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Abstract

New multiplicative and statistically self-similar measures y are defined on
R as limits of measure-valued martingales. Those martingales are constructed
by multiplying random functions attached to the points of a statistically self-
similar Poisson point process defined in a strip of the plane. Several funda-
mental problems are solved, including the non-degeneracy and the multifractal
analysis of y. On a bounded interval, the positive and negative moments of
|li|| diverge under broad conditions.
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1 Introduction.

This paper deals with a new class of random multifractal measures introduced in
[Ma6], to be called “multifractal products of cylindrical pulses” (MPCP). They
improve on the familiar “canonical cascade multifractals” (CCM) introduced in
[Ma3,4].

As will be recalled, the construction of CCM involves a prescribed artificial b-
adic grid of intervals of [0, 1]. The basis b (integer > 2) was introduced to simplify
the construction in [Mal] and allow the conjectures in [Ma3,4] to be proven [KP].
This b-ary tree structure restricts the statistical self-similarity of CCM to b-adic
subintervals of [0,1]. The CCM led to a considerable body of literature (see [K2],
[Ho-Wa], [Mol], [B1], [B2] and references therein for extensions).
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Let (2, B,P) be the probability space on which random variables are defined in
this paper. To construct CCM, let W be a non-negative random variable having
expectation 1, and let W,, v € UX {0,.. — 1}, be a collection of random
variables i.i.d. with W. Consider the sequence of random measures [i,, n > 1, on
[0, 1], defined by

n

dn
“ H (t1ensty

where ¢t = (t1,t2,...), t; € {0,...,b— 1}, is a b-ary expansion of ¢ € [0,1] and ¢
denotes the Lebesgue measure. The CCM p is the almost sure (a. s.) vague limit
of (tn)n>1 (see [KPJ).

The mass that 4 assigns to the subinterval [>7_, ¢ bJ 2D iy tib” I4+b " is a
product of two statlstlcally independent factors: b=" H 1 th, .t;), and a random
variable Y (t1, . .., t,) that is distributed as the total mass p([0, 1]) (this reflects the
self-similarity).

The MPCP provide a continuous parameter extension of CCM. To relate CCM
and MPCP, the basic subintervals of the form [kb~7, (k +1)b77], k € {0,1,...,b —

1}, should first be re-parametrized as [s — A, s + A], where the location and scale

k+1/2

1
parameters s and A are s ; = and \;; = ———. This notation restates the

density of un as a product of random quantities associated, down to a “resolution”
gn = (20™)7!, with the atoms of the “deterministic point process” S = {(sk.;, M) :
k=0,..., bJ 1, j = 1,2,...}. Specifically, for (s,\) € S with 2\ = b™, one
defines the cyhndrlcal pulse P 5 by

W(tl,...,tj) lf t - [5 — )\, s + )\],

t€ R Py (t) = {1 otherwise

Then p is the a. s. vague limit (as &€ — 07) of the family of measures . given by

dpi. . .
d’z &)= J[ Pen(®), with p = i if € Elenir,enl
(s,A)ES, A>¢

Note that for a given ¢ € [0,1], the number of (non-unit) factors in the previous
product is the number of points in S “under” ¢ and is equivalent to (log b) *log 1/e.
The factor 1/log b can be viewed as a formal density for the point process S.

The step from this framework to MPCP consists in replacing the point process
S by a Poisson point process S = {(s;,A;)} on R x (0, 1], with intensity
0 dtdA
2 )2

2

A(dtd)\) = (6 > 0).



The ”cylindrical pulses” associated with S are a denumerable family of functions
P;(t), such that each P; is identically 1 outside the interval [s; — A;, s; + A;], and
identically equal to a weight W; within [s; — A}, s; + Aj], so that the W}’s are i.i.d.
with W, and independent of S.

The MPCP p is the a. s. vague limit (as ¢ — 07) of the family of measures p.
defined on R by

de

(55,2 )€8,Aj >
For every t € R, the expected number of (non-unit) factors in the previous product
is dlog(1/e). The CCM formal density 1/log b is now formally replaced by the
MPCP density 6.

The first key virtue of the MPCP’s follows from the invariance properties of A:
these measures are statistically invariant under a continuous change of scale. They
involve no b-adic grid. Neither do the limit lognormal multifractals introduced in
[Mal], nor the “fractal sums of pulses” in [Ma5], which inspired the present study.

A second key virtue concerns a deep change in the form of the familiar multi-
fractal function 7(g). For MPCP, the next sections will show that when W > 0

7(q) = =14 q¢—§(EW) —1).
For CCM, it is well known that

7(¢) = =1+ ¢ — log, E(WY).

The condition of divergence of high moments of 1 continues to be that 7(¢) < 0 for
some ¢ > 1. The restriction 7(¢) < 0 imposes on W is clearly less for MPCP than
for CCM.

Section 2 tightens up the construction of the MPCP u. When E(W) # 1, the
natural normalization of the products of the pulses is formed, to give the density

de _
bey—eteon-n [T )
(sj,A\;)ES, Aj>¢

Then the main results are stated and a self-similar property is described. Theorem 1
concerns the conditions under which p is non-degenerate, i. e., positive with positive
probability. Theorems 2 and 3 concern the existence of finite moments for pieces
of p. Theorem 4 concerns the whole multifractal spectrum. Section 3 is devoted to
proofs of these theorems.



This paper incorporates, proves and much strengthens the conjectures in [Ma6].
In the absence of a grid, the geometrical properties of MPCP are subtler than those
of CCM, and serious mathematical complications arise. The reason why [Ma3,Mad4]
singled out CCM for study is that for CCM the mass p([0,1]) = Y, satisfies the
now-classical functional equation

b—1
(5) p Yo = bt Z W(j)Yoo(j)a
j=0

where the Y, (j) are copies of Y, and these random variables are mutually indepen-
dent and independent of the W(;). By construction, b "W Yoo (5) = u([jb~ ", (j +
1)b7']) for each 0 < j < b — 1. The properties of y are controlled by () itself
or its iterations. For a MPCP, Section 2.3 replaces (£) with the far more difficult
equation (3). The geometry of the Poisson point process S implies that (3) no
longer involves random variables having the same distribution as Y. While copies
exist, they are implicit in integral terms (by Theorem 5). Moreover, the copies that
concern intervals close to one another are correlated. Nevertheless, several non ob-
vious reductions make it possible to adapt for MPCP some features of the familiar
approach developed for CCM.

Products of more general pulses are discussed in [BM].

2 Definitions, Results and Self-similarity.

2.1 Construction of the limit measure and Main results.

Let W be a positive integrable random variable and denote E(W) by V.

