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1 Introduction

The interest for multifractal stochastic processes is mainly motivated by the
need for accurate models in the study of the variability of wild signals. These
locally irregular signals come from physical phenomena such as fully developed
turbulence, TCP Internet traffic, variations of financial prices, or heart beats.

Fractional Brownian Motions (FBM), Lévy processes and multiplicative cas-
cades are frequently used when modeling these phenomena. However, these
processes are partly satisfactory for different reasons. FBM are monofractal,
and thus have the same Holder exponents at every point. The two other models
are multifractal, i.e. the pointwise Holder exponents take several values, and
the level sets of their Holder exponents are dense fractal sets. Nevertheless the
singularity spectra of the Lévy processes have a very specific linear increas-
ing shape and, finally, the multifractal multiplicative cascades only generate
non-decreasing processes.

Other kinds of multifractal models were thus studied to go beyond these limi-
tations. For instance, Gaussian processes with non-constant prescribed Holder
exponents are introduced in [2]. Another approach consists in generating mul-
tifractal random wavelet series [23,7].
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A third point of view consists in performing a (possibly multifractal) change
of time in a given stochastic process (X;);>o. More precisely, given an atomless
positive Borel measure p on R, supported by an interval of the form [0, T
(T € (0,00)), then the process X o u([0,¢]) is considered. This process shall
be viewed as the process X in (again, possibly multifractal) time pu.

The simplest situation lies in taking X equal to a monofractal process, like
the FBM (see [32,3,14] and Section 6). In this case, due to the monofractality
property, the multifractal nature of X o u follows almost straightforward from
the one of p (see Section 6). In the situation when it is assumed that X
also has multifractal sample paths, the multifractal time change creates more
interesting structures, both from the modeling and mathematical viewpoints
(see for instance [37] for preliminary results on this topic, especially concerning
large deviation spectra). The fine local study of the sample paths multifractal
properties is far more delicate than in the monofractal case. To our knowledge
it has never been achieved in a non-trivial case.

This paper deals with the case when X is a Lévy process. We provide con-
ditions on the measure p under which the multifractal nature of the sample
paths of the process (Z; = X o u([0,t]))t>0 can be described. Before going
further, we detail the reason which led us to consider this problem.

Let b be an integer > 2 and W = (W, ..., W}_1) a positive random vector.
Then consider in the space of Laplace transforms of probability distributions
¢ on R, the equation

é(u) = E (Ed)(uwi)), Vo> 0. (1)

This equation, referred to as the smoothing transformation, is solved in [15,18].
It comes from the modeling of fully developed turbulence [31,30] and of in-
teracting particles systems. Subsequently, the problem is then to find all the
non-trivial solutions (i.e. # 1) of (1). The mapping

b—1
goW:qERH—long(ZWiq> € RU{—o0}. (2)
=0

naturally arises in the problem’s solution. Indeed, under the assumption that
ow(p) > —oo for some p > 1, it is proved by Durrett and Liggett in [15] that
(1) has non-trivial solutions if and only if there exists § € (0,1] such that
ew(6) = 0 and ¢, (8) > 0. As a consequence of the concavity of the mapping
©w, such a ( is unique and

B =mf{# €0,1] : ow(F) = 0}.

It is worth noting that the existence of non-trivial solutions in the general



framework is almost entirely based on the existence of a non-trivial solution
in the case § = 1 with ¢}, (1) > 0. Moreover, in this case, a fundamental
non-trivial solution is given by the Laplace transform of the probability distri-
bution of ||uw||, where py is an independent multiplicative cascade on [0, 1]
generated by the random vector W = (W, ..., W,_1) used in (1), see [31,26]
and Section 7 for the construction of uy . This type of multiplicative cascade
measures has been extensively studied in [25,19,16,34,1,4]. Their well-known
multifractal properties are closely related to ¢y and (1).

Therefore, as soon as ¢y (1) = 0 and ¢}, (1) > 0, it is possible to naturally as-

sociate the non-trivial stochastic process (Zwy)icpo,1] = (,wa([o, tD)te[O . with

(1) such that the Laplace transform of Zy;; resolves (1). Moreover, this pro-
cess Zyw,. is completely characterized by a statistical self-similarity property
(see (40) in Section 7).

