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Abstract. We consider a class of Gibbs measures on self-affine Sierpinski carpets
and perform the multifractal analysis of its elements. These deterministic measures
are Gibbs measures associated with bundle random dynamical systems defined on
probability spaces whose geometrical structure plays a central role.

A special subclass of these measures is the class of multinomial measures on
Sierpinski carpets. Our result improves the already known result concerning the
multifractal nature of the elements of this subclass by considerably weakening and
even eliminating in some cases a strong separation condition of geometrical nature.

1. Introduction
The singularity spectrum of a finite positive Borel measure on R is defined as the

mapping

1 B(t
a>0—dim E,(a), E,(o)= {t € supp(p) : Tli%l+ W = a} )

where dim stands for the Hausdorff dimension. This function has been studied
extensively for measures obtained as geometric realization of Gibbs measures
defined on a symbolic space ([5, 27, 4, 14, 22, 9, 24, 25, 12, 1]). These measures
possess a kind of self-similarity property. This paper deals with the case when
the self-similarity is relaxed in self-affinity property and computes the singularity
spectrum of a class of Gibbs measures on Sierpinski carpets.

Special elements of this class of measures are studied in [17] (and in [22] on
Sierpinski sponges in R?). These measures are multinomial measures distributed

1 This work was supported by a grant of the ” Action Intégrée Franco-Tunisenne du Ministere des
Affaires Etrangeres Francais CMCU-05S51501.
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2 J. Barral and M. Mensi

on the (rectangular) cells of the carpet (see Section 1.3.1). Due to the self-affinity
property of the carpet, the multifractal analysis of these measures meets the same
difficulties as the computation of the Hausdorff dimension of the Sierpinski carpet
([19, 2]) and more general self-affine sets (see [6, 7, 15, 10] and references therein),
and it is a delicate issue. Moreover, in [17] and [22] a rather strong separation
condition is assumed in the construction of the carpet. Let us also mention that
[28] studies the singularity spectrum for multinomial measures on more general self-
affine sets: Fixing a probability vector (p;)1<i<m and a family (T, ..., T,,) of linear
contractions on R" such that [|T;|| < %, the authors obtain for almost all vectors
(a1,...,am) € R™ a part of the singularity spectrum of the unique probability
measure 4 on the attractor of the IFS {S; = Ty +ay, ..., Sm = T + an | satisfying
p=y i pipoS; ! In [8], Gibbs measures including multinomial measures are
considered on these attractors (under the weaker assumption ||T;|| < %) and almost
sure results are obtained for the generalized dimensions of these measures. It will be
seen in Section 1.3.2 that when the attractor is a Sierpinski carpet, these measures
form a subclass of the class studied in this paper.

Another special subclass of the set of Gibbs measures considered in [8] consists
in self-affine generalized Riesz products on [0,1]% Let W : R* — R* be 1-
periodic with respect to the first and second variable. Suppose that there exists
a € (0,1] and C > 0 such that if 2,2’ € R? then |W(z) — W(2)| < Cllz — 2'||*
(Il - || being some norm). Let 2 < r; < 79 be two integers. Then, the Ruelle-
Perron-Frobenius Theorem [23] applied for the dynamical system ((R/Z)?, 0), with
o(z,y) = (o1(z) = rixz mod 1,02(y) = rey mod 1), and the potential log W
ensures that the sequence of measures on [0, 1]? defined by

n—1
k=0 W(T‘{CJ," Téy)
n—1
f[0,1]2 [Taco W(rkal,rhy’) da'dy’

converges weakly to a measure v supported by [0,1]%. The measure v is a Gibbs
measure associated with ((R/Z)?,0) and the potential ¢(z,y) = log W (xz,y). We
also use the terminology ”generalized Riesz product” for v by reference to the Riesz
products in dimension 1, and also in order to underline the fact that these measures
form a strict subclass of the objects we shall consider in this paper. If r1 = ro,
the measure v possesses some self-similarity property and the singularity spectrum

vp (dxdy) = xdy (1.1)

of such a measure is obtained by considering a family of auxiliary measures v,
g € R, obtained as follows ([9, 25]): v, is a Gibbs measure associated with the
potential gy and the same dynamical system ((R/ 7)?, a), and it is supported by
the singularity set E,(a(q)), where a(q) = (P(1) — P'(q))/log(r1), P(q) being
the topological pressure of gy; moreover, the Hausdorff dimension of v, is that
of the set E,(a(q)). In this case the auxiliary measures are exactly of the same
nature as v. When r; < ry, the measure v possesses a self-affine rather than self-
similar property, and the situation is subtler. This cannot be perceived immediately
for self-affine multinomial measures supported by [0,1]?> (and more generally by
a Sierpinski carpet) because their multifractal analysis is performed by using a
family of auxiliary measures v, constructed exactly in the same way. For self-affine
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Gibbs measures on self-affine Sierpinski carpets 3

generalized Riesz products, it turns out that computing their singularity spectrum
leads us to adopt the following point of view. Let v be a self-affine generalized Riesz
product as constructed above. The projection of v on the first axis is equivalent
to a ergodic measure P on (Q = R/Z,01), and v is equivalent to a Gibbs measure
associated with the dynamical system (R/Z,02), considered as a random bundle,
on the probability space (2,P) and the random potential ¢(x,-), in the sense of
[3, 16, 13]. Then, for ¢ € R, the auxiliary measure v, involved in the multifractal
analysis of v is a Gibbs measure associated with the potential gp(z,-), but with a
different random dynamical system, in the sense that the probability P is replaced
by another one P, in such a way that the random dynamical systems involved in
the problem are all of the same nature. A remarkable fact is that a central role is
played by the geometric properties of the measures P;. Indeed, they possess the
so-called quasi-Bernoulli property (see (1.3) and Section 2.2). Thus, our study
provides a frame in which quasi-Bernoulli measures are naturally involved and
generated. A natural way to obtain such measures on (2, 07) is to consider Gibbs
measures on (£2,01). But there is no obvious argument ensuring that conversely a
quasi-Bernoulli measure like P or P, is equivalent to a Gibbs measure on (£2,07).
Consequently, since we have no way to prove that P, is a Gibbs measure, contrarily
to what happens when r; = 72, the measure v, on [0,1]? cannot be obtained as a
generalized Riesz product (see Section 1.3.3 for more details) and belongs to an a
priori larger class of Gibbs measures.

This class forms a subset of the Gibbs measures on general Sierpinski carpets
rather than only on [0, 1]? considered in the sequel. Let u be such a Gibbs measure.
The singularity spectrum of p will be obtained as the Legendre transform of some
function (8 (which, up to an affine transformation, coincides with a topological
pressure function when r; = ro). While § is analytic for a self-affine multinomial
measure, another delicate point in this paper is to establish the differentiability of
this function in the general case. This uses some ideas from [11].

Also, while (as we already mentioned) in [17, 22] a rather restrictive separation
hypothesis is assumed in the Sierpinski carpet construction for the computation of
the singularity spectrum of self-affine multinomial measures, our results improve
those established in [17, 22] by assuming a considerably weaker assumption (see
Remark 1.4 and Theorem 1.2). More precisely, without assuming any restriction in
the carpet construction we determine the whole decreasing part of the singularity
spectrum as well as a lower bound for the increasing part which is sharp under our
weak technical assumption.

For Gibbs measures associated with potentials satisfying some Dini and
periodicity conditions, our results hold without any geometrical assumption (see
Corollary 1.1).

Let us now introduce some definitions and notations. Then, in Sections 1.1 and
1.2 Gibbs measures on the product of two symbolic spaces will be defined as well
as their natural projection on a Sierpinski carpet. Section 1.3 details the special
examples mentioned above. Eventually, Section 1.4 provides our main results, and
the rest of the paper is devoted to the proof of these results.
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4 J. Barral and M. Mensi

Definitions and notations.