Let {By}r>1 be a partition of Rx]0, 1] such that for all £ > 1, 0 < A(By) < oo.
For every k > 1, let A|p, denote the restriction of A to By and choose a sequence
(Mgn)n>1 of Bg-valued random variables with common distribution %; denote

by Nj a Poisson variable with parameter A(By), and (Wy)n>1 a sequence of copies
of W.

Assume that all the random variables My, ,,, Ni, and Wy ,,, k,n > 1, are mutually
independent.

S ={Mjn; 1 <k, 1<n< N} is a Poisson point process with intensity A. For

M = (tM,/\M) = Mlc,n € S, define Wy, = Wk,na Iy = [tM —Am,tu + AM], and the
cylindrical pulse Py : t € R War 17, (t) + 1re ().



For all ¢ €]0,1] and ¢ € R, define the truncated cone C.(t) = {(t,)\) €
Rx]0,1]; t =A<t <t+ A, e <A< 1} and

Qe.qry = H W

MeSNCe(t)

For every 0 < ¢ < 1, denote by pu. the measure on R defined by

dp. _ _
7 0:=Q) =" [ Pu®) ="0Qc.
MeSn{A>e}

and define F, = o (M, Wy, M € SN{X > ¢€}). In all the text, weak convergence
of measures on a locally compact Hausdorff set K means weak*-convergence in the
dual of C(K), the space of real continuous functions on K.

The limit measure. By construction, for every ¢ € R, (Q1/s(t))s>1 is a positive
right-continuous martingale with respect to (F}/s)s>1, with expectation 1. Therefore
Kahane’s theory of T-martingales ([K1]) is applicable. That is for every n € Z and
with probability one, the restrictions of the measures . to the compact [n,n + 1]
converge weakly, as ¢ — 0, to a non-negative measure p(™ on [n,n + 1]. It also
follows that the endpoints n and n + 1 are not atoms of (™.

Consequently (with probability one) there exists a unique non-negative measure
p® on R whose restriction to [n,n + 1] is u™ for every n € Z.

By definition of A, the measure u® is statistically invariant by horizontal trans-
lations. The sequel will only consider the measure p = p(b.

Remark 1 The choice of (By, Nk, (Mkn)n>1)e>1 and (Win)n>1)k>1 affects neither
the probability distribution of the stochastic process (Q:(t))sej0,1], tcr, nor those of
the other random variables defined in this paper.

The function 7(q). Recall that u denotes the restriction of y® to [0,1]. Define
Y = ||u||- For ¢ € R define

(@) =—-14q(1+6V —-1)) —(EW?) —1) e RU{—o0}.

Thus 7 is concave and finite on [0, 1].



Non-degeneracy of y and the moments of ||y||.

Theorem 1 (Non-degeneracy) i) If7'(17) > 0 then P(u # 0) = 1 and E(Y') = 1.
it) If P(u # 0) > 0 then P(u # 0) = 1, E(Y) = 1 and 7'(17) > 0. If, moreover,
E((1 + W)|log W|**) < oo for some v > 0, then 7'(17) > 0.

Theorem 2 (Moments of positive orders) Let h > 1.
i) If 7(h) > 0 then 0 < E(Y") < c0. #1) If 0 <E(Y"?) < oo then 7(h) > 0.

Remark 2 [Ma6] conjectures that p is non-degenerate if and only if 7/(17) > 0,
and that if u is non-degenerate then for h > 1, E(Y") < oo if and only if 7(h) > 0.

The necessary and the sufficient conditions for non-degeneracy and finiteness of
moments of positive orders are similar for MPCP and CCM, but, by design, less
restrictive for MPCP. The following proposition characterizes the divergence of high
moments.

Proposition 1 (Divergence of high moments for MPCP and CCM) i) As-
sume that u is non-degenerate. There exists h > 1 such that E(Y ") = oo if and only
if (W > 1) > 0 (this is independent of 6) or P(W < 1) =1 and E(W) < 1—1/6.

i1) Assume that E(W) = 1 and the CCM constructed with W is non-degenerate.
There exists h > 1 such that B(Y!) = oo if and only if BOW > b) > 0 or P(W =
b) > 1/b.

Theorem 3 (Moments of negative orders) Assume Y is non-degenerate and
fixa>0. Then E(Y ~%) < oo holds if and only if E(W %) < oc.

Multifractal analysis of . New definitions are needed.
For a function f : R +— RU{—oo}, define f*: o € R+ infer(ag — f(q)).
Fort € [0,1] and r > 0, denote [0, 1] N[t — 5,2+ ] by I.(Z), and for a > 0 define

B, ={te01]; lim 2BAIO) _
r—o0t  logr
The multifractal analysis of u computes the mapping o — dimg E, on an interval
as large as possible, where dimg stands for the Hausdorff dimension. Since the
geometry of u does not depend on a particular b-ary tree, the logarithmic density in
the definition of the F,’s is not expressed via b-adic intervals as for CCM, but via
centered intervals.



Theorem 4 (Multifractal analysis) Assume that T is finite on an interval J con-
taining a neighborhood of [0, 1], and that 7' (1) > 0. Define J' = {q €Int(J); 7'(q)q —
7(q) > 0}, I' = {7'(q); ¢ € J'}, quns = inf(I") and agy, = sup(I’) ([0,1] C J', I' C
10, 00[, cuns > 0). With probability one:

i) For all € I', dimy E, = 7"(«).

it) If 7 (cunt) = Othen for all a €]0, ins], Eq = 0. If aqup < 00 and 7 (agyp) = 0
then for all & €]y, 00[, Eq = 0.

2.2 Additional definitions and a principle of self-similarity.

X ~ X' means that the two random variables X and X' are identically dis-
tributed.

If B is a Borel subset of H = Rx]|0, 1] with A(B) < oo, define
Qs= ][] Wu
MesSnB
If I is a compact subinterval of [0, 1], then |I| stands for its length and we define
T = {(t,\) € H;0< A< |I],inf(I) — XA <t <sup({) + A},
T = {(t,\) e H; |[I|<A<1,te[sup() — A inf(I) + A},
B! = {(t,\) € H; |I| <X <1, telinf(I) + v\ sup(I) +vA]}, v € {-1,1},
B! = B' UBl

Moreover, f; the affine transformation on R which maps inf(7) onto 0 and sup(I)

onto 1.
A
1

TI
Bl Bl

1|

1

0 inf(I) sup(I) 1 1
Figure 1 : Tllustration of the sets in H defined early.