This raises the problem of finding a natural process satisfying the same prop-
erties in the general case § € (0,1]. In the case 3 € (0,1), pw(5) = 0 and
O (B) > 0, we recall how the solution ¢ of (1) is deduced in [15,18] from
the construction of ||y ]||. First, the random vector Wy = (Wy, ..., W/ ) is
considered. By construction we get that ¢w,(1) = 0 and ¢y, (1) > 0, and the
situation is reduced to the one described above.

Let ¢p be the Laplace transform of [[uw,||. A non-trivial solution of (1) is
then given by the mapping ¢ : u — ¢5(u”). Let X5 be a 3-stable Lévy subor-
dinator independent of py,. Remark that the function ¢ is also the Laplace
transform of the random variable Z = XB(HNWB‘D ([15]). Hence, a method
to construct a stochastic process (Zw;):ejo,1) associated with ¢ and fulfilling
the statistical self-similarity property (40) is then the following: Consider the
stochastic process

Zwi = X (1w, ([0,1])) = Xo(Zw,e) (¢ € [0,1]). (3)

This process has the form of a Lévy process in multifractal time, and it pos-
sesses the required properties. Indeed, the Laplace transform of Zy; resolves
(1), and in addition, since Xz has by construction independent increments
and is independent of pyy,, the increments of Zy,; also satisfy the statistical
self-similarity property (40). Surprizingly enough, stable Lévy subordinators
and Mandelbrot multiplicative cascades thus appear as special elements of the
same class of processes (obtained by subordinating the integral of a Mandel-
brot cascade uy to an independent Lévy subordinator Xj3) obeying a certain
statistical self-similarity property.

Equation (1) can also be considered in the space of characteristic functions of
probability distributions on R. It is shown in [29] that if there exists § € (1, 2]
such that o (5) = 0 and ¢}, (6) > 0, then (1) possesses a non-trivial non-
positive solution. If ¢y, () > 0, we associate naturally with that solution the
stochastic process (Zw)i>0 formally defined as in (3), but with a symmetric



[-stable Lévy process X (a Brownian motion without drift if 5 = 2). Again,
the multifractal nature of (Zw):>o appears to be related to @y .

We now resume the problem we address (i.e. to perform the multifractal anal-
ysis of a Lévy process in multifractal time) and our results.

First, the local regularity of a function f is measured in this paper as follows.
Let d > 1, I a non-trivial subinterval of Ry, and f : I — R% If z € I, the
pointwise Holder exponent hy(z) of f at x is defined ' by

hy(xz) =limin

Yy log |y — x|
yF#
where | - | stands for the Euclidean norm, with the convention |log(0)| = oc.

Then the multifractal nature of f is expressed in terms of the size of the
levels sets Ej of the function hy(-) defined by Ef = {z € I : hy(z) = h}
(h > 0). This size is measured by the Hausdorff dimension (denoted dim, see
Definition 3). Thus we focus on the estimation of the mapping

dy:h >0 dim B},

which is called singularity spectrum or Hausdorff multifractal spectrum of f.
A function (resp. a process) is said to be multifractal when its singularity
spectrum (resp. the singularity spectrum of its sample paths) is not reduced
to a single point (resp. with probability 1).

The singularity spectrum of Lévy processes (X;);>o — which corresponds in
our context to the case where the measure i equals the Lebesgue measure — is
performed in [22] (see Theorem 1 below). There is no time change in this case:
Lévy processes without Brownian part have with probability 1 a non-trivial
linear multifractal spectrum. This typical shape is explained by the fact that
the jump points of Lévy processes satisfy a ubiquity property with respect to
the Lebesgue measure (the notion of ubiquity is detailed in Section 3.4).

