn
i − 1}, there exists a unique w′ ∈ An

i such that δi(w
′, w) = k′ − k.

Definition 4.1. If (x, y) ∈ A1 × A2, n ≥ 1, Cn(x, y) = [w1 · w̃1] × [w2] and

ǫ = (ǫ1, ǫ2) ∈ {−1, 0, 1}2, we set Cǫ
n(x, y) = [w′

1]× [w′
2], where (w′

1, w
′
2) ∈ A

g(n)
1 ×An

2

is the only pair such that δ1(w
′
1, w1 · w̃1) = ǫ1 and δ2(w

′
2, w2) = ǫ2.

In the sequel, by convention if ν is a positive Borel measure on A1 × A2 and

Cǫ
n(x, y) ∩ supp(ν) = ∅, we set ν(Cǫ

n(x, y)) = ν(Cn(x, y)).

Proposition 4.2. Suppose that one of the properties (G1), (G2) or (G3) holds.

For all q > 0, for all (x, y) ∈ supp(µ),

lim sup
n→∞

min
ǫ∈{−1,0,1}2

(
µq(Cǫ

n(x, y))

µ(Cǫ
n(x, y))q

∣∣Cǫ
n(x, y)|−βµ(q)

)1/n

≥ 1.

Remark 4.1. The conclusion of Proposition 4.2 also holds for all q ≤ 0 if one of

the properties (G1), (G2) or (G3) holds. We did not state this result to underline

the fact that the next Proposition 4.3 does not involve such a property when q ≤ 0.

Proposition 4.3. Let C = 4r1r2. Let q ∈ R and assume that one of the properties

(G1), (G2) or (G3) holds if q > 0.

For all z ∈ supp(µ̃),

lim sup
r→0+

(
µ̃q(B(z, Cr))

µ̃(B(z, r))qr−βµ(q)

)1/ log r−1

≥ 1.
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Proposition 4.4. Let q ∈ R. For all ǫ ∈ {−1, 0, 1}2 and ν ∈ {µ, µq} one has

lim
n→∞

log ν(Cǫ
n(x, y))

log
∣∣Cǫ

n(x, y)
∣∣ = lim

n→∞

log ν(Cn(x, y))

log
∣∣Cn(x, y)

∣∣ µq-almost everywhere.

Corollary 4.2. For all q ∈ R one has µ̃q

(
Eeµ(β′

µ(q))
)

= µ̃q

(
Eeµq

(qβ′
µ(q) −

βµ(q))
)

= 1.

Proof of Proposition 4.2. Let q > 0. Let (x, y) ∈ K. Let n ≥ 2 and let [w1 ·w̃1]×[w2]

be the element of Fn equal to Cn(x, y). Let ǫ ∈ {−1, 0, 1}2. We can suppose that

Cǫ(x, y) ∩K 6= ∅. The set Cǫ(x, y) takes the form [v1 · ṽ1] × [v2].

It follows from (3.1) that if we denote
I1,n(w1)

q

Iq,n(w1)

Iq,g(n)(w1 · w̃1)
s

I1,g(n)(w1 · w̃1)qs
by Un(w1, w̃1)

we have 




µq(Cn(x, y))

µ(Cn(x, y))q |Cn(x, y)|−βµ(q)
≈ Un(w1, w̃1)

µq(Cǫ
n(x, y))

µ(Cǫ
n(x, y))q |Cǫ

n(x, y)|−βµ(q)
≈ Un(v1, ṽ1)

. (4.4)

We have |δ1(w1 · w̃1, v1 · ṽ1)| ≤ 1. Let us distinguish several cases.

Case 1: |δ1(w1 · w̃1, v1 · ṽ1)| = 0. In this case we have Un(v1,ev1)
Un(w1, ew1)

= 1 and this

holds in particular if (G1) holds (straightforward from the definition of (G1)).

Case 2: |δ1(w1 · w̃1, v1 · ṽ1)| = 1 and (G1) does not hold.

If |w1 · w̃1 ∧ v1 · ṽ1| < g(n)− 1, there exists a word u of length less than or equal

to g(n) − 2 in Ã∗
1 and an element e ∈ {0, . . . , r1 − 2} such that (w1 · w̃1, v1 · ṽ1) ∈{

(u · e · (r1 − 1)·g(n)−|u|−1, u · (e + 1) · 0·g(n)−|u|−1), (u · (e + 1) · 0·g(n)−|u|−1, u ·

e · (r1 − 1)·g(n)−|u|−1)
}
. If (G2) holds this implies that Cǫ(x, y) ∩ K = ∅, a

contradiction with our initial assumption on ǫ. Thus if (G2) holds we have

|w1 · w̃1 ∧ v1 · ṽ1| ≥ g(n) − 1, and the words w1 · w̃1 and v1 · ṽ1 differ at most

by their last letter, and it it is clear from the submultiplicative property of Ir,n (see

Lemma 2.1) that there exists a constant c > 0 which depends on q only such that

c−1 ≤ Un(v1,ev1)
Un(w1, ew1)

≤ c.