Then for all 0 < € < 1 define p! as the measure determined on I by

dpf - -
=" 11 Py (t) ="V Qa, , inoyn o)
MeSn{e T <A<|I]}
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Theorem 5 examines the strong similarity between the u!’s and the p.’s (cf. 2.1).

Theorem 5 For every non-trivial compact subinterval I of [0,1] one has almost
surely for all 0 < e < |[

pe(I) = [1[°V1 /IQ%(t)Mg/n(dt) = 111" Qs /IQBI”CI(t) ey (dt).

Here Qpr and t — QBIr‘lel(t) are independent of one another and of the u!’s, and,
as e — 0, the family (ul)o<e<1 converges a. s. weakly to a measure p'.

Moreover, the following properties hold for all f € C(I):
i) [, F@t) pi(dt) ~ [T f[0,1] fo fit(t) pe(dt) for all e €]0,1]. In particular ||pl]| ~
(LU lpeell. 36) [, F2) ' (dt) ~ 1] fioy f o f77 () p(dt). In particular ||u"|| ~ | ||pe]|.

Proof. The equality yi.(I) = [I|°V"V [, Q¢ 1L, 1 (dt) follows from the respective
definitions of . and g ;. Because I C Iy for all M € SN T, it follows that
fI Qc|,|(t)/$£/|1|(dt) = Q1 fl QBInC|,|(t) Mg/m(dt)-

The random variable (Q7: and the stochastic process ¢t — @ BINC|; (1) A€ indepen-

dent of one another and of the u!’s. Indeed they involve mutually disjoint subsets
of S, namely, SNT!, SN B! and SN T;.

The reason for a. s. weak convergence as ¢ — 0 is the same for the family
(ul)o<e<t as for (e )o<e<1 restricted to any compact interval.

i) Fix e > 0. To show that [, f(¢) pl(dt) ~ |I| f[o,u f o fi'(t) pe(dt) for every
f € C(I), it suffices to show that the same holds for the function f = 1, for
every subinterval J of I. Indeed, every f € C([) is the limit in || || norm of
piecewise constant functions. Fixing such a J reduces the problem to showing that
pl(T) ~ T pe(f1(7)).

fr is the restriction to the real line R of the similarity fl = h;o6; on the plane R?,
where hj 7 is the homothety with center (0, 0) and ratio |I| !, and 6; is the horizontal
translation by the vector (—inf(/),0). Inspired by [Ma2], we use the property that
for every subset F of H such that f;(F) C H, A(F) = A(f;(F)). Together with
the equality f;(T; N {(t,\) € H; X\ > ¢|I|})) = TN A{(t,\) € H; X\ > €}, this
property implies that the point process f;(S N Ty N{(t,\) € H; A > ¢|I|}) has the
same distribution as SN Tj1 N {(¢t,A) € H; A > e}

Consider the measure v, constructed on [0, 1] like the restriction of . to [0, 1],
but with the pairs (f;(M), W), for M in SNT; N {(¢t,\) € H; X\ > ¢|I|}, instead
of the pairs (M,Wy), for M in SN T N {(t,A) € H; X > €}. We see that
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Ve(f1(J)) ~ pe(fr(J)). Moreover, the change of variable ¢' = f;(t) in [, 1,;(t) pl(dt)
yields pZ(J) = |I| ve(f1(J)) since by construction for every ¢t € I

dul . dv.
Y 1y = 21,0,

i) The measures p! and p are respectively the weak limit of (1f)o<c<1 and (e )o<e<1
as € — 0. It follows that i) is deduced from 7) by letting € tend to 0.

Now define Y; = ||,u§1/)s|| for all s > 1. By construction, (Y, Fi/s)s>1 is a right-
continuous positive martingale with mean 1 that converges to Y.

If I is a non-trivial compact subinterval of [0, 1], define Y; = ﬁ” p!]| and, for all
5> 1, define Y, = & [lul,].

The measure p will be represented as the image of a measure on the boundary
of an homogeneous tree.

2.3 Measure on a tree associated with u.

Given two integers b > 2 and m > 0, denote by A,, the set of finite words of
length m on the alphabet {0,...,b — 1} (49 = {€}). Denote |J;°_, A by A. For
a € A, the length of a and the closed b-adic subinterval of [0, 1] naturally encoded
by a are respectively denoted by |a| and I,,.

For n > 1 and a = (a1, ..., a,) € Ay, denote (a1, ...,a,_1) by al(n — 1).

Define 0A = {0,...,b— 1}, The set A acts on the disjoint union of A and 9A
by the concatenation operation. For a € A, let C, denote a0A, namely, the cylinder
generated by a. Denote by A the o-field generated by the C,’s in 0A.

Denote by 7 the mapping t = (t1,...,t;,...) € 0A — Zi21 t;/b* € [0, 1].

Denote by £ the measure on (9A,.A) such that for all a € A, £(C,) = b1l

If p is a non-negative measure on (0A, .A), the measure D,,.p will be defined, for
n > 1, by d(l;i;p)(t) = b_"‘s(v_l)QCb_n(W(t)). The sequence (D,.p)n>1 converges a.

s. weakly to a non-negative random measure D.p. Moreover, by [K1], the operator
L: p— E(D.p) on non-negative measures on 0A is a projection.

Define i = D.7 and fhy = D,,.0 for all n > 1. By construction, p=fior ! and
Up-n = iy om L for n > 1.



The following three relations, (1), (2), (3) will prove to be fundamental. By
Theorem 5, for alln >m > 1

Yin = Z Hp— n = pmo(V=1) Z QTIa/ QBIame m( Mbm n(dt)- (1)

a€Am a€Ap,

i(Ca) =07V VQri | Qprapc,_npy 1 (dt) VY a € Ap. (2)
I,

(Proof: fi(C,) = lim,,_, fin(C,) since the space 0A is totally disconnected; moreover
fin (Co) = py-n(I,) for all n > 1, and ple({tar £ Apr; M €S, Ay > b714}) =0a. s.)

Y = Z = b~V Z QTIa/ QRBlanc, (1) pe(dt) Ym>1. (3)

a€Anm a€Anm

3 Proofs of the main results.

3.1 Basic Lemmas.

Lemma 1 Fiz B a Borel subset of H such that A(B) < o0, ¢ € R and > 0.

i) E(QY) = ABEW) 1),

i) B(Q% log Qp) = A(B)E(WYlog W)eMBIEWO=1) 1 B(W|log W|) < oo;

iti) B(Qp|log @p[) < A(B)E(W?|log Wl) MWD,

iv) Denote by 3 the integer such that § < B < 5—1—1. There exists a constant Cg > 0,
independent of B, such that

E(Qz|log Qs|%) < Cs(1 + A(B))PH2(1 + V)PHEW | log W|F)eMBV 1),

Proof. We begin by proving iii) and iv). Conditionally on #S N B =k > 1, we
have Qg = Hle W;, where the W;’s are i.i.d. with W and independent of S. Hence,
by using the subadditivity on R, of the mapping z — z” when 0 < 8 < 1 and its
convexity when 5 > 1, for every § > 0 and ¢ € R we get

E(Q%|log Qpl°|#SNB=k) < H Wi Z | log Wi[]?)