In our context, when the measure y is not monofractal, that is when the Holder

I This exponent does not coincide with the usual pointwise exponent, that we
denote Hy(x), which involves a polynomial ([20]). If hy(z) € RT \N*, then hy(z) =
H¢(x) but the two notions may differ if hy(x) € N*. Nevertheless hy(x) is the
natural notion to be used here. Indeed, the study of (Z;) requires information on
the local behavior of ¢ — p([0,-]), i.e. on the Holder exponents of the measure pu.
These exponents are in general more tractable by using a definition similar to (4)
than with the definition of [20].



exponent function of the measure u

1 B(t
hy:t— ljmjnfw
P g0

()

possesses several non-trivial level sets, the situation becomes subtler. We prove
that the local behavior of the process (Z; = X o u([0,t]));>0 is closely related
to some conditioned ubiquity properties (see Section 3.4), which combine con-
ditions on the jump points of (Z;) with conditions on the local behavior of p.
Understanding these properties enables us to compute the singularity spec-
trum dz, under suitable assumptions. These technical assumptions are fulfilled
by several classes of statistically self-similar measures p with a construction
based on multiplicative cascade schemes, for instance some R, -martingales
(like puw above) in the sense of [24,6] or random Gibbs measures (see [9,10]).

Before summarizing our results, we start by recalling precisely the theorem
obtained in [22]. Let X = (X;);>0 be a Ré%valued Lévy process. Recall that
X has stationary independent increments and that its characteristic function
takes the form E(ei<)‘|Xt>> = ¢ W) where

PO) = ialX) + QW/2+ [ (1= 4 ia) L) 7(do)

and where a € RY, Q is a quadratic form, and 7 is a Radon measure on
R?\ {0}, called the Lévy measure of X, satisfying

/(1 A |z2)m(de) < oo. (6)

Define the Blumenthal-Getoor exponent of X as
8 = inf {7 >0 /| _ Jal () < oo}.
z|<1
We always have 3 € [0, 2]. Remark that

(3 = sup (O, lim sup j 'log, Cj>, where C; = m(dx) (7 > 1). (7)

oo 2-i-1<|z|<2-7

We focus on the pointwise Holder exponents of sample paths of X, thus with-
out loss of generality we omit the jump points generated by the compound
process with intensity 1y,>1y 7(dz). When [(1 A |z|) m(dz) < oo, there are
also several ways to write X as the sum of a Brownian motion B with drift
a' € R? and covariance matrix @ and of a Lévy process X of Lévy measure
1jz/<1) (dx), even when requiring that B and X are independent.

For j > 0, let 7;(dz) = 1{a-j-1<jz<2-i37(dx). Then let (Y});>0 be a sequence
of independent compound Poisson processes such that the Lévy measure of Y



is m;. We then choose j(v as follows:

X, = 3" X;(t) where X;(t) = {Yj(t) g <, (8)

=0 Y;(t) — [amj(dx) if B> 1.
Then a general Lévy process (with jumps of norm < 1) has the form
X =X+B(d.Q) (9)

where B(a/, Q) is a Brownian motion with drift o’ € R? and covariance matrix
@, independent of X (of course if @) = 0 then B is degenerate).

We now state the theorem of [22] using the pointwise Holder exponent intro-
duced above in (4) instead of the classical one.
By convention, dim E = —oo means that the set F is empty.

Theorem 1 Let X be a Lévy process decomposed in the form X+ B(d', Q) as
in (8) and (9), and consider the associated process X. Suppose that 3 € (0,2

and 32>, 27j\/C'j log(1 4 C;) < 400 (this holds as soon as 3 < 2).
With probability 1, dz(h) = Bh if h € [0,1/83] and —oc otherwise.

The influence of B(d, Q) is also studied in [22], and the corresponding result
is recalled in Theorem 3.

We now consider a positive Borel measure 1 with a support equal to [0, 1] and
its integral F', i.e. F'is the mapping u € [0,1] +— ([0, u]). Let (Zy)ucp,1) be
the Lévy process in time F' (or p) given by (Z, = Xpw))ueo,1]-

If 11 is a multifractal measure, then F'is a multifractal non-decreasing function.
We are going to assume that p is atomless, hence F' is also continuous on
[0,1]. We use the pointwise exponent of p defined in (5). If A > 0, the level
sets Ej of the measure p are defined as E}' = {w: h,(u) = h}. Finally, the
singularity spectrum (or Hausdorff multifractal spectrum) of p is the mapping
d, : hw— dim E}.