Let 2 < 71 < 79 be two integers. For i € {1,2} let A; denote the set {0,...,r;—1}.
Let AY = U»o AF (A = {0}) and let A; denote the symbolic space AY . The
length of an element w of A¥ U A, is denoted |w|. The set A¥ UA; is endowed with
the concatenation operation: if w € Af and w' € A UA; , then w - w’ denotes the
word obtained by juxtaposition of w and w’'.

Then, for w € A}, [w] stands for the cylinder w - A; = {w - w', w' € A;}.

If 2= 2z122--2p--- € A; and n € N then z|n stands for the prefix z; --- 2z, of z
if n > 1 and the empty word otherwise.

For z,2" € Af UA,, let z A 2’ stands for the word u of maximal length in AF U A,
such that v is a prefix of z and 2’. )

The set A, is endowed with the ultrametric distance d; : (z,2') € A2 s r; "%,

Let o0; stand for the shift transformation on A; and denote by o the
transformation (o1, 02) on Ap x As.

The product A; x Ay is endowed with the ultrametric distance

d((x,y), (2',y")) = max (di (z,2"),d2(y, 9)).

For every n > 1, let F,, be the set of balls of radius 7, " in (A; x Ay, d). Let
g(n) be the smallest integer m such that r;™ <r;™. It is easy to see that

T, = {[UH C@y] % [wa] ¢ (wy, By, ws) € AT x AT Ag}. (1.2)

1.1.  Construction of Gibbs measures on Ay x As.
Let A be a non-empty subset of A1 x Ay and define [A4] = {[i] x [j] : (i,5) € A}.
Then define the compact subset K of Ay x Ay by K =(,~,0 " ([A]).
Let ¢ : A; x Ay — RU {—o00} be a function such that K = {(z,y) € A; x Ay :
o(z,y) > —oco}. We assume that
(H1) ¢ satisfies the Dini condition

dr

[ s o) - ) <o

[0,1] z,2’eK r
d(z,2")<r

Then, let Ay = {i € Ay : 3j € Ay, (i,j) € Al and Ay = {j € Ay : Ti €
Al, (Z,_]) S A}

In order to avoid trivial cases in the sequel, we assume

(H2) min(# Al, # Zg) > 2, where #S denotes the cardinality of the set S. We
set 1 = #Al.

For i € {1,2} let A7 = Uk>o A* and let A; denote the symbolic space AN,

We have -

K C 1&1 X 1&2,

and the sets A; and A, are the projections of K on A; and A, respectively.

From now on, the space (1&1,01) plays a particular réle, but we explain in
Remark 1.3 that favoring (Asg, 02) yields the same result.
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Gibbs measures on self-affine Sierpinski carpets 5

Let P be a ergodic probability measure on (1&1, o1) and suppose that P obeys
the quasi-Bernoulli property ([4]):

(H3) There exists C' > 0 such that for every n,p > 1, for every (w1, w1), €
A7 x AP one has

1 P([wr - @)
ct < 2 EGE C. (1.3)

Let ¢; stand for the Haar measure on the compact set 1&1 considered with its natural
structure of additive group.

For i € Ay, let Ay(i) stand for {j € Ay : Clixlj) # —oof. Then for
£C=;C1£L’2"'$p"'€1&1 and n > 1 let

K.={yehy:(z,y) € K} and Ay(z|n)= H 2 ().

By construction

K,= (K}, withK;= ] [w]
n>1 wgegg(ﬂn)
In particular, K, is a compact set. We then denote by /3 ,, the (unique) ”branching”

measure on K, such that

2 m( ’LUQ ﬂK H #AQ Ik 1, n > 1, wo € Ag(:ﬂn)

REMARK 1.1. If K 21&1 X 1&2 then K, = 1&2 and U 5 = Uy for all x € 1&1.

DEFINITION 1.1. Forn > 1 and (z,y) € Ay X A, let

’ 5. ] ) eK
Sup(a,y) = {Zk op(ot moz-y) A wy) €K
otherwise

Also, forn > 1 and x € 1&1 define on K, the measure

exp (Sne(z,y))
sz exp (Sn<P(33, U)) la o (du)

Then define on K the measure
pin(de, dy) = P(dx) iy, (dy) (1.4)

and denote by M the set of weak limits of subsequences of (fin)n>1-

pn (dy) = 2,2 (dy).

We shall relate M to the concept of Gibbs measure, and then describe the
multifractal nature of the elements of M. The following proposition, which is a
simple consequence of (2.4) in the proof of Lemma 2.2, shows that all the elements
of M have the same multifractal nature.
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6 J. Barral and M. Mensi

PRrROPOSITION 1.1. There exists C' > 0 such that for every p,v € M and Borel set
E in K one has C~'v(E) < u(E) < Cv(E).

Before considering multifractal analysis, let us examine sufficient conditions on
the set A for M to be a singleton (Proposition 1.2) and relate this property to the
notion of Gibbs state. This uses the Ruelle-Perron-Frobenius theorem established
in [3] and requires to use double-ended infinite words on A; to get an invertible
shift operation.

Let A; = g%, let 71 be the extension of o1 to A; and let & be the transformation
(G1,02) on Al x Ay T =z j20m1--- €A, weset zy =21+, Kg = K.,
and fyz = lro,, and if y € Ay we set B(T,y) = ¢(r4,y). Also, we set
K= {(f,y) €A xAy: ($+,y) € K}

If i € Ay, let m(i) = min j and M(¢) = max j. Then define the random

JEA2() JEA2 (1)
transition matrix

B(E) = (122(11)(j1)1112(12)(jz))j1€g2ﬁ[m(zl),M(xl)] (E ERRRRECES EAEA P R Al)
ja€Aan[m(z2), M (22)]

By construction
Kz = {y € A12 : Bykvyk+1(agk_l)i) =1Vk> 1}' (1.5)

We denote by P the ergodic extension of P to A, which we also denote by €.

In the setting of [3], the set K is a compact bundle over ) with fibers (the sets
Kz) in Ay. For T € Q let ¢(T) be the restriction to K5 of the function oy. The
map ¢(T) is continuous from Kz to Kz,z. It follows that in the setting of [3] the
functions ¢(%) define a bundle random dynamical system on €2 x A,. Moreover, due
to (1.5), the maps ¢(Z) and the matrices B(T) define a random subshift of finite
type. Let us introduce the following assumption on the set A:

Vie Ay, As(i) = Ay N [m(i), M(i)). (1.6)

REMARK 1.2. Instead of considering random subshifts defined with random
alphabets of the form {1,...,l(w)} inside N* (that is made of the l(w) first positive
integers) as in [8] and [13], we work with the random alphabets Ay [m(z1), M (1)]
made of integers belonging to A,.

It is easily seen that (1.6) is the necessary and sufficient condition for B(T) to
satisfy the aperiodicity condition of [18] (which weakens that of [3]): For P-almost
every T € A, there exists N(T) > 1 such that all the entries of B(T) - - ~B(Ef[@)_lf)
are positive. Moreover, under (1.6), we can take N(T) = 1.

Property (1.6) obviously holds if K = 1&1 X 1&2. This is the case for generalized
Riesz products considered in Section 1.

The following result is then a consequence of the random tranfer operator
theorem obtained in [3] (Theorem 2.3 (iv)) for the random Perron-Frébenius
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Gibbs measures on self-affine Sierpinski carpets 7

operator from C(Kz) (the space of continuous functions on K) to C(Kz,z) defined
for T € Q by

LI(9) =y~ > PV g(y).
y'€Kz 6(T)(y)=y

PROPOSITION 1.2. Assume that (1.6) holds and that ¢ is a Holder function, i.e.
there exists o € (0,1] and C > 0 such that if z,2" € K then |p(z) — p(2')] <
Cd(z,2')*. Then, for P-almost every xz, the measures p converge weakly to a
probability measure u* on K, as n tends to infinity. Consequently, the sequence of
measures (i, converges weakly to the measure P(dx)u®(dy) as n goes to infinity and
M is a singleton.