=1

< KB log WPV

where V, = E(W?). Since P(#S N B = k) = e () (A(lﬁ))k, taking the unconditional
expectation yields

A(B))*
E(QY, | log QB|’8) < E(W|log W|ﬁ)efA(B) Z %k(mw(lﬁ))vqkl,
E>1
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and in the particular case 8 = 1, we get i7i). To get iv), put ¢ = 1 and define
p=pF+2(p>max(l,5)) and z = A(B)V. We have

p
E(Qx|log Qsl%) < E(W|log W|?)e 2PA(B) Y (k+1) v
kzo(k‘*l)!
p 1)?
Deﬁne C,B = max( sup (k + 1) k', sup (k + ) )

o<k<p-1 (k+1)!

—1

(k+1)P — z* ok
WwT ) < jadll v
Z(lﬁ-l)!x = Cﬂzk!+cﬂz(/€+1—p)!

k>0 k=0 k>p

ksp (k+ k... (k+2—p)

k
X
< Cgez —+ Cng_l E F < Cﬁ(l + .%‘)p_lex
E>1

(p—12=1). Since 1 +z < (1+A(B))(1+V), it follows that
E(Qp|log Q5]°) < Cs(1 + A(B))5+2(1 + V)E+1E(W| log W|)eA®V-1),

Assertion i) follows from the fact that if £ > 1 then

k k
E(Q%log Qul#SNB =k = E([wWiD_log Wi))
=1 =1
= KE(W%log W)V}

Then 7) follows by a similar computation or simply by integrating the equality given
in 7).

Lemma 2 Fizt € R. For every s > 1, A(Cy/(t)) = dlog s, and (Q1/5(t))s>1 s a
right continuous martingale with respect to (Fy/s)s>1, with expectation 1.

The verification, left to the reader, uses Lemma 1) with B = C/,(t) and ¢ = 1.

If B C H and [ is a non-trivial compact subinterval of [0, 1] and ¢ € R, we define

mp,; = ’11L161§ QBOC|]|(U,)7 MB,I = sup QBQC"I‘(UM
uel

v1(g) = 1y quI,I + 1{g>0) Mlqa'f,l'

11



Lemma 3 Fiz a non-trivial compact subinterval I of [0,1].
i)a) A(T) = 5(log‘17‘ — (1 = |I])); b) A(Br) = 8(1 — |I|). ¢) For every t € I,

2

A(B1 N Cly(1) = A(Br) /2.
i) Fiz 8> 0. IfE((1 + W)|log W|#) < oo then there exists Cg > 0 independent of

I such that sup,; E <Q|I|(t) ‘log =, QBzmcl(u)du‘ﬂ) < Cg.

iii) a) B(Mp: ;) < eHEmax(Lw)-1),

b) E(sup ,ex v:(q)) < O Emax (LWL W= EN)—1) - £ every compact subinterval K
of R.

Proof. i) The computations are left to the reader.

i1) Fix t € I and define

B

T = |log |I|_1/IQBlnc,(t)nc,(u)Q(BI\c|,|(t))nc,(u)du

It follows from the definitions of mp; and Mp  that

H MBInC (), I BI\C|y (t),] < |I|1/lQBIﬂCm(t)ﬂC|I|(U)Q(BI\C'|1|(?5))”C|I|(U)du
ee{-1,1}

< H MB§HC|1|(t)JMBé\C|1|(t)J'
ee{-1,1}

Hence, T} < 47 ZEE{_LI}(TQ,S + T3,.) with

Ty = |1log mpznc,, .11 + 1108 Mpincy,@,1l°
T3,.E = | log mBé\C|I|(t),I‘B + | log MBg\ClIl(t)J'B'

Therefore
B
T: = Qplt) |log ‘I|_1/QBIOC|I|(u)dU
I
\I|5(V_1)Qcm(t)T1
< Ty +Ts
with

Ty = 411"V DQo, o761 [Qbincy ) (Tt + T2a)]
Ts = 4ﬂ‘I‘J(V_I)QC|1|(t) (Ts,1 + Ts,1)-

12



Then, the identity |I\5(V_1)]E(QC|I|(t)\Bz)]E(QanCm(t)) = 1, together with the fact
that the sets C\7(¢)\ B and B'NC(¢) are disjoint, as well as Cj; (¢) and B\ C;((t)
yield

E(T) < 4[5

e E(Q@prnc, 1) (L1 + T21)) + E(T31 + T5,1)]
(@pinc 1)

where by i)c) and Lemma 14) (E(Qprnc, ) ' = e *¢ V=172 is bounded inde-
pendently of I.

It remains to show that E(Qp: ¢, (1) T2,:) and E(T3,.) are bounded independently
of I and ¢ for ¢ € {—1,1}.

First, we estimate E(Q pr mcm(t)TQ,_l). Conditionally on #SNB'NC(t) = k > 1,
we write SN B’ N Cp(t) = {Ny,..., Ng}. Conditionally on #S N BL, N Cjy(t) =
l €[1,k] (if k or [ = 0 then Ty _; = 0), we can assume that Ni,...N; € B, and
tn, + Ay, <--- <tn, + An,. Then, for every u € I, we have

l

=7

according to whether or not u € ﬂéZjINi for some 1 < j < [. This implies that

k
T2,71 S kaax(o,ﬂ—l) Z ‘ log WN1|'B

i=1
Consequently for ¢ € {—1,1} and k¥ > 1 we obtain

k k
E(Qprncy mTec #SNB ' NCp(t) =k) < 2k VE([] Wy, ) |log Wy, |?)
j=1

j=1
= 2km=LAE(W | log WP VF L,
Similarly we obtain
E(Ts. |#S N BY\ Cp(t) = k)) < 2k™*>EAIE(|log WP).

Since A(B' N Cyy(t)) and A(B"\ Cj;(t)) are bounded independently of I and ¢ (by
i)b)), taking the unconditional expectations in the previous inequalities (as in the
proof of Lemma 1) yields the conclusion.