The so-called scaling function 7, or L?spectrum associated with the measure
1 is involved in our result. It is classically defined for positive Borel measures
won [0,1] as

7uig liminf —j"og, 3 p([k27, (k+1)27)% (10)
J—+o0

0<k<2i—1

The dyadic basis chosen in the definition (10) is not a restriction. Indeed, since
supp(u) = [0,1], a different integer basis b > 2 would give the same value for

Ty



The Legendre transform f* of a function f : Ry — R U {—o0} is defined as
¥ h—infer hg — f(q).

Roughly speaking, our result yields the singularity spectrum dz of Z when the
measure /. obeys the multifractal formalism in the sense that d,,(h) = 7, (h) for
all h (for detailed studies of multifractal formalisms for measures, the reader
is referred to [13,35]). This property holds for many classes of statistically
self-similar measures p. These measures also satisfy three technical conditions
C1-3 invoked in our statement. For sake of shortness in this introduction,
these conditions are specified later in Section 3.4. Among our assumptions, we

shall keep this property in mind:
7,(1) exists and is strictly positive. (11)

This implies that the lower and upper Hausdorff dimensions of i coincide with
/

7, (1) (see [33] for the corresponding definitions).

We shall prove the following result, which includes Theorem 1 as the special
case where p is the Lebesgue measure.

Theorem 2 Let X be a Lévy process decomposed in the form X+ B(d, Q) as
in (8) and (9). Suppose that 3 € (0,2], and 35, Q*j\/Cj log(1+ C;) < +o0.
Let p be an atomless positive Borel measure whose support is [0, 1], such that
(11) and C1 hold true.

We introduce the exponents h, 3 = 7,(1)/8 and ama.x = sup{a : 7, (a) > 0}.

Let (Zu)uE[O,l] be the stochastic process defined by Z(u) = Yu([o,u}) (i.e. the
influence of B(d',Q) in the decomposition (9) is not taken into account).

With probability 1:

(1) For every h € [0, h, ), dz(h) < Bh.
Moreover, if C2(h,p) holds, then for every h € [0,h, ), dz(h) = Bh.

(2) If b € [hyp; amax/B], dz(h) < 73(5h).
Moreover, if C3(B8h) holds, then dz(h) = 7,;(Bh).

(8) If h > amax/ B then Ex(h) = 0.

The singularity spectrum of Z is thus composed of two parts (see Figure
1): First a linear part of slope 3, then a concave part which is a dilated and
translated version of (a part of) the singularity spectrum of the initial measure
i. This shape reflects the combination of an additive structure (the Lévy
process) with a multiplicative structure (the multifractal measure u). Such a
behavior is observed for the heterogeneous sums of Dirac masses studied in [8].
For the sequel, we note D,, g(h) the singularity spectrum obtained in Theorem
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Fig. 1. Typical multifractal spectra of Left: a statistically self-similar measure p,
Middle: a Lévy process in multifractal time X o F when 8 > 1, and Right: when
B < 1. Here h; is the Lebesgue-almost sure exponent, i.e. hy = TI;(O+).

2, i.e. it is the mapping

Gh if h € [0, h,p)
D,p(h) = T;(ﬁh) if h € [hy,p, Qmax/ B (12)

—00 otherwise

Remark that the singularity spectrum of Z is obtained as the Legendre trans-
form of the function

o) = {m(q/ﬂ) if g < 0,

0 otherwise

as soon as C2(h,,3) and C3(h) hold true for all h € [7/,(1), umax)-

As said above, examples of measures illustrating our result are Gibbs measures
and their random counterparts studied in [17,27,9], and of course the indepen-
dent random cascades py mentioned above in the study of the fixed points of
the smoothing transformation (1). Other examples are the compound Poisson
cascades and other R, -martingales studied in [5,3,6].

We now treat the general case, i.e. the influence of the drift and of the Brow-
nian component.

Theorem 3 Under the assumptions of Theorem 2, introduce the exponents

hus=1inf{h >0:ph <7;(h)} if B <1 and hup =inf{h >0: Bh < 7. (2h)}.
We always have hy, g < hy,z and b, 5 < 7. (1)/2 < hyp.