~ — —n—1 — — _
Proof. For T € Ay and n > 1 let LZ" = E%l To.o L7 o LT. An elementaty
computation shows that if f € C(K,, ) then

IK_‘CIH (u-i-) ( )
md
/ T ) = e @)

where 1(-) stands for the function identically equal to 1. The assumptions C'1, C2
(slightly weakend here) and C3 of Section 2.5 in [3] are fullfilled by the random
potential B(Z,-) and the random matrix S(Z) (respectively denoted by ¢(w) and
A(w) in [3]). Thus, due to [3] (Theorem 2.3 (iv)), for P-almost every T € Ay, for
fff ﬁ%"f(u+)ﬁ2j(dﬂ)
Jre, L5 L(w)E2 = (du)
depends only on z, if follows that u? converges weakly for P-almost every z. The

every f € C(K,, ), the sequence converges. Since the limit

weak convergence of i, to up,, is then immediate. O

If (1.6) holds and ¢ is a Holder function, it is P-almost sure that the measure
fin*
P(dZ)u+ (dy) is a Gibbs measure on K in the sense of [3]. By extension, we call
P(dx)p®(dy) a Gibbs measure on K, as well as any element of M even if (1.6) does

not hold. Thus:

e We fix an element up , of M and denote by p the extention of up to the
Borel subsets E of A; x Ay defined by u(E) = pp,,(E N K).

converges weakly to a measure p*+ (see the proof below). Then, the measure

e We denote also by P the extension of P to the Borel subsets B of Ay defined
by P(B) =P(BNA;).

REMARK 1.3. By analogy wi‘th the~con5tructi0n of the previous bundle random
dynamical system, for j € Ap let A1(j) stand for {i € A1 : @« 7 —o°}-
Then for y = e yp € Ay and n > 1 let K, ={z € Ayt (z,y) € K}

and Ay (yln) = H . Also let £y, be the unique measure on K, such that

Oy (Jw1] N Ky) H # Ay ( (k) for all n > 1 and wy € A?(y|n). Then for
k=1
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8 J. Barral and M. Mensi

n>1andye€ Ao define on K, the measure

exp (Snep(x,y))

) = T b G, ) g (@)

fLy(d,T),

Then, considering the measure P on (1&1,01) is equivalent to chosing it on
(Ag,02) if (1.3) holds. Indeed, computations similar to those done in Section 2.1
show that:

(i) the projection Py of p on Ay is quasi-Bernoulli (and thus equivalent to a
ergodic quasi-Bernoulli measure (see [11] for instance));

(i1) Any weak limit of the sequence Py(dy)u¥ (dx) is equivalent to pu.

(7i1) A sufficient condition for Po(dy)p¥(dz) to weakly converge is that AL(j) =

AN [ min %, max z} for all j € A,.
i€A1(5) i€A1())

1.2.  Gibbs measures on the Sierpinski carpet.
Let 1 be the extension to A; x Ay of the Gibbs measure pp , considered after
the statement of Proposition 1.2. Let

w2 €A - szr;k (1 €{1,2}) and 7 = (71, m2).
k>1

The measure /i = p o7 ! is the natural projection of x on [0,1]? and its support
is the Sierpinski carpet m(K). The set w(K) is also the attractor of the iterated
function system composed by the affine transformations

fig o (@y) = Gyt + et eyt ey ty), (6,5) € A

The measure [ is called a Gibbs measure on the Sierpinski carpet m(K).
1.3. Basic examples.

1.3.1.  Self-affine multinomial measures. This corresponds to the measures
considered in [19, 2, 17, 22] which are obtained by taking ¢ constant equal to
a value ¢, ; over each product K N[i] x [j] ((¢,5) € A) and P the Bernoulli measure
_ je Ay (i) OXP Pi,j
Dlied, Zj€g2(i’) €Xp @i j
reduced to one point even when (1.6) does not hold.

such that P([i]) for i € A;. In this example, M is

1.3.2.  Self-affine generalized Riesz products — Gibbs measures of [8]. Let v be a
generalized Riesz product as constructed in the introduction. Computations similar
to those performed in the proof of Proposition 2.1 show that the projection p of
v on the first axis is equivalent to the image by 7 of an ergodic quasi-Bernoulli
measure P. As a result the measure v is equivalent to the projection of the measure
e, defined in the previous section, where ¢ = log W o (71, m2). Recall that in this
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Gibbs measures on self-affine Sierpinski carpets 9

case the support of v is [0, 1]? and that of up , is A; x Ag (in particular (1.6) holds
and M is reduced to one point).

In [8], the more general following construction is considered, which is also a
special case of our setting.

Let ¢ as in Section 1.1. Let m = #A. There is a natural homeomorphism h
between the symbolic space I, = {1,...,m} endowed with the shift operation s
and the set (K, 0 ), such that hos = o oh. A Gibbs measure v on (I, s) can be
associated with the potential ¢ o h, and in our setting the measure considered in
[8] on the carpet 7(K) is the measure i = pon !, where yu := voh~!. Here again,
it is not difficult to see, using computations similar to those used for the proof
of Proposition 2.1, that the projection p of u on El is equivalent to an ergodic
quasi-Bernoulli measure IP and that p is equivalent to the measure up .

1.3.3. Comment. In each example, the multifractal analysis of the measure
requires us to consider a family {uq}qer of auxiliary measures. For multinomial
measures f, each p, is itself multinomial. If v is a generalized Riesz product
associated with the function W then v, takes the form f,, where p, = up, o,
for some quasi-Bernoulli and ergodic measure P, and the potential ¢, = glogW o
(71, 72) (see Section 2.2). If we knew that any quasi-Bernoulli measure is equivalent
to a Gibbs measure, £, could be obtained as a generalized Riesz product. Indeed,
since the quantity I;, introduced below in Section 1.4 also possesses a quasi-
Bernoulli structure (Lemma 2.1), we see on the Definitions 1.1 and 2.1 that there
would exist a 1-periodic potential ¥4 on [0,1] such that P,([z|n])/I;n(z|n) =~
exp(zz;é Yy(mi(otx)). Then, v, = fiy would be the generalized Riesz product
associated with W, such that Wy(z,y) = exp (¢q(z)) W(z,y)?. This expression
strongly differs from the case r1 = ry [4, 9, 25] for which the term ¢, vanishes.
The same remarks hold for the Gibbs measures considered in [8].

1.4. Main results.
The measure p and its projection p are respectively defined as at the end of
Section 1.1 and as in Section 1.2.

Let s =log(r1)/log(r2). For n > 1, wy € A? and g € R, let

Iyn(wr) = Z sup exp (¢Sne(z,y)). (1.7)
(z,y)€wi] X [wa]NK

wa €A (w1)
Then define I (1) .
o n\W1
punllun) = P(fmn])* (7222 ) (18)
1
5u,n(Q) = _ﬁlogrl Z Pq,n([wl])
w1€gi‘

and

Bulq) = liminf 5, »(q).

n—oo
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10 J. Barral and M. Mensi

For f: R — RU{—o0}, the Legendre transform of f is defined by f*:a >0~
inqu]R aq — f(Q)

THEOREM 1.1. (Singularity spectrum of n)

(i) The concave function 8, is differentiable and non decreasing.

' (i) For every o € Ry, one has dim E,(a) = §;(a) if B;(a) > 0 and E,(a) =0
if B, () < 0.

Let us introduce on the set A three types of properties, respectively denoted
(G1), (G2) and (G3). Property (G1) is a strong separation condition of
geometrical nature which weakens that of [17, 22] (see Remark 1.4 below).
Property (G2) is a weak separation condition of geometrical nature, but neither
(G1) implies (G2) nor (G2) implies (G1). Property (G3) is a king of weak
periodicity condition on the potential ¢ and the Sierpinski carpet, and it excludes
(G2).