13



iii)a) One obtains B(Mpr ) < (eMBL)Emax(LW))=1)2 ag follows. Use the inequality
B are disjoint, and orthogonally symmetric with respect to the line {¢t = (inf(7) +

sup(I))/2}). Then use computations very similar to those done in ii) to estimate
E(Qprnoy 1yT2e): conditionally on #SNBL, =k > 1and SNBL, = {Ny,..., N;}

Mpr ;< sup HWN < Hmax Whn,,1).
B LCAL,....k} €L =1

This yields

B(Mp [#50 B!, = k) < [E(max(W, 1))}
This estimate also holds if k 0. Taking the unconditional expectation yields
E(Mp: ;) <e ABL)Emax(LW))-1) - Ag A(BL,) < §/2 by i)b), we have the conclusion.
iii)b) Notice that sup ¢ vr(g) < MBI’[, where MBI,I is defined as Mp: ; but with
W = W) L yysue() instead of W. Conclude by using 444)a).

Lemma 4 Fiz b, an integer > 2, and ¢ € R such that E(W?) < co. There exists
C, = Cy(W) >0 such that forn >m >1 and a € A,

i)a) ,ub n(la) < wq(l )Yn m I, with wq(I )= b_mq[1+5(v_1)]Q%Ia71a(Q) and

E(w, (1)) < Cpb™™ @+ .

b) X aca,, Elpy-n (Ia)) < C bRV )

¢)ifqg>1then E(Y,2) > b~ m7(q) o 3(1-0"")(g aoV=)=EWO-E(Y,I_,,).
i1)a) 1(Ca) < wy(1)Y7; ) Syen, B(#(Ca)) < Cob ™ OR(Y1).

Proof. Fixn>m > 1 and a € A,,.
i)a) By Theorem 5

q
/'szn(la) = b—qu(V—l)Q%IQ (/ QBIaﬂbem(t) /,Lif,lnn(dt)) .
I,

Hence, ] (1) < we(la)Y,

N

We have E(w,(I,)) = p~malt+oV (QTIG) (71, (¢)) since Q7.;, and v4,(q)) are
independent. Moreover, by Lemma 32) ) and Lemma 17) applied with B = T,

follows from the definitions of 7, (¢) and Yyn-m g, .

E(QL,, ) = bW =1 =5 (1) W) -1) (4)
and by Lemma 3744)b) applied with K = {q}, E(71, (¢)) < ?Emax(1,2W))-1)

14



Therefore
E(w, (1)) e~ (10" (E(W)~1) L6(E(max (1,2W)) 1) p—mlq(1+6(V 1))~ §(E(W?)~1)]

<
< C, p—mlr(@)+1)

8(E(max (1,2W9))—1) SUp, e—3(1—b"™)(EW)-1)

where C; = e
i)b) Follows from 4)a) and the independence between w,(/,) and Yjn-m p, .

i)c) The super-additivity of 2 > 0 — x7 applied in (1) yields

q

Y;,Z Z p—mad(V - 1)]E QTIa ([/ QB’aﬂCb m( :“bm n(dt)} ) ) (5)
a€EAm

The Jensen inequality applied in T = ]E([fla QB’ame,m(t)N,{ﬁz_n (dt)]q‘o(M, W, M €

S, Am < b’m)) yields

q
T > (/ B(Qsrarc, wnlo (M, Wars M €S, Ay < b7) ). n(dt))
Iy

q
= (/1 E(Qpa ncb_m(t)),ui‘}nn(dt)>

_ (e%(1—b*m)(V—1)b—mY})nim’Ia) q

by Lemma 3i¢)c) and Lemma 17) applied with B = Be N Cy-n(t) and ¢ = 1. Then,
by using (4) and the previous computation in (5), we get

E(Yb‘i) > Z bfqus(vfl)bma(E(wq)71)673(1—17%)(1&(W4)71) S(1—b"™)q(V-1) )~ qu(ngl ),

a€Am

and the conclusion follows.
it)a) and i1)b) are deduced from i)a and 4)b) by letting n tend to co.
The random function f, , , involved in Lemma 5 is defined in the proof of The-

orem 17) in Section 3.2.

Lemma 5 1) ganm( =) =b""(—mlog (b) '(1~
) Y E(ma(L)s () <5C+C b (B(Y,

a#a'€Am
dent of m and n.

E(%n m log }/;)n m)) .
—w))? for some C > 0 indepen-

ﬁwh-‘\ ,

15



Proof. i) Differentiate f, . at 1~ yields E(f, ,,,,(17)) =T1 + T, + T3 with

T = —mlog BBV — DIE(fanm (1)) = —bmlog (B5(V — 1),
7y = 508 ( [ BQe, 0108 Q0,0 (00

= b ™mlog (b)SE(W log W),
T; = b™V-UE ((log (Yyn-m 1,) — mlog (b))/ E(ch_m(t))ﬂbm—",la(dt))
= b_m(E(}/bn—m log Y},n—m) — mlog (b)),

by using Lemma 14)i7) with B = Cp-n(t) and ¢ = 1. As 7'(1) = 14+ §(V — 1) —
OE(W log W), we have the conclusion.

i1) By the Cauchy-Schwarz inequality and Lemma 4i)a), for every (a,a’) € A2, we
have

1 1 1
E (1o Lo (L)) S CLb ™ (Vi Yoy, )-
Moreover, Yyn-m j, and Yyn-m 1, are independent when 77, N7y, = (0, otherwise we
1 1
have E(Y,2 Y,? ) < 1since E(Yyn-m) = 1. As #{a’ € A; Ty, NIy, # 0} <5

pr=m I, L bn=m I ,

for every a € A,,, we get

1 1 1
> B (T)pn(Ie) < 5™ x Crb™™ + 07" x Cy o™ (E(Y,2_.,.))*.
a#a €EAm

The probability measures P; involved in Lemma 6 are defined in the proof of
Theorem 14i) in Section 3.2.

Lemma 6 If 7'(17) = 0 and E((1 + W)|log W|*") < oo for some v > 0 then for
every t € [0, 1], Py(limsup,,_, . Ysm = 00) = 1.

Proof. Fix ¢t € [0,1]. For n > 1, denote by I,(t) the b-adic subinterval of [0, 1]
of the n'® generation which contains . One has Yy = ||up-n|| > pp-n(In(t)) so it
suffices to show that P;(limsup,, , . py-»(In(t)) = 00) = 1.