Consider the two mappings (Buﬁ is defined if f < 1)
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Q=0, p<land 2’0 Q40
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hy hy/B  h hy2 h, h

Fig. 2. Typical multifractal spectra of Left: a Lévy process in multifractal time
X o F when § < 1, and Right: when ) # 0, here with 3 = 1.

Bh  ifh €[0,h,s) Bh ifh €0, h,p)
Dyp(h)=q7(h) if h € [hyp, Omax] and Dy p(h) =13 7,(2h) if h € [y, 25]
—00  otherwise —00  otherwise.
Let (Zy)uep,) be the stochastic process defined by Z(u) = X o) -

(1) Suppose that Q@ = 0 and (a' = 0 if 3 < 1). With probability 1, the same

conclusions as for Theorem 2 occur here.
(2) Suppose that Q@ =0, 5 <1 and a’ # 0. With probability 1,

(a) dz < Euﬁ'
(b) If C2(h, ) holds, then for every h € [0, h,.3), dz(h) =
(¢) If (; Py

EM B(Eu ﬂ)

(d) If h € (hyp, Qmax] and C3(h) holds, then dz(h) =
(e) If h > aumax then Ez(h) = 0.
(3) Suppose that Q # 0. With probability 1,

(a) dz < Euﬂ'

Euaﬁ(h)'

= Bhyus and C2(hy,5) holds), or if (t/(h,5) > Bhys and
C3(hyp) holds), then dy(h, ) =

Duﬁ(h)

(b) If C2(h, ) holds, then for every h € [0,h,), dz(h) = D, s(h).

(¢) If (1(2hy8) =

Bh,.s and C2(h, ) holds), or if (i (

and C3(2h,.5) holds), then we have dz(h,g) = D,

(d) If h € (hp, Omax/2] and C3(2h) holds, then dz(h) =

(e) If h > aumax/2 then Ez(h) = 0.

2h, ) > 5ﬁuﬂ
5P, )
Dyup(h).

The conclusions of items (2) and (3) are simple consequences of the fact that
respectively a linear drift and a Brownian component are added to the “pure”
Lévy process X. The corresponding spectra are simply obtained as supremum
of two spectra. This explains their non-concave shapes (see Figure 2).



The paper is organized as follows.

Section 2 recalls some useful properties of measures.

Section 3 introduces the main tools used in the proof of Theorem 2. Proper-
ties of Poisson point processes are discussed, and estimates for the increments
of X obtained in [22] are recalled. Then, results on heterogeneous ubiquitous
systems (introduced in [11]) are stated, and conditions C1-3 are defined.
Section 4 is devoted to the proof of Theorem 2 when B(d’, Q) = 0. Sections 5
and 6 complete the proof to yield the general case B(d/, Q) # 0.

Section 7 deals with the validity of condition C2(h,, 3) for independent multi-
plicative cascades, which play a central role in the fundamental example (3).

2 Local regularity of measures

For every j > 1and k € [0,...,27 — 1], I, = [k277, (k4 1)277). I} and I,
denote the intervals I, + 277 and I;;, —277.

If u € (0,1), Vj > 1, I;(u) denotes the unique dyadic interval of length 277,
semi-open to the right, containing u. Then define I} (u) = I;(u) + 277 and
I (u) = Ij(u) — 277,

J

The diameter of a set B is denoted by |B|. For the rest of the paper, the
convention log(0) = —oo is adopted.

Definition 1 Let u be a positive Borel measure on [0,1]. For ug € (0,1), the
lower and upper Holder exponents of p at ug are respectively defined by

.. Jogu(Ii(ug)) _ . log 1(1;(uo))
o (ug) = liminf =2 "7 and @, (ug) = lim sup ———2~ -2~
(o) =l inf 31T (uo)] (o) = limsup 30T (o)

When a,(ug) = @,(ug), their common value is denoted a,(ug) and called the
Hoélder exponent of v at ug.