(G1) |i —i'| > 2 for every pair (i,i’) of distinct elements of A;.

(G2) {0,r1 — 1} N (A \ Ay) # 0.

(G3) {0, — 1} C A; and for all ¢ > 0,

1 1
lim —logl,,(0") = lim —logl,,((rm —1)"), (1.9)

n—oo N n—oo N

where for j € A; and n > 1, j™ stands for the word of length n whose letters are
all equal to j (the limit exist in (1.9) thanks to Lemma 2.1).

THEOREM 1.2. (Singularity spectrum of i)

(i) (Lower bound) For every a € Ry such that §;,(a) > 0, one has dim Ej(a) >
Bila).

(i) (Upper bound: Case a > 3,,(0)). If a > 3/,(0) then dim Ej(a) < B (a) and
Ez(a) =0 if () <O0.

(i4) (Upper bound: Case 0 < o < 3,(0)). Suppose that one of the properties
(G1), (G2) or (G3) holds.

If0 < a < B,(0) then dim Ez(a) < Bi(a) and Ez(a) =0 if 3 (a) <0.

The following corollary shows that our work yields the singularity spectrum of
Gibbs measures directly constructed on a Sierpinski carpet in the torus (R/Z)? (like
generalized Riesz products) without particular geometrical assumptions.

COROLLARY 1.1. Let W : R? — R,.. Suppose that 7(K) = {z € [0,1]2 : W(z) > 0}
and W is 1-periodic with respect to the first and second variables. Suppose also that
dr
r

/ ‘ W (z")
sup log
0,1] 2,2’ €m(K)U(r (K)+(—1,0)) Wi(z)

2 —zll<r

If ¢ is taken to be equal to ¢ o over K and —oo elsewhere, then for every

a € Ry, one has dim Ez(a) = B;(a) if 8;,(a) > 0 and Ez(a) =0 if 3 (a) <0,
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Gibbs measures on self-affine Sierpinski carpets 11

We leave the reader verify that this result follows from Theorem 1.2 and the fact
that either (G2) or (G3) holds due to the periodicity and Dini assumptions.

REMARK 1.4. In the case of Example 1.3.1, i.e. self-affine multinomial measures,
the function B, takes the simple analytic form

S

Bulg) = —log,, >

iegl

q
2 je i) P Pirg > je (i) CXP 4P
Zi’eﬁl Eje,@(i/) €XP Pir 5 (

7
2 je Aa(i) OXP %’J’)

obtained in [17].

The strong separation assumption considered in [17, 22] requires that for every

pair (i,i') of distinct elements of Ay one has li — | > 2, and if i € Ay then if j
and j' are two distinct elements of Ay (7)) one has |j — j'| > 2. Thus property (G1)
weakens this assumption and property (G2) describes a large class of configurations
which are completed by property (G3), which holds if AVQ(O) = gg(?“l —1)#0 and
©(0,7) = @(r1 — 1,7) for all j € A3(0).
REMARK 1.5. Condition (G3) is also illustrated by potentials ¢ for which (1)
Ay(0) = A(ry — 1) # 0; (2) there ewist an integer p > 1 such that for every
wy € Ay(0P) = As((ry — 1)P), the restrictions of ¢ to [07] x [ws] N K and
[(r1 — 1)P] x [we] N K are constant and take the same value.

In the sequel, in order to simplify the computations, we slightly modify the
definition of the quantity I, (w1).

Ifn > 1and (wy, ws) € AT x AZ is such that [wy] x [wa]NK # 0 (i.e. wy € As(wy))
let (wr,wz) be an element of [w;i] x [we] N K. Then, due to (H1), a bounded
distortion principle yields C' > 0 depending on ¢ only such that

C < Ipu(w)™ D" exp (¢Snp(@r, W) < C1
UJQEZQ(wl)

Consequently, from now on we set

Ipn(w) = > exp (¢Snp(wT,w3)) (1.10)

w2 €AY (w1)

without affecting our results.

2. Auwxziliary functions and measures
2.1.  Four basic properties.

LEMMA 2.1. Let L be a compact subset of R. There exists a constant C > 0 such
that for every n,p > 1, ¢ € L, and (wy,w;) € A} x A} one has

-1 Iy nip([wr - w1])
“ = Iy ([wi]) g p ([w1]) =C (2.1)

The following lemma provides an extension to u of (1.3) (which holds for P).
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12 J. Barral and M. Mensi

LEMMA 2.2. There exists C > 0 such that for every mn,p > 1, for every
(wl,ﬁ)/l,'(UQ,iUVQ) S A? X Azl) X Ag X Ag
such that [wy - Wq] X [we - we] N K # O one has

p([wi - @] X [wy - @s])

O ] < fwal) (@] < (@)

<C. (2.2)

LEMMA 2.3. There exists C > 0 such that for every n > 1, for every [wy - w;] X
[wa] € Fp such that [wy - w1] X [we] N K # @ one has

1 p([wr @] X [ws])
= fwn] % fwa) P(@n]) =

LEMMA 2.4. There exists C > 0 such that for every n > 1, for every (w1, ws) €
AT x AL such that [wq] X [we] N K # 0 and every (z,y) € [wi] X [wa] N K one has

exp (Sng(,y))

o) Cp([wn] x [wa)).

O~ p([wr] x [wa]) < P([un))

Proof of Lemma 2.1. Let ¢ € L, n,p > 1 and (wq,w;) € /Nl’f X Aﬁ’ Recall (1.10).

Igntp([wi - w1]) = Z exp (¢S 4p(wr - W1, ws - Wa))
(w27@2)egz(w1)xgg(ﬁ1)

n—1
_ T ew (z e w>
k=0

(wa,3)EAg (w1) X Ag (1)
n+p—1
XeXP( Z gp(of - wy - W1, 0% - wa -62> )

k=n

Since ¢ satisfies the Dini property (H1), a standard bounded distortion principle
implies that there exists a constant ¢ such that for all ¢ € L one has

ZW( Swp - W, 0% - wy - Wn) ZW -WT, 05 - Wa)| < ¢
n+p—1
and Z q(p(af cwi - w1,02 wa + W) qup w1,02 Wo we)| < c.
k=n
This yields the conclusion. ]

Proof of Lemma 2.2. For k > 1 we denote by fj the function exp(Skp). Let n > 1,
m > 0 and (w1, ws) € AT x A} such that [wi] x [we] N K # 0 (notice that wy € A}
and wy € Ay(wy)).

Lt ([w1] X [we]) = /[wl]X[W2] T fn{rjg,(j)yf)z,m(du) Uy . (dy)P(dz).  (2.3)
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Gibbs measures on self-affine Sierpinski carpets 13

Again because of ¢ satisfies (H1), a standard bounded distortion principle
implies that there exists C' > 0, independent of n,m and (w},w}) € A} x AY,
such that for all (z,u) € [w]] x [wh] N K,

C—l < _ &i—m(fl;,u) <c
- f"(wllvwlz)fm(U?w,ogu) -
Consequently,
o< i, P (@, 0) 2,2 (du) .

> L) [ falotnoutedd)

whe As (w) ol K
On the other hand, one has

[ ot ogutasldn) = an(Wh) 1K) [ fulofn 0)an(dv),
[wy]NKz Kong

and we see on the right hand side that due to the definition of ¢ , this quantity
does not depend on wh. Incorporating the above estimates in (2.3) yields

2wy e A (wy) fn (W1, W) <c

ol < umm([m] X [w2]) fn (W1, W2)P([w1]) 2 -

In other words (recall (1.10))

Iy ([wr])
Tofor wP () = © 24

Moreover, it follows from the proof of Lemma 2.1 and the quasi-Bernoulli
property of P that there exists a constant C7; > 0 independent of n,p and
(w1, Wy, we, we) € A} x A} x A% x Ab such that if [wy - W] X [we - W] N K # () then

c 1< Mn+m([wl] X [w2])

I yp([wr - W1])/ frgp(wr - w1, wo - w2)P([wy - wh])

(fn(fwn))/ fu(@r, @B (wn) ) (T ([@1])/ fo (@1, T)P(1)))

crt <

<.