Define
Ripn(t) = —log Q¢,_, ip\rta®
R2,n (t) = log bn/ QBIn(t)ﬂCb—n(u)du'
In(t)
We have

IOg Hp—n (In(t)) = IOg Qb*" (t) - TL]Og (b) + Rl,n (t) + RZ,n(t):

16



so the conclusion results from the two following properties:

. log Qp-n(t) — nlog (b)
1) Py(1
) Py( im sup (nloglog n)1/?
variable Xy = log (Qy«(t)/Qy-x-1 (t)) — log (b). By construction, the X} are i.i.d.
with respect to P, and by Lemma 17)iz)iv) (¢ = 1, § = 2) applied with B = Cy-1(t)

Ep, (X¢) = e, (X1) = E(Qp-1 (¢) log Qp-1(2)) — log (b) = —log(b)7'(17) =0

and Fp,(X7?) < co. Moreover Ep, (X?2) > 0, otherwise due to the definition of P; one
has P(Qp-1(t) = b) = 1, which contradicts E(Qp-1(£)) = 1. One concludes using the
law of the iterated logarithm.

n—oo  (nloglogn)l/?

is finite. We have

Be,(|Rin(®)"7) = E(Qyn ()] log Qc, ., o\rmwl*™)
b*ﬂJ(V*l)]E(QTIn(t)) E(ch_n (O\TIn () | log ch_n(t)\TIn(t) ‘2+’7)’

and Er, (|Ro.n (1) 2*7) = E(Qu-n (1)  10g 0" [;, o Qpinconc, oy dul 7).

These expectations are uniformly bounded over N*. This results from Lemma 17)
applied with B = 77 and ¢ = 1 and Lemma 1iv) applied with B = Cy-n () \T™®
and 8 =2+ , together with Lemma 3i7) applied with 5 =2+ ~.

> 0) = 1: for every k£ > 1 define the random

= 0) = 1: this holds if sup;c(1 9y n51 Ep, (| Rin(t)[*T7)

Now we are under the assumptions of Theorem 4. Fix an integer b > 2. For
q € J', let iy be the measure on (0A, A) obtained a. s. as the weak limit of (fig,5)n>1,

dilgn a)— .
where %(t) = pOEW)=1) QF, . (n(ryy- The total mass of i, is denoted by ¥, and

for every a € A, Y, 1, denotes bl*l[|l+|| and is a copy of Y.

Lemma 7 With probability one

i) For all a € A, the sequence of functions (¢ = fign(Ca))n>1 converges uniformly
on the compact subsets of J' to q — [i,(C,), which is positive. Consequently the
measures fig, ¢ € J', are defined simultaneously and have 0A as support.

it) For every q € J', for fi;-almost every t = (t1,...,t,,...) € 0A

m log :U’q(C(h ..... tn)) > T*(TI(Q)).

17



Proof of i). The next few lines will assume the following property, (P), whose
validity will be proven momentarily. (P): there exists a deterministic complex
neighborhood of J', to be denoted by V, such that for every a € A and n > |al, the
mapping q € J' = Jign(Ca) = Y wea,  flgn(Caar) possesses the analytic extension

ze Vs 9 (z2) Z p—nO(B(W)— / ch §

o'EAn_m

Moreover, given a € A, for every compact subinterval K of J', there exist three
constants h > 1, ¢ < O C > 0 and a complex neighborhood U of K, such that for
alln > 1, SupzeU]E(WJn—{—l( 2) — i (2) 1) < Cbln e,

For every a € A, the Cauchy formula applied as in [Bi] gives a. s. the uniform
convergence of (wfla))n>m on the compact subsets of a complex neighborhood of J',
and so the one of (¢ — fizn(Cy))n>1, on the compact subsets of J', to g — [i,(C,).
This happens almost surely simultaneously for all the a’s in A because A is countable,
so the measures fi, are defined simultaneously.

To see that ¢ — fi,(C,) is almost surely positive on J' for every a € A, so that
the support of the fi, ’s is 0A, adapt the proof of Corollary 5 (i) (8) of [B2] by
using Theorem 5 and equations (2) and (3).

Proof of (P): J' is an open subinterval of J. Consequently, there exists a deter-
ministic complex neighborhood V of J' so that the mapping z — E(W?#) is defined
and analytic on V. Moreover, for every n > 1, the piecewise constant function
t€[0,1] — QZC (1) 1 almost surely defined for all z € C and depends analytically

on z. This implies that for every a € Athe ™, n > la|, are all defined and analytic
on V. The fact that f1,(C,) = b (g) on J' follows from the definition of fi,.

Fix a € A. For every z in V, 1/1n+1( 2) — i (2) =

3 / prEINQs BN e — Tdt (6)

a'€An_m

Let the b-adic intervals of the n'® generation involved in the previous sum be num-
bered from 0 to b"~™ — 1 as they appear on the real line, and denoted by J;’s,
0< k<™.

For t € Ukn o 'Jy, define

{“n(z, 1) = b—n“ﬂWﬂ—UQa,_n(t),

Un(2,t) = bOEW)= -1

DQ% iy 0\Cyn )
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Then for ¢ € {0,1,2} and ¢ € J; define

Di(z1) = Z (2 t+3k+z) (2 t+3k+l).

bm pn—m
0<3k+i<br—m

It follows from (6) and an Holder inequality that for A > 1,

(i (2) — ¢ (2)[") < 3071 / 3 E(Li(z0)") dt. (7)

Jo je40,1,2}

For each t € Jy, in T;(z, ), the v,(2,t + 22£L)’s are mutually independent since the
Ty,,,.’s are pairwise disjoint. Moreover, they are by construction of mean 0 and
independent of the u,(z,t + 21L)’s. Then, it follows from Lemma 1 in [Bi] that

(Lo ) <2 Y Elua(et+ et DE(en(et + D) (9

bn
0<3k+i<bn—m

for every 1 < h < 2. By using Lemma 17) with |[W?| instead of W and B €
{Ch-tn+1)(t) \ Cp=n(t), Cp-n(t)} we get

B(|un (2,1)|")E(|vn (2, 1)) < 20pntDoER o)

independently of ¢, where 0(z, h) = —hS[E(R(W?)) — 1] + S[E(|W=|*) — 1].
It follows from (7), (8), and (9) that (with Cj,, = 128~ (m+L(1=h))

B(J5h1 (2) = 947 ()I") < o™ D0,

n

Finally, if K is a compact subinterval of J', a study of function using the definition
of J' yields h €]1, 2] and a complex neighborhood U of K such that ¢ = sup,¢; 1 —
h+6(z,h) <0.

log f1q(C
Proof of ii). Define E,,. = {t € 04; 2 ’iqélé;"[;t")) < ('(q) — ¢} for

g€ J',e>0andn > 1. It suffices to show that for every compact subinterval K of
J" and every € > 0, a. s. for every q € K, ZnZl fig(Eqne) < 00.