Now, suppose that (G3) holds. For r ∈ {1, q} there exists a positive number

λr such that
∣∣λr −

1
n log Ir,n(j·n)

∣∣ = O(1/n) for j ∈ {0, r1 − 1} (consequence of the

submultiplicativity property established in Lemma 2.1). Consequently, due to the

form taken by (w1 · w̃1, v1 · ṽ1), there exists a constant c′ depending only on q such

that c′−1 ≤ Un(v1,ev1)
Un(w1, ew1) ≤ c′.

In summary, if one of the properties (G1), (G2) or (G3) holds, there exists

c” > 0 depending on q only such that for all (x, y) ∈ supp(µ) and ǫ ∈ {−1, 0, 1}2

such that Cǫ
n(x, y) ∩K 6= ∅,

µq(Cǫ
n(x, y))

µ(Cǫ
n(x, y))q|Cǫ

n(x, y)|−βµ(q)
≥ c”

µq(Cn(x, y))

µ(Cn(x, y))q|Cn(x, y)|−βµ(q)
.

Finally, the conclusion follows by using Proposition 3.1.

2
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Proof of Proposition 4.3. Let z ∈ π(K) and (x, y) ∈ K such that z = π(x, y) and

r ∈ (0, 1). Let nr ≥ 1 be the smallest integer n such that π(Cn(x, y)) ⊂ B(z, r).

Let us first suppose that q ≤ 0. We have

µ̃q(B(z, r))

µ̃(B(z, r))q
≥
µq

(
Cnr(x, y)

)

µ
(
Cnr(x, y)

)q .

Suppose now that q > 0. Let C1 = 2r2 and c1 = (2r1)
−1. A verification shows

that B(z, c1r) ⊂
⋃

ǫ∈{−1,0,1}2 π
(
Cǫ

nr−1(x, y)
)
⊂ B(z, C1r). Let ǫr be such that

µ
(
Cǫr

nr−1(x, y)
)

= maxǫ∈{−1,0,1}2 µ
(
Cǫ

nr−1(x, y)
)
. We have

µ̃q(B(z, C1r))

µ̃(B(z, c1r))q
≥

µq

(
Cǫr

nr−1(x, y)
)

9qµ
(
Cǫr

nr−1(x, y)
)q .

Since limr→0+ logr2
(r)/nr = −1, the conclusion follows from Proposition 3.1 when

q ≤ 0 and Proposition 4.2 when q > 0.

2

Proof of Proposition 4.4. Let ǫ = (ǫ1, ǫ2) ∈ {−1, 0, 1}2. If (x, y) ∈ K and n ≥ 2,

write Cn(x, y) = [w1 · w̃1(x, y)]× [w2(x, y)] and Cǫ
n(x, y) = [v1 · ṽ1(x, y)]× [v2(x, y)].

By using the same approach as in the proof of Proposition 4.2, we get

(w1 · w̃1(·), v1 · ṽ1(·)) ∈
{
W (1)

n (u, e) : u ∈

g(n)−1⋃

k=0

Ãk
1 , e ∈ Ã1 \ {r1 − 1}

}⋃
∆

g(n)
1

and

(w2(·), v2(·)) ∈
{
W (2)

n (u, e) : u ∈
n−1⋃

k=0

Ãk
2 , e ∈ Ã2 \ {r2 − 1}

}⋃
∆n

2 ,

where W
(1)
n (u, e) =

{
(a, b), (b, a)

}
with a = u · e · (r1 − 1)·g(n)−|u|−1 and b =

u · (e+ 1) · 0·g(n)−|u|−1, W
(2)
n (u, e) =

{
(c, d), (d, c)

}
with c = u · e · (r2 − 1)·n−|u|−1

and d = u · (e+ 1) · 0·n−|u|−1, and ∆k
i = {(u, u) : u ∈ Ãk

1} for i ∈ {1, 2} and k ≥ 1.

We need the following lemma whose interpretation is that for µq- almost

every (x, y), |w1 · w̃1(x, y) ∧ v1 · ṽ1(x, y)| and |w2(x, y) ∧ v2(x, y)| are respectively

asymptotically equivalent to g(n) and n, that is to say the words (w1 ·

w̃1(x, y), w2(x, y)) and ((v1 · ṽ1(x, y), v2(x, y)) are almost the same.