(2.5)
Let now n,p > 1 and (wq, Wy, wa, we) € A} x A} x A% x A} such that [wy - W] x
[wa - wWa] N K # (). Due to (2.4) and (2.5), for all m > 0 one has
(0301)71 S un+p+m([w1 1?)1] X [wi ’[EQ])N
pinem ([w1] X [w2]) prp-gm ([@1] % [@2])
Since the indicator function of any cylinder of the form [w;] X [wz] is continuous,
letting m tend to oo in (2.6) yields the result. a

< C3Cy. (2.6)

Proof of Lemma 2.3. Let us write

u([wl @1] X [’wg]) = Z u([wl ’LAl;l] X [’wg . @2])
Wy A

The result is then a simple consequence of Lemma 2.2 and the fact that P is the

projection of 1 on A;. ]

Proof of Lemma 2.4. Let m tend to oo in (2.4).
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14 J. Barral and M. Mensi

2.2.  Auziliary measures.

PROPOSITION 2.1. Let g € R. There exists a quasi-Bernoulli ergodic measure P,
and a constant C' > 0 such that for alln > 1 and wy € A}

O D o (fwn]) < Py(fun]) < O™ @ pga([wn]) (2.7)

DEFINITION 2.1. Let ¢ € R. Let P, be the measure obtained in Proposition 2.1.
We set oq(z,y) = gp(x,y) if (z,y) € K and p4(z,y) = —oco otherwise. Then, p,
stands for the measure constructed from (Pq,¢q) as w is constructed from (P, ).
By construction i and py have the same support K.

The proof of Proposition 2.1 requires the following lemmas whose proofs are
postponed to after that of Proposition 2.1.

LEMMA 2.5. For every compact subset L of R, there exists C > 0 such that for all
qgeLl andn,p>1

1 exp ((n + p)ﬁmn-i-p(Q))
s exp (nBun (@) + pBup(a)) ~

Consequently, B, converges uniformly to 8, on L and |n(Bun—Fu)|cc,r < logC.

(2.8)

DEFINITION 2.2. For g € R andn > 1, let Pq.n be the probability measure defined
on A1 by
~ nf ,n ~n,
Pgn =T o (9) Z pq,n([wl])Tl 61\[1111]7
w1el’f

where ly|[,) stands for the restriction of £y to [w1] and 7, = #,11,

LEMMA 2.6. For every compact subset L of R, there exists C > 0 such that for all
n,p>1,qg€L and w € A}

—1 ﬁq-,ner([wl])
) =

Proof of Proposition 2.1. Let pg be the weak limit of a subsequence of (pg,). It
is immediate from the definition of p,, and Lemmas 2.1, 2.5 and 2.6 that p, is a
quasi-Bernoulli measure and that there exists C' > 0 such that for all n > 1 and
wy € Z? we have

O D oy () < Balfun]) < C Y@ g ([un]).-

Now, since py is quasi-Bernoulli, it follows from [11] that it is equivalent to a
quasi-Bernoulli ergodic measure P,. ]

Proof of Lemma 2.5. Property (2.8) is a consequence of the definition of £, n,
Lemma 2.1 and the quasi-Bernoulli property of P. Then, the uniform control of
n(Bun(q) — Bu(q)) over L follows from the standard fact that u,/n converges to its
infimum if the sequence (uy,),>1 is subadditive. O

Prepared using etds.cls
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Proof of Lemma 2.6. Let g € L, n,p>1 and w; € /~1’1‘ By definition we have

~ ~ ~ D) Brin v ~

Panp(w]) = D7 Bumip(lwr- @) = 3w PR D gy (fwn - @),
ﬁlegf ﬁlegf

It follows from Lemma 2.1, Lemma 2.5 and the quasi-Bernoulli property of P that
there exists C' > 0 independent of ¢, n and p such that for all w; € A} we have

r§n+p)ﬁu,n+:ﬂ(q)pqyn_,’_p([’l,l}l ) C

<

ﬁq,n([wlbﬁqﬂp([@zl])

We conclude by using the identity Ewlegp Pap([w1]) = 1. =]
1

2.3. Comparing B, with the L1-spectrum of . Differentiability of 5.

DEFINITION 2.3. Let v be a positive finite Borel measure on A; x Ay. The L9-
spectrum 1, of v is defined by

1
Tv(q) = lim inf Tv,n (q)a where Tv,n (Q) == logrg Z V(C)q

n— oo n
CeF,

with the convention 09 =0 (recall that F,, is defined in (1.2)).
Let p be a positive finite Borel measure on Ay. The L-spectrum 7, of p is defined
by

. 1
To(¢) = liminf 7, ,(q), where 7,,(q) = - log,., Z p([w])q.

n—oo
weAY}

PROPOSITION 2.2. One has 8, > 7,,. Moreover, if P is the Lebesgue measure and
@ does not depend on the first variable, then 3, = 7.

REMARK 2.1. The case when P is the Lebesgue measure and ¢ does not depend on
the first variable is the extension to our general setting of the case when the column

vector (@ij)o<j<r, does not depend on i in [17, 22] (see Section 1.3.1).

ProrosITION 2.3. The function 7, is differentiable at 1, and so is [3,, with

B,(1) = 7,(1).
ProrosiTiON 2.4. For all ¢, € R one has
Buy (r) = Bular) — rBu(q)- (2.9)

COROLLARY 2.1. The function B, is differentiable.
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16 J. Barral and M. Mensi

Proof of Proposition 2.2. Let n > 1. Due to Lemmas 2.3 and 2.4 we have

Z M(C)q] — Z u([wl . wl] % [’U}Q])q
CeFn (u}l,'ﬁl,uQ)eA?><Aslz(n)7n><A;L7
[w1-W1] x [wa2] VK #D

r S

&P (¢Sn (w1, W3))
I (wn)?

Y%
q

> P(fwn )P ([wn])

(w1,@1,w2)EAT X AI T AT
[wl-ﬁl] X ['UJQ]OK#@

r S

= o > (@) | Y P(w])

@y e AT w1 €A}

Iq,n(wl)
I (w1)?

for some positive constant C. The concavity of the function « — z* on R, implies
(via Jensen’s inequality applied with the probability measure P, on A} defined by

Po({wn}) = P([wr])?/ 32, e ap P([wr]))

S S

q quﬂ(w ) q - q Iqﬂl(w ) °
wggnﬂl’([wl]) 711171(1”11)(1 > wgnp([m]) wgnp([m]) (711771(1011”)

Now recall that due to the quasi-Bernoulli property of P there exists C' > 0

such that C~! < r?ﬂp(q) Y owcin P([wi])? < C for all n > 1 (this is due to the
w1 4
subaddivity property of n7p ., (q)) so there exists C’ > 0 such that for all n > 1
s s—1

Z P([ws])? Z P([w;])? > C'. The previous estimates yield

1?1655(")7" wleg’f

. 1 . 1 I,n(wl) °
limsup — log,., Z u(C)? > llisolipﬁbg“ Z P([wq])? (q7>

" CEFn w AT 1,n(w1)
O
Proof of Proposition 2.3. 7, is a linear combination of 7p and the function
~ o 1
7u(g) =liminf ——log,, > p([wn] x [w])?.
(w1, w2)€AT X AT,
[wi] x [w2]NK#D
Indeed, it follows from Lemma 2.3 that
Ty = 8Tp + Ty (2.10)

We know that 7p is differentiable at 1 because P is quasi-Bernoulli (Theorem 3.1
in [11]). Moreover, since the measure u is quasi-Bernoulli on products of cylinders
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by Lemma 2.2, the same arguments as those used in proving Theorem 3.1 in [11]
show that 7, is also differentiable at 1. This yields the existence of 7;,(1).