The left and right lower and upper Holder exponents of u at uy are defined by

1 I 1 I
a,, (up) = lim inf M and a; (up) = lim inf M
j—+oo 10g |[j (UO)‘ J—+0o0 log ‘Ij (uo)]

B . log p(1; (ug)) . log p(13 (uo))
and @ (ug) = limsup ———2 -2 and @' (ug) = limsup ——2L =~
o) = WD o 17 ()] o) =B S0 o 17 ()]

Similarly, when they coincide, o (uo) and of (ug) denote their common value.
Finally, we define

hu(uo) = max(a, (uo), @u(uo), @ (ug))

10



and for h >0
E, ={ue[0,1]: hy(u) = h}.

We see that (the exponent h,(-) and its level sets El are defined in (5))

L .. Jdogu(B(ug,r
(o) = min{ay, (o), @, (to), @ (o)) = lim fut lfgu\(B(ELo(j?"))\).

Definition 2 If i is a positive Borel measure on [0,1], and o > 0, denote by
Bl the set {x : o (v) = () = of (1) = a}.

The following proposition puts together classical results derived from the mul-
tifractal formalism for measures (see [13,35]). It provides upper bounds for
the Hausdorff dimension of union of level sets E*, E* and E". The singularity
spectrum d,, and the scaling function 7, were introduced in Section 1. For the
reader’s convenience we recall the definition of the Hausdorff dimension.

Definition 3 Let s > 0. The s-dimensional Hausdorff measure of a set F,
H*(E), is defined as

HH(E) = i Ho(E),  with H3(E) = inf { ) |E,-|5},

the infimum being taken over all the countable families of sets E; such that
|E;] < r and E C U; E;. Then, the Hausdorff dimension of E, dim FE, is
defined as dim F = inf{s > 0: H*(FE) =0} = sup{s > 0: H*(E) = +o0}.

Proposition 1 Let p be a positive Borel measure on [0, 1] and let o > 0.

(1) dim E# < d,(a) < Ti(a).

(2) If a €[0,7,(0%)], then dim Uy <, By < 75 ().

(3) If a > 7,,(0%), then dim Uy s, (Eg, UEQ) < 7).
(4) If Ti(a) <0, then Ef = 0.

Next proposition follows from the definition of 7, and Tchernov inequalities.

Proposition 2 Let p be a positive Borel measure on [0,1]. For every a > 0,
C >0 and e > 0, there exists a scale J such that j > J implies

log(# {k € {0,..,27 = 1}:p(I;4) > C277(+9)})
log 27 < sup 7,(a) +e.
og o' <a+e

11



3 Tools

In this section, we are given the Lévy process X, decomposed into the sum
X =X + B(d, Q) described in (9).

3.1 Some notations

We denote by S the Poisson point process with intensity ¢ ® 7 associated with
the Lévy process X (t), where ¢ stands for the Lebesgue measure on R, and
7 is the Lévy measure.

For every 7 > 1, let
Gj={t:(t,\) € S for some A such that |\ € (2777! 277]}.

For t € G, ) is the unique element A € R? such that (¢,\) € S. The jumps of
the process X;(t) are thus exactly located at the points of G;, and the value
of the jump of X; at t € G, is .

For every 7 > 1 and for every d > 0, Ag is the union of intervals

Al = | B(t,270t?),

teG;

We clearly have Useq, B(t, [\i]°) D Al. Eventually, for every sequence § =
{6;}; of non-negative numbers, we denote

Az = limsup Agj =Ny Agj. (13)

J—+00 J>145>J

3.2 Coverings and weak redundancy properties associated with Poisson point
processes

It is known [38,22] that with probability 1, for every § < (3, if the sequence
¢ is constantly equal to 0, then Az = R™ (recall (13)). An easy adaptation of
the proof of Lemma 3 in [22] yields the following slightly stronger result.

Lemma 1 With probability 1, there exists a non-decreasing non-negative se-
quence 3 = (B;)j>1 converging to 3 such that AE =R,

Notice that if the Lévy process is stable and if we can write in polar coordinates
m(dr,df) = ar~U*9 dry(df) with o > 1/2 and v a probability measure on

12



the unit sphere, then the constant sequence (3; = [3); can be chosen in the
previous statement.