Lemma 4.1. For every α ∈ (0, 1), for µq-almost every (x, y) ∈ K, for n large

enough one has

(w1 · w̃1(x), v1 · ṽ1(x)) ∈
{
W (1)

n (u, e) : u ∈

g(n)−1⋃

k=[(1−α)g(n)]

Ãk
1 , 0 ≤ e ≤ r1 − 2

}⋃
∆

g(n)
1

and

(w2(y), v2(y)) ∈
{
W (2)

n (u, e) : u ∈
n−1⋃

k=[(1−α)n]

Ãk
2 , 0 ≤ e ≤ r2 − 2

}⋃
∆n

2 .
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Let α ∈ (0, 1). Let Kα be a subset of K of full µq-measure such that the conclusion

of Lemma 4.1 holds. If (x, y) ∈ Kα and Cǫ
n(x, y)∩K 6= ∅, it follows from Lemmas 2.3

and 2.4 applied to µ and µq that there exists a constant depending on q only such

that for ν ∈ {µ, µq}

C−αg(n) ≤
ν
(
Cǫ

n(x, y)
)

ν
(
Cn(x, y)

) ≤ Cαg(n) for n large enough. (4.5)

Since (4.5) holds for all (x, y) ∈
⋂

p≥2K1/p which is of full µq-measure, we obtain

the desired conclusion. 2

Proof of Lemma 4.1. Let α ∈ (0, 1). For n ≥ 2 let n(α) and n′(α) stand for the

integer part of (1 − α)g(n) and (1 − α)n respectively. Due to the Borel-Cantelli

lemma, it is enough to show that

∑

n≥2

µq

({
(w1 · w̃1(·), v1 · ṽ1(·)) ∈

{
W (1)

n (u, e) : u ∈

n(α)⋃

k=0

Ãk
1 , 0 ≤ e ≤ r1 − 2

}})
<∞

and

∑

n≥2

µq

({
(w2(·), v2(·)) ∈

{
W (2)

n (u, e) : u ∈

n′(α)⋃

k=0

Ãk
2 , 0 ≤ e ≤ r2 − 2

}})
<∞.

The first inequality is equivalent to

∑

n≥2

g(n)−1∑

k=g(n)−n(α)−1

∑

u∈ eAg(n)−k−1
1

r1−2∑

e=0

[
Pq([u · e · (r1 − 1)·k]) + Pq([u · (e+ 1) · 0·k])

]
<∞

(we made the change of variable k′ = g(n)−k−1) and because of the quasi-Bernoulli

property of Pq this is also equivalent to

∑

n≥2

g(n)−1∑

k=g(n)−n(α)−1

[
Pq([(r1 − 1)·k]) + Pq([0

·k])
]
<∞.

Moreover, again due to the submultiplicativity properties of Pq and the fact that

Pq is atomless (see the proof of Proposition 4.1), both Pq([(r1 − 1)·k]) and Pq([0
·k])

tend to 0 exponentially fast as k goes to ∞. Thus, there exists C > 0 and λ ∈ (0, 1)

such that for all n ≥ 2,
∑g(n)−1

k=g(n)−n(α)−1 Pq([(r1 − 1)·k]) + Pq([0
·k]) ≤ Cg(n)λg(n)α.

The second inequality is equivalent to

∑

n≥2

∑

w1∈ eAn
1

n−1∑

k=n−n′(α)−1

∑

u∈ eAn−k−1
2

r2−2∑

e=0

[
µq([w1] × [c]) + µq([w1] × [d])

]
<∞,

with c = u · e · (r2 − 1)·k and d = u · (e + 1) · 0·k. Due to Lemma 2.2, this is also

equivalent to

∑

n≥2

n−1∑

k=n−n′(α)−1

∑

w∈ eAk
1

[
µq([w] × [(r2 − 1)·k]) + µq([w] × [0·k])

]
<∞,
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that is to say

∑

n≥2

n−1∑

k=n−n′(α)−1

[
µq(A1 × [(r2 − 1)·k]) + µq(A1 × [0·k])

]
<∞.

It is easily seen by using Lemma 2.2 again that for e ∈ {0, r2 − 1}, the sequence

(µq(A1 × [e·k]))k≥1 is submultiplicative. Moreover, we saw in the proof of

Proposition 4.1 that µq(A1 × [0·k]) goes to 0 as k tends to ∞. The same arguments

show that it is also the case for µq(A1 × [(r2 − 1)·k]).

Consequently there exists C′ > 0 and λ′ ∈ (0, 1) such that for all k ≥ 1,

n−1∑

k=n−n′(α)−1

[
µq(A1 × [(r2 − 1)·k]) + µq(A1 × [0·k])

]
≤ C′nλ′nα,

and the conclusion follows. 2

Proof of Corollary 4.2. Use the same relation

B(z, c1r) ⊂
⋃

ǫ∈{−1,0,1}2

π
(
Cǫ

nr−1(x, y)
)
⊂ B(z, C1r)

as in the proof of Corollary 4.3, as well as Proposition 4.4 and Proposition 3.2. 2

4.2. Proof of Theorem 1.2.

The upper bound for the dimensions of the sets Eµ(β′
µ(q)) is a consequence

of Proposition 4.3. Indeed, by using standard techniques one shows that under

the assumptions of Proposition 4.3, the generalized Hausdorff dimension beµ(q)

introduced in [21] is less than or equal to −βµ(q). Moreover, Proposition 2.5 in

[21] yields dim Eeµ(α) ≤ (−beµ)∗(α) for all α ≥ 0.

The lower bound follows immediately from Corollary 4.2 and the mass

distribution principle (see for instance p. 43 in [24]).
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