We have 3, > 7., B8, and 7, coincide at 1, and the both are concave. So the
differentiability of 7, at 1 implies that of 3, as well as the equality 3, (1) = 7,,(1).
O
Proof of Proposition 2.4. This is a simple consequence of the definitions of 3, and
Proposition 2.1. O

Proof of Corollary 2.1. Fix ¢ € R\ {0}. We can apply Proposition 2.3 to .

Differentiating (,, at 1 and using (2.9) at r = 1 yields the existence of 3}, (¢) and
the relation

B, (1) = aB,(a) = Bu(a)- (2.11)

The differentiability of 3, at ¢ = 0 follows from the relation (2.10) and an

argument very similar to that of [11] using the second part of Lemma 2.5, the

concavity of the functions 7p,,, Tp, 7., and 7, and the fact that 7p,(0) = 7(0)
and ?u,n (0) = ;,u. (O) for all n Z 1. O

3. The singularity spectrum of the measure
If (z,y) € A; x Ay and n > 0, let C,(z,y) stand for the unique element of F,
containing (z,y). We have C,(z,y) = B((x,y),r3"). Also, for every a > 0,

log u(B(z,r3 ")) _

E,(a) = {z € supp(p) : limy 00 T— a}.

3.1. Upper bound for dim E,(«). Our approach is similar to that used in
(17, 22].
PROPOSITION 3.1. Let ¢ € R. For all (z,y) € K, one has

1/n
1imsup ,uq(Cn(a:,y)) — ( ) Z 1
n—oo \ p(Cn(z,y))|Cn(z, y)|~Prla

Then, using the same approach as in [22] one gets

COROLLARY 3.1. For every a > 0 one has dim E,(a) < 3} (a).

Proof of Proposition 3.1. Let (z,y) € K. The set C,(z,y) takes the form
[wy - @1] X [ws], where (w1, @) € AT x gf(")fn and wy € Ay(wy). In the sequel, the
symbol =~ means that the quantities in the both sides of ~ differ from a constant
which depends only on ¢, P and ¢q. By construction, due to Lemma 2.3 and
Proposition 2.1 we have

1q(Co(,y)) =~ Py([w1])pq([wi] x [wa])

~ By(()By () = gin(z(j v)

PP D P[5, ))IP([101]) T

exp (¢Snp(z,y))
Iy n(wr )

%
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18 J. Barral and M. Mensi

where _ _
_ Log—n(@1)” Ign(wi)* g g (wi-w1)°
P gy (1) Ty (w1)%9 Ty gy (wy - w1)%4

(due to Lemma 2.1). Thus

n _ I, g(n) (w1 - W01)* exp (¢Sne(x,y))
Cn ~ g( )ﬁu(Q)P ap q q,9(n) .
tq(Cr(,y)) = 1y ([wr])1P([w1]) Ty o(m) (wy - w7)% Ty (wy)

On the other hand

H(Cn(x,y))qycn(x,y)’fﬁ“(q) ~ T;lﬁu(q)}p([@l])qp([wl])qeXP (¢Snep(,y)) '

Iy (wn)?
This yields
ﬂq(cn(xu y)) ~ Il,n(wl)q I‘I-,g(n) (wl ’ wl)s (3 1)
1(Cr (2, )1 |Cr (2, y) | =P (@ Ign(w1) Ty g(n) (wy - w1)9
Il,n(x|n)q Iq.,g(n) (‘Tlg(n))s (3 2)
Ign(z|n) L1 g(n) (z]g(n))2s
I, 4
Thus, denoting u,, = %, there exists ¢ = ¢(q, ¢, P) such that
q,n
C'n, ) n n n)—s
tq(Cn(z,y)) — > ¢ nl/‘g(n) ug(/g)( ) (3.3)
M(Cn(:c,y))q](,’n(:c,y)] ug(n)

Now, since by construction there exists 0 < a < b < oo independent of = such
that a™ < w, < b™ for all n > 1, and |n/g(n) — s| = O(1/n), there exists ¢’ > 0
such that uZ(/ 5)(")75 > ¢/. The conclusion then comes from the fact that since
’ 1/n
s = lim, .o n/g(n) < 1, we have that limsup,,_,,, % > 1 for any positive
u

sequence (U, )p>1 such that u}/ " is bounded away from 0. O

g(n)

3.2.  Lower bound for dim E,(c).

PROPOSITION 3.2. Let ¢ € R*. The set E,(8,(q)) is of full pg-measure.
Consequently, dim E,(5,(q)) = 48,,(q) — Bu(q)-

Proof Let us begin with the case ¢ # 0. Proposition 2.3 claims that 7, (1)
and ﬁl:q(l) exist and are equal. The differentiability of 7,  at 1 implies that

lim, W = 7, (1) pg-almost everywhere (by [20]). So p, is carried

by sets of Hausdorff dimension at least 7, (1) = ¢8,,(q) — Bu(q) (by (2.11)).

HQ(Cn (1;11)) _
(Cr(%,9))4[Crr (z,y)| P (@D

To conclude, it is enough to show that lim,,_., n~ ' log "
0 pq-almost everywhere.
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Due to (3.2), this amounts to showing that

q ] " s
lim n~!log Ln(@[n)? g, )(:C|g(n)) i
e Iyn(ln) I gn) (zlg(n))*

=0 P4 ae. (3.4)

Due to the submultiplicative property established in Lemma 2.1, the ergodicity
of Py, and the fact that lim, .., n/g(n) = s, the result follows from Kingman’s
subadditive ergodic theorem ([18]).

If ¢ = 0, let us suppose for a while that there exists @ > 0 such that the set
E,(a) is of full po-measure. The measure p is generated by the potential ¢y which
is equal to 0 on K and equal to —oo elsewhere, as well as the measure py. This
measure belongs to the class of self-affine multinomial measures and it follows from
[19, 17] that p is supported by E,, (5,(0)) (in particular, the value of 5,(0), which
only depends on the structure of A as well as r; and rs, is equal to the Hausdorff
dimension of K). So dim E,(«) > (3,(0). Moreover, it follows from Corollary 3.1
that if a # 3),(0) then dim E,(a) < 3,(0). So a = f3,(0). Since 3;(3,,(0)) = 8,(0)
we get the desired lower bound.

The existence of « comes from Lemma 2.4 and the subadditive ergodic theorem
applied with the ergodic measure pyg. O

4. The singularity spectrum of the measure
4.1. Intermediate results.
This section provides the versions of Propositions 3.1 (Proposition 4.3) and
Proposition 3.2 (Corollary 4.2) needed to establish Theorem 1.2 in Section 4.2.
We need the next proposition and its corollary which, for every ¢ € R, provides
precious information on the relationship between the measure 1, and its projection
on the Sierpinski carpet.

PROPOSITION 4.1. Let g € R. For all (wy,wz) € A} x A5 one has pig({w1} x [we]) =
pg([wr] x {ws}) = 0.

COROLLARY 4.1. Let g € R. For all (wi,ws2) € A} x A% one has

fig (m([w1] x [wa])) = pq([wr] x [w2]).

If i € {1,2} and w € A} then w stands for w - 0, where 0 is the element of A,
whose letters are all equal to 0. Also, recall that if j € A; and n > 1, 57" stands for
the word of length n whose letters are all equal to j.