The problem of covering by Poisson intervals is connected with the problem
of counting the number of points of S whose projection on R, falls in a given
dyadic interval I;; = [k277, (k + 1)277). Next Lemmas 2 and 4 are devoted
to this question.

Lemma 2 For 6 >  and € = {¢;};>1 a sequence of positive numbers, and
for every integers j and k, let

Kl = #{t € Lu:t € Gy for some j € [/0,5/(B+¢)]}.  (14)

There ezist two sequences {€;};>1 and {n;};>1 of positive real numbers converg-
ing to 0 such that for every integer T' > 0, with probability 1: For every d > [3,
for every j > 1 large enough (depending on 6 ), for every k € {0,...,2/T —1},
we have K?,’/i < 29,

PROOF. By definition of 3, there exists a positive non-increasing sequence
) (1)
g = {gg.l)}j converging to zero such that C; < 2737,

Let T be a positive integer. Let 6 > 3. For every j > 1 and k € {0,...,2/T —

. ) . . . . . . (1)
1}, the random variable Kj’,‘i is a Poisson variable with intensity C}s’a =

s DENCHPE = R SR U I VLG A )
3/16<5'<5/(B+¢5P) 3165 <5/(B+eSP)

: Qe )/ ) L :
where M; s is equal to 2 PG . In fact it is easily checked that the
2" T /8 -1
sequence M5 can be bounded by a constant Mg independent of § and j since

(84D (1))
the sequence {55-1)} is bounded. Thus C’f’g(l) < M52J((ﬁ+€[j/61)/(ﬁ+€j = for

every j and every 0.

Moreover, since the sequence {55-1)} is non-increasing and converges to zero
as j — 400, (ﬁ+€E;/)5])/(5+€§-1)) — 1 is bounded by {55-6)} = {268/)5]/5},
which is a non-increasing sequence depending on §. Thus Cf =" is bounded by
M7

We consider € = 5%;‘1) log(j+1
)

z ) ; :
7, and thus C;-S’E < C;-S’gu < 27% (actually, without loss of
generality, we can change a little bit the sequence {55-5)} so that it takes into
account the constant Mg).

y for all j > 1. For every 6 > f3, for j large enough,

we have ¢; > ¢
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We now use the following lemma which is a simple consequence of the Stirling
formula

Lemma 3 There exists an integer r > 0 such that for j large enough, for every
Poisson random variable N of parameter C' > 0, P(N > r(j + C)) < 27%.

Let P} = IP(EIIC € {0,...,29T — 1} : Kjf > r(j + C’f’g)). By Lemma 3 for j
large enough we have Pf < 27%2T so >oj>1 ijs < +00. The Borel-Cantelli
lemma implies that for every j large enough, for every k € {0,...,2/T — 1},
Ki’g < 27 where 7; is the positive sequence converging to 0 at infinity defined

by 29 = r(j —I—C’]‘-S’g). This yields the uniform control over k € {0,...,2/T -1}

of K j,i for every 6 > 3 with probability 1, and finally with probability 1 for

all 0 > /3 since the random functions ¢ — Kf”,i are non-decreasing.

We need to introduce the notion of weakly redundant system in R . This notion
is later determinant to get upper bounds for the level sets of Holder exponents.

Definition 4 Let (z,)n>0 € Rﬂ\i and (Ap)n>0 @ positive sequence converging
to 0. For every T > 0 and 5 > 0, we introduce the sets of indices

T={n:z,€[0,1], 270+ <), <277} (15)

The family {(x,, A\n) }nen is said to form a weakly redundant system if for
every T' > 0 there exists a sequence of integers (Nt ;)j>0 such that

(Z) limj_,oo(log2 NT,j)/j = O

(11) for every j > 1, T; can be decomposed into Nr; pairwise disjoint sub-
sets (denoted 7}11""77},NT,]‘) such that for each 1 < ¢ < Nrpj, the family

{B(mn, An): n € ’];Z} is composed of disjoint balls.

Lemma 4 Consider the Poisson point process S = U;>o Gj. Let (B;);>0 be a
non-decreasing sequence converging to 3.