Fix such a K and €. For every n > 0 and n > 1, by definition of E,, . and by
Lemma 4ii)a), we have

Bune) < 3 "GP T < foe0)

a€An
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with

Fuane(@) = b7 T [sup g, (L m)g )b I Vg )
aeAnq

Then, using Lemma 14)i7) and Lemma 37i7)b) together with computations pat-
terned after those in the proof of Corollary 1 in [B2] lead to the following conclusion:
for n small enough, there exists two positive constants Cx > 0 and C}, > 0 such
that J

V21, SUpE{fuge(9)) +SUDE(| T frae(9)]) < Cnb™"%%.

qEK geK

This implies that a. s. the series Y ., fny.(q) < 0o converge uniformly on K.

3.2 Proofs of the results in Section 2.1
Proof of Theorem 1i). Fix an integer b > 2.

Define ¢ = E(Y') (< 1). A being invariant by horizontal translations, the definition
of i implies that, for every n > 1, E(f(C,)) does not depend upon a € A,,. Conse-
quently, (3) yields E(j1(C,)) = ¢b~!* = ¢f(C,) for every a € A. In the notations of
section 2.3, this implies that L(g) = ¢f. Moreover, ¢ = ¢ since L is a projection.

Moreover, as W > 0, by using (3) with b =4 and m =1 we see that {Y =0} C
{uf =0, u® = 0}. By Theorem 5 this implies that {Y =0} C {Y;, =0, Yz, = 0},
where Y7, and Y7, are copies of Y, and Y, and Y7, are independent since T7,NTy, = 0.
It follows that P(Y = 0) < (P(Y = 0))?. Finally, all that remains to prove is
P(Y > 0) > 0.

Fix n > m > 1 two integers. By Lemma C of [KP], if A < 1 is large enough,
expression (1) yields

h
Yy > Z i-n (1—h) Z ty-n (La) y-n (Iar)-

a€EA, aFta'€EAm

Moreover, Theorem 5 and the Jensen inequality yield . (1,) > fonm(h), with

Jomm() = 07DV 6D Qe mien ()

Write
2O = o, Monn ) o S™ gt () (1)),

aZa €Ay,
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By letting A tend to 1 and by using the fact that E(Yyn) = > .4 E(fonm(1)) =1
and Lemma 5, we get C' > 0 independent of m and n such that

1

m log (b) 7'(17) + E(Ysn log Yin) — E(Yye-m log Yyn-m) < 5C + C' 6™ (E(Y,2_,.))>.

By the martingale nature of (Yjn)n>1, E(Yin log Yin) — E(Yin-m log Yyn-m) > 0.
1
Hence, m log (b) 7/(17) < 5C + C ™ (E(Y,2_,.))?. Moreover, as 7/(17) > 0, we can

1

choose m to have m log (b) 7'(1") — 5C > 0. Consequently inf,>; E(Y;2) > 0. We
conclude as in the proof of Theorem 1 in [KP] for CCM.

Proof of Theorem 1ii). i) shows that P(u # 0) > 0 implies P(u # 0) = 1 = E(Y).
Fix h €]0,1[. For all m > 1, we have Y* <%, i"(C,) by (3), and by Lemma
447) there exists C' > 0 such that E(Y") < C.o=™"WE(Y'") for all m > 1. So if Y is
non-degenerate then 7(h) < 0 near 1~ and 7'(17) > 0 since 7(1) = 0.

Now assume that 7/(17) = 0 and E((1 + W)|log W|>™) < oo for some v > 0.

For every t € [0,1] and n > 1, define the measure P;,, on Fy-» by dﬁ;" (w) =

Qp-n(t)(w). By Lemma 2 (Qp-n(t), Fy-n)n>1 is a martingale with expectation one.
So P, the Kolmogorov extension of (Pyy)n>1 to o(Fy-n, n > 1) is defined, and
P;(limsup,, o Ysn = 00) = 1 by Lemma 6. This yields P(Y = 0) = 1 by adapting
the proof of Th 4.1.(7) of [WaWi] for CCM.

Proof of Theorem 2i). It suffices to show that (Y3z),>; is bounded in L" norm.

Number the intervals I,, a € A,, (here b = 3) as they follow one another from 0
on the real line, and write {I,; a € A,,} = {J;; 0 < i < 3™}. Then, for i € {0,1,2}

and n > m define
Zz',n = Z ,UlS*”(JSIc—l—i)-

0<3k+i<3m

By construction the Z;,’s have the same distribution, so E(Y3%) < 3"E(Z,,).

Let h be the integer such that A < h < h + 1 and use the sub-additivity of
x> /() on R, to write Z(’)’,n <[ Z ugf(thrl)(Jgk)]hH and obtain
0<k<3m=1

il
E(Yi) <3t 3" E(ub. (Jan) + 3" o JEC T sy 5 (o),

0<k<3m—1 0<k<3m—1

where in the last sum the j;’s are < h, jo + -+ + jagm-11 = h+1, Ji > 0 and
Z Qo j . — 3(m71)(h+1) _ 3m71'
cdgm—1_4
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On the one hand, given such a jg...jsm-1_; we have (with the notations of
Lemma 4)

. _h . p
| | ey | | il | | Ik FiT
,ug—n (J3k) S (wl(J3k‘)) h+t }/vgn—myjska
0<k<3m—1 0<k<3m—1 0<k<3m—1

where the Yyn-m 7, ’s are iid. (T, NTy,, =0 if k # k') and are also independent

of [To<ecgm-1 (wl(Jgk))j’“ﬁ_L. Then, Lemma 4i)a) and computations similar to those
made in the proof of Theorem 2 of [KP] yield a constant Cj, > 0 (independent of m
and n) such that

i —m(T h 7
E( H “3]9—Z+1(J3k)) < Cp3 MDY R )Rk
0<k<3m—1

On the other hand,
P B () <313 TR(YE)

0<k<3m—1
by Lemma 47)b) and the submartingale property of (Y4 ),>1. Since for a fixed m large
enough we have 3"~1C,37™7(*) < 1 (7(h) > 0), we conclude that sup,-, E(Y3?) < oo
by induction on h, as in the proof of Th 2 in [KP].
Proof of Theorem 2ii). Fix an integer b > 2. By letting n tend to co in Lemma
4i)c) we get E(Y'h) > b mr0)e3(1=b"™)(h(V-D-EW")-1)E(Yh) for all m > 1. This
yields 7(h) > 0.