Proof of Proposition 4.1. Let (wi,ws) € Af x A and ¢ € R. We have
pg({wi} x [we]) < Pg({wi}). Thus pg({wi} % [we]) = 0 follows from the fact that
the measure P, is atomless because by construction it is supported by the full set 1&1
and we assumed that #/Nll > 2. Indeed, if P, had an atom at x =21 - 22 -2y - - -,
the sequence Py([z|n])/Py([z|n + 1]) would converge to 1 as n goes to oo, so that
Py([zn])/Pq([z]|n - Ynt1])s Ynt1 € Ay \ {zn41}, should converge to co. This would
be in contradiction with the property (1.3) satisfied by P,.
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Let us show that pg([wi] x {wz2}) = 0. We could use the fact, claimed in use
Remark 1.3, that the projection of y4 over Ay is quasi-Bernoulli. Since this fact is
not established explicitely in this paper, we provide another instructive approach.
We leave the reader verify that we can assume without loss of generality that
wi and wy are of the same generation. Then, due to the factorization provided
by Lemma 2.2, to show that pg([wi] x {we}) = 0 it is enough to show that
tq(A1 x {0}) = 0. Due to Lemma 2.4, this amounts to showing that

lim > Qu(wn)Py([wn]) =0, (4.1)

n—oo -
w1€AIL;
[wi]x [0 AK 4D

where

exp qSnp(wy, f)
Qn(w1) =
( 1) szeAg(wl exp anip( )

Two cases must be distinguished.

Case 1: The following property (P) holds.

(P): For every wy € Ay, if [wy] x [0] N K # 0 then [wi] x [we] N K = 0 for all
wy € Ay \ {0}.

Then (4.1) simplifies to be

lim Py ({w; € AT ] x [0 N K #0}) =0 (4.2)

Let A, = {w; € % :[wy] x [0]N K # (). Since #A, > 2, (P) implies that A; is
strictly included in A;. Moreover,

N U [wi] = Ay = A} (4.3)

n=>1 ’wleg?,
[wi]x [0 INK#0

On the other hand, if j € Zl \El, the expectation of the random variable
r € Ay — 1g5(z1) with respect to P, is positive. Moreover, P, is ergodic.
Consequently, P, (A1) = 0. We conclude by using (4.3) and (4.2).

Case 2: There exists j € A; such that [j] x [0] N K # 0 and there exists
I € A\ {0} such that [j] x [[] N K # 0. Fix such a pair (j,). The expectation
of the random variable z € A; — 143 (z1) with respect to P, is positive. Let
us denote its value by c;. We now that for Pg-almost every x = x1---25-- -,
lim,, 00 %#{1 <k<n:zp=j}=c.

Let € € (0,1). By the Egoroff lemma, there exists a Borel set B C &1 and an
integer N > 1 such that for allz € Band n > N, #{1 <k <n:zp =j} > ¢;n/2.

Now, for n. > N let wy € A} such that [wy] x [0"]NK # 0 and [wy]N B # 0. Let
x € [w1] N B # (. For each value of k between 1 and n such that z; = j, the word
0(k) obtained by changing the K 0 in 0™ by 1 is such that [w]x [0™(k)]NK # 0.
Moreover, since ¢ is bounded over its support, there exists a constant ¢ > 0
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exp ¢Sn p(w1,0™)
exp qSn (1,0 (k))

depending only on ¢ such that < c. It follows from the previous

remarks that

Qu(wy) < opaSnp@1,0") 2
>_1<k<n, €Xp qSnp (W1, 07 (k) — ¢
Tr=]

Then for n > N

2c 2c
> Qn(w1)P([w1]) < ——Py(B) + P, (B¢) < — +¢.
- Cj?’l, cjn
w1€A7f;
[wi] X [0 ]NK#0

This yields (4.1). O

Proof of Corollary 4.1. Let
D= U @) x [wa] Ufwn] x {wz).
(w1, w2)EAT XA}

For (wq,ws) € A} x A%, the set m([w1] X [wz]) is the rectangle R(w1,ws) obtained
as the product of the closed intervals 7 ([wi]) and ma([we]). It is easily seen that
7 (R(wy, w2) \ OR (w1, ws)) C [wi] x [we] and 7~ (OR (w1, w2)) C DU [wi] x [wo].

Thus, the result follows from Proposition 4.1. |

If (w,w') € A}, mi([w]) = [kr; ", (k + 1)7"_"] and mi([w']) = [K'r7", (K + 1)r;"]
for some pair of integers (k,k') € {0,...,7" — 1}% let §;(w',w) = kK — k.
Conversely, given w € AP and k such that 7T1([ ) = [kr;", (k+ 1)r; "], fixing
k' €{0,.. — 1}, there exists a unique w’ € A such that di(w',w) =k — k.

DEFINITION 4.1. If (z,y) € Ay X Ay, n > 1, Cp(z,y) = [w1 - W] X [wa] and

€= (e1,€2) € {—1,0,1}2, we set C(z,y) = [w]] x [wh], where (w}, wh) € A“lz(") x A%
is the only pair such that 01 (w), w1 - W1) = €1 and d2(wh, we) = €3.

In the sequel, by convention if v is a positive Borel measure on A; x A, and
Cr(z,y) Nsupp(v) = 0, we set v(Cy(z,y)) = v(Cu(z,y))-

PROPOSITION 4.2. Suppose that one of the properties (G1), (G2) or (G3) holds.
For all ¢ > 0, for all (z,y) € supp(u),

1/n
. q(ce(x )
limsup min <( K i R > > 1.

n—oo €€{—1,0,1}2 Ce(x,y)) ‘CE T,y

REMARK 4.1. The conclusion of Proposition 4.2 also holds for all ¢ < 0 if one of
the properties (G1), (G2) or (G3) holds. We did not state this result to underline
the fact that the next Proposition 4.3 does not involve such a property when q < 0.

PROPOSITION 4.3. Let C' = 4ryre. Let ¢ € R and assume that one of the properties
(G1), (G2) or (G3) holds if ¢ > 0.
For all z € supp(ix),

~ 1/logr—1t
limsup | = fq(B(2, Cr)) > 1.
ro+ \(B(z,7))1r=Pula)
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PROPOSITION 4.4. Let ¢ € R. For all ¢ € {~1,0,1}? and v € {u,pq} one has
logv(Ca(r.y)) | logv(Cala.y)

A2 Tog ‘Cfl(x, y)‘ = og |Cn(ar, y)‘ q-almost everywhere.

COROLLARY 4.2. For all ¢ € R one has ﬁq(Eﬁ(ﬂL(q))) = fq(Ex, (aB,(q) —
6#(‘]))) =1

Proof of Proposition 4.2. Let ¢ > 0. Let (x,y) € K. Let n > 2 and let [wy - W] X [w2]
be the element of F,, equal to C,(z,y). Let € € {—1,0,1}%. We can suppose that
C(z,y) N K # (. The set C¢(z,y) takes the form [v1 - 71] X [vg].

I (w1)7 Ly g(m) (w1 - w1)°
Iqm(wl) Il,g(n) (w1 ﬁl)

It follows from (3.1) that if we denote by Uy, (w1, W)

we have oz )
g x,y _
~ Uy (w1, w1)
1(Cn(,9))?|Cr (, y)|~Pu(@
(4.4)
1q(Cr(2,y)) -
o ~ Uy (v1,01)
p(Ci(z, y)) Cs, (2, y)|Pn(@)
We have |01 (w; - Wy, v1 - 1) < 1. Let us distinguish several cases.
Case 1: |6;(w1 - w1,v1 - v1)| = 0. In this case we have % = 1 and this

holds in particular if (G1) holds (straightforward from the definition of (G1)).

Case 2: |01 (wy - wy,v1 - 01)] =1 and (G1) does not hold.