With probability 1, the family U;sof (¢, |\e|?) : ¢ € G;} forms a weakly redun-
dant system.

PROQOF. This is a direct consequence of the estimates obtained in the proofs
of Lemmas 5 and 8 of [22] for the numbers N;, = #{t € G;: t € [k277,(k +
1)]277} when 3 = 1.
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3.8  Local reqularity of the Lévy process X

As a consequence of the work achieved by Jaffard in [22], the increments of X
satisfy the following almost-sure properties.

Proposition 3 Let € > 0. With probability 1:

Let to > 0 be not a jump point of j(v(t), and write hx(ty) = 1/§ for some
0 > (. For n small enough, there exists €' > 0 such that for all t > 0,

if [t —to] <m, then > X = Xj(to)] < Jt -tV (16)

. logo \t—t0|_1
Jjz Bre’

and | X (t) — X (to)] < |t — to]/ @) (17)

Moreover, still for [t—to| <, if2j<1og2 i—ig—1 X;(+) has no jump point between
B+e’

t and ty, we get

> IXG() - X(to)| < Jt — to] VOO (18)

. _logg [t—tg|—1
]< B‘f"‘—',

Equation (18) implies that when 3 > 1 the contribution of the sum of all the
log, [t—to]| 1

drifts associated with the processes X;(t), j < =2

[to, t], is always less than [t — to|'/(5+2),

, on a given interval

3.4 Heterogeneous ubiquity and Hausdorff dimensions of limsup sets

General results of what we call “heterogeneous ubiquity” are obtained in [11]
(see also [12]). Here, a simpler version adapted to our context is stated. It
plays a similar role as the geometric Theorem 2 used in [22], but makes it
possible to work out problems raised here by considering a multifractal time
change. Some additional notations have to be introduced.

Let {uy, }nen be a sequence of points in [0, 1] and {/,, },en a sequence of positive
real numbers converging to zero. Let 6 > 1. For every n € N we set

Ly = [un—ln, un+1y], I7 = [un+1, /4], I = [up—1p /4, un], IS = [n—12, up+12].

In addition, given an integer b > 2, for u € [0, 1], we set
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Bi(uw)={I, :u€ I, I, € (b~9 b7}, (19)
B (u) = {[j/,k/ : 31, € Bj(u) such that I C Ig}‘ (20)

Definition 5 Let {u, }nen be a sequence of points in [0, 1], and let {l, }ren be
a sequence of positive real numbers converging to zero.

Let p be a positive Borel measure such that supp(p) = [0,1] and (11) holds.

The system {(un, 1) }n is said to form an heterogeneous ubiquitous system with
respect to (p,7,(1)) if the following holds true.

(1) There exists a non-increasing sequence (¢;)j>0 with the properties:

(a) lim; ... ¢; =0, (jp;)j>0 is non-decreasing at +00 and lim; . jp; =
+00.

(b) Ve >0, (j(e — ¢j))j>0 is non-decreasing at +o0o ,
(¢) Properties (2), (3) and (4) below hold.
(2) There exist an integer b > 2 such that
(a) p-almost every t € [0,1] belongs to Ny>oUnsntn — n/2,uy + 1,,/2].
(b) For p-almost every t € [0,1], there exists an integer j(t) such that

Vj > j(t), ¥V k such that |k —kb,| <1,
p=I (T (D)+e5) < u([kb_j, (k + 1)b_j]) < b—j(TL(l)—‘Pj)’

where k2, is the unique integer k such thatt € [kb™7, (k+1)b~7). Thus
(2)(b) implies for p-a.e. t € [0,1] a precise control of the p-mass of
the three b-adic intervals around t.

(3) (Self-similarity of u) For every b-adic subinterval L of [0,1], let f, denote
the canonical affine mapping from L onto [0,1]. There exists a measure
ul on L, equivalent to the restriction of u to L, such that property (2)(b)
holds for the measure u* o f;' instead of the measure fu.

Let j;, = log, (|L|_1) and for everyn > 1, let

Vi>ntgn, Yk kK, <1,

Ub={telL: ANEACI I
pE([kb7, (k + 1)b7]) < (7;) ’

n

The sets UL