Proof of Proposition 1. i) Due to Theorem 2 and the concavity of the function

7, the divergence of high moments holds if and only if limj, o, 7(h) = —oo. If
P(W > 1) > 0 it is immediate that lim, . 7(h) = —oco. If PIW < 1) =1
then §(E(W") — 1) is bounded over R, and lim,_,o, 7(h) = —oo if and only if

1+6(EW) —1) <O0.
it) See Theorem 3 in [KP].

Proof of Theorem 3. If E(W %) < oo then E(Y %) < co: write (3) with b =4
and m = 1 and define B; = 47°V"971Qr;mps, ;. for i € {0,3} (with the notations
preceding Lemma 3). We have

Y > ByYi, + BsYr,

where Y, ~ Y, ~ Y, and Yy, Y7, and (B, B3) are mutually independent. Moreover
E(B;*) < oo (use Lemma 1 and 3) and By ~ B;. Consequently the approach [Mol]
uses for generalized CCM yields E(Y %) < oc.
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Conversely, by using (3) with b = 2 and m = 1 we get
YV <270V 0Q g vy [Qriovrnn Mo 1y + Qriyeio Mpn 1,](Y1, + Y1),

the I"andOIIl V&riables QTlonTll, [QTIO\TII MBIO,IO + QTII\TIO MBII ,Il] and YIO + }/[1
being mutually independent. Hence, E(Y ) < oo yields E[(Qrrnrn ) ™% < 0o and
as A(T™NT") > 0, Lemma 17) gives the conclusion.

Proof of Theorem 4. Theorem 4 is a consequence of Proposition 2.2a) of [F]| and
the following Propositions 2 to 4.

For g € J', let u, be the measure obtained as p by replacing the Wy,’s by the
Wis.

Proposition 2 With probability one: i) the measures u,, q € J', are defined si-
multaneously and have [0,1] as support; ii) for every q € J', for p,-almost every

log iq(1;(t)) (! . log pu(Z(t)) /
> e — .
t€[0,1], hmrl f0 log 7 7*(7'(¢)) and 111% log 7 7'(q)

Proof. i) Direct consequence of Lemma 7i) since p, = figo 7 *.
i1) Result on liminf, o log ua(Ir(t) . gy ap integer b > 2 and for ¢ > 0, ¢ € J' and

log r
n > 1 define

log pg(Lp-n (1))

FQa’n‘ag = {t € [07 1]; log b—n

<7(r'(q)) —}-

It suffices to show the property (P'): for every € > 0, a. s. for every q € J',
ZnZl tq(Fyne) < 00

From the covering Uy, Iy (t) of Fy e, we extract two finite union of inter-
vals, namely J; J; and Uj J}, so that two distinct J;’s or J;’s have at most one point
in common, and Fyn. C U; Ji UU; J;-

Then, since 1 < (1)o7 (7(@)=2) when I € {J; J;}, for n > 0 we have

Fyne) ZMHT’ J;) b (7 "(@)—e) 4 ZN;M(JJI')I’M(T* (7'(@)—¢) (10)
j

Moreover for every I € {J;, J;;1,j} we have I C I, U I, for some a and o' € Ay,
and consequently pt7(I) < 27(pg ™ (1) 4 p1gt"(Iy)). So we deduce from (10) that

if n <1 then
Fypne) <8 3 pbtn(I,)prnr (7' @)-),

a€An
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Since py(1,) = fiq(C,) for every a € A (g = figom™ ! and fi, has no atoms by Lemma
7ii)), (P') comes from the proof of Lemma 7ii).

Result concerning lim,_, log ul(t) . efine

log r
log pu(Iy-n(t))

F tel0,1 > 7
e eIk Py 20+
log pu(ly-—n(t
Fl = 0,1]; —m———* < 7'(q) — ¢}.
It suffices to show (P"): for every e > 0 a. s. for every g € J', 37, -, po(F,.) +
Hy(Fyn,e) < 0.
The sets F,, . and F,, . admit the same kind of covering as the one used for
Fyne, and for n >0 and v € {—1,1}

q n 8 Z qu bnvn(T (@—ve) 4 Z ,U )" ( Jl) prn( (@) —e)
J

Therefore if 7 €]0, 1] we get

(Fql,n 5) < 4bn7)(7' Z Mq Z ,U,n(Ic)

a€An, CeAn; Ia,m]-c-_/‘é(zj
pg(For ) < 2670 (@F2) Z " (Ia) > (L)
C_leAn+1 CEArH—l; Id|nmlc|n7£$

since for every I in these coverings, we have I; C I C I,UI, for some a,a’ € A, and
a € Apyq. Then (P") comes from computations very similar to those needed for the

proof of Lemma 7ii), by using the additional remark: sup, .ca.. 1.n7.20 A(TA§+:T)IC)
tends to 1 as n tends to oo.

Proposition 3 Let b be an integer > 2. For (q,t) € R?, define

Cy(g,t) = limsup,, o, Con(q,t) =Y e, pd(I) |, " and

Clg,t) = limso inf {3, p(L)[ L% [0,1] C Uisy I (ta), 6 € [0, 1], |rs] < 63

i) For all ¢ € R, @y(q) = inf{t € R; Cy(gq,t) = 0} and ¢(q) = inf{t € R, C(q,t) =

0} are defined, the function @y is conver and @ < .
it) Fiz a > 0. If (—p)*(a) > 0 then dimy E, < (—¢)*(a) else E, = 0.

This Proposition is deduced from [BMP] and [O].
Proposition 4 With probability one, (—p)*(a) < 7*(«) for every a € I'.
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Proof. It adapts the beginning of the proof of Th VI.A.a in [B1].

Fix ¢ € J'. By using Lemma 444)b) with p(/,) instead of fi(C,) (u has no atoms
by Proposition 2) we get C; > 0 such that for every n > 1 and ¢t € R

E(Cyn (g,1)) < Cb " T@OHIE(Y 7)., (11)

Moreover E(Y?) < oo by Theorem 2 (resp. 3) if ¢ > 0 (resp. ¢ < 0). It follows from
(11) that for every t > —7(q), Cs(g,t) = 0 a. s., and by definition of ¢;(q) we get

©p(q) < —7(q) a. s.

Since T is continuous on J' and ¢, is by definition almost surely continuous, we
obtained more: a. s. for every q € J', ¢p(q) < —7(¢q), so by Proposition 3i), a.
s. for every ¢ € J', —¢(q) > 7(q). The conclusion follows by taking the Legendre
transforms (—)* and 7* on the previous inequality.
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