If |wq - w1 Avr - 01| < g(n) — 1, there exists a word u of length less than or equal
to g(n) — 2 in A} and an element e € {0,...,7 — 2} such that (w; - @1, vy - 1) €
{(u ce - (rp — 1) 9m=lul= g (e 4 1) - 09Tl =) (- (e 4 1) - 09 lul=T gy
e (ry — 1)9M=lul=1)1 " If (G2) holds this implies that C*(z,y) N K = 0, a
contradiction with our initial assumption on e. Thus if (G2) holds we have
|wy - Wy Awvy-01] > g(n) — 1, and the words w; - wy and vy - ¥7 differ at most
by their last letter, and it it is clear from the submultiplicative property of I,.,, (see

Lemma 2.1) that there exists a constant ¢ > 0 which depends on ¢ only such that
Z/{n(vl,'til)

¢l < U (or 1 <ec.
Now, suppose that (G3) holds For r € {1, ¢} there exists a positive number
A such that ‘)\T - Llog I, (7 ’ = O(1/n) for j € {0,r1 — 1} (consequence of the

submultiplicativity property established in Lemma 2.1). Consequently, due to the
form taken by (wq - w1, v1 - 1), there exists a constant ¢’ depending only on ¢ such
that ¢/ ! < Ynlond)
- un(whwl) - '

In summary, if one of the properties (G1), (G2) or (G3) holds, there exists
¢” > 0 depending on ¢ only such that for all (z,y) € supp(u) and € € {—1,0,1}?

such that C(x,y) N K # 0,

1 (Cr (2, y)) > ¢ 114 (Cn (2, 9))
w(CE(,y))1|CE (2, y)| Pr (@D = 7 u(Cp (2, y))4|Cp (0, y)|~Pr (@)

Finally, the conclusion follows by using Proposition 3.1.
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Proof of Proposition 4.3. Let z € w(K) and (z,y) € K such that z = n(z,y) and
€ (0,1). Let n, > 1 be the smallest integer n such that 7(C,(x,y)) C B(z,r).
Let us first suppose that ¢ < 0. We have

alBGar) - pa(Co oy
i(B(z,7)" ~ p(Cy ( v))
Suppose now that ¢ > 0. Let C; = 275 and ¢; = (2r1)~!. A verification shows
that B(z,c17) C Ueeqo1,0,132 7(C5 _1(x,y)) C B(z,Cir). Let € be such that
n(Cr i (x ) = max.c(_1,0132 #(C5, _1(x,y)). We have
(B ) (€5 (o)
w(B(z,e1r))e — 9qu(Cn:71(x,y))q.

Since lim,_,o+ log,, (r)/n, = —1, the conclusion follows from Proposition 3.1 when
¢ < 0 and Proposition 4.2 when ¢ > 0.

),

O

Proof of Proposition 4.4. Let € = (e1,€2) € {—1,0,1}2. If (z,y) € K and n > 2,
write Cp,(z,y) = [wy - W1 (z,y)] X [we(x,y)] and CE(x,y) = [v1 - U1 (x,y)] X [v2(z, y)].
By using the same approach as in the proof of Proposition 4.2, we get

g(n)—1

(wy - @1 (-),v1 - 01()) € {W,(Ll)(u,e) = U Ak ee A\ {ry — 1}}UAg(n)
k=0
and
n—1
(ws(),020)) € {WP(u,e)rue |J A5, e Ao\ - 13} AT,
k=0

where W,gl)(u,e) = {(a,b),(b,a)} with a = u-e- (r — 1) 9 =lul=1 and b =
u-(e+1)- 09 —lul=1 Wr(f)(u, e)={(c,d),(d,c)} withc=wu-e- (ry — 1)n-lul=t
andd=u-(e+1)-0" =1 and AF = {(u,u) :u € Z’f} for i € {1,2} and k > 1.

We need the following lemma whose interpretation is that for p,- almost
every (z,y), |wy - w1 (z,y) Avr - 01(x,y)| and |wa(x,y) A va(z,y)| are respectively
asymptotically equivalent to g¢g(n) and n, that is to say the words (w; -
w(z,y), wa(z,y)) and ((vy - U1 (z,y), v2(z,y)) are almost the same.

LEMMA 4.1. For every a € (0,1), for pg-almost every (x,y) € K, for n large
enough one has

g(n)—1
(wy - wi(x), v -v1(x)) € {W,(Ll)(u,e) Tu € U A¥ 0§e§r1—2}UA§(")
k=[(1-a)g(n)]
and

n—1

(wa(y),v2) € (WP (w,e)iue | Ah 0<e<rn -2} JAp
k=[(1—a)n]
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Let a € (0,1). Let K, be a subset of K of full y,-measure such that the conclusion
of Lemma 4.1 holds. If (z,y) € K, and C;,(z,y)NK # 0, it follows from Lemmas 2.3
and 2.4 applied to p and g, that there exists a constant depending on ¢ only such
that for v € {p, puq}

C—o9(n) < V(C;(;L'7y)) < o9(n)

< < for n large enough. (4.5)

v(Cu(z,y))
Since (4.5) holds for all (z,y) € (1,55 K1/, Which is of full ue-measure, we obtain
the desired conclusion. O

Proof of Lemma 4.1. Let a € (0,1). For n > 2 let n(a) and n'(«) stand for the
integer part of (1 — a)g(n) and (1 — a)n respectively. Due to the Borel-Cantelli
lemma, it is enough to show that

n(e)
Zuq({(wl (), o)) € {Wél)(u,e) cue | JAY, 0<e<n - 2}}) < 0
n>2 k=0
and
Zuq({(wz(.),vg(.)) c {Wy)(u,e) ue nL(j)Z’g, 0<e<ry— 2}}) < co.
n>2 k=0

The first inequality is equivalent to

g(n T1— —2

> Z S Po(fucer (1= 1))+ Py(fu- (e +1)-0%))] < o0

n>2k=g(n)— n(a)flueAg(n) k-1 e=0

(we made the change of variable &’ = g(n)—k—1) and because of the quasi-Bernoulli
property of P, this is also equivalent to

g(n)—

> Z [By(((r1 — 1)) + By([0*])] < oo.

n>2 k=g(n)—n(a)—1
Moreover, again due to the submultiplicativity properties of P, and the fact that
P, is atomless (see the proof of Proposition 4.1), both P, ([(r1 — 1)*]) and P, ([0°*])
tend to 0 exponentially fast as k goes to co. Thus, there exists C > 0 and A € (0,1)
such that for all n > 2, Y901 )1 Pa([(r1 = 1)F]) + P, ([07%]) < Cg(n)rstme.

g(n)
The second mequahty is equivalent to

r22

> > Z S ST [ng(fwn] x ) + g ([wn] x [d)] < e,

n22 4 e Ap k=n—n/(a)—1ygAy—F-1 e=0

withc=wu-e-(ro —1)* and d = u- (e + 1) - 0*. Due to Lemma 2.2, this is also
equivalent to

n—1
o> > [mallw] x [(r2 = 1)) + pg([w] x [07])] < o0,

n>2 k=n—n’(a)~1 ye Ak
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that is to say

> i [1g (A1 x [(r2 = 1)"]) + pg(A1 x [0F])] < 0.

n>2 k=n—n'(a)—1

It is easily seen by using Lemma 2.2 again that for e € {0,792 — 1}, the sequence
(11q(A1 x [e*]))g>1 is submultiplicative. ~Moreover, we saw in the proof of
Proposition 4.1 that g (A; % [0°%]) goes to 0 as k tends to co. The same arguments
show that it is also the case for pg(Aq x [(ra — 1)¥]).

Consequently there exists C’ > 0 and X € (0, 1) such that for all k > 1,

n—1

S [alAr % (2 — DM) + prg(Ar x [04])] < O
k=n—n/(a)—1

and the conclusion follows. O

Proof of Corollary 4.2. Use the same relation

B(z,c1r) C U m(Cs, _1(z,y)) C B(z,Cir)
ee{—1,0,1}2

as in the proof of Corollary 4.3, as well as Proposition 4.4 and Proposition 3.2. O

4.2.  Proof of Theorem 1.2.

The upper bound for the dimensions of the sets £, (3),(¢)) is a consequence
of Proposition 4.3. Indeed, by using standard techniques one shows that under
the assumptions of Proposition 4.3, the generalized Hausdorff dimension b;(q)
introduced in [21] is less than or equal to —f,(q). Moreover, Proposition 2.5 in
[21] yields dim Ej(a) < (—bp)* () for all a > 0.

The lower bound follows immediately from Corollary 4.2 and the mass
distribution principle (see for instance p. 43 in [24]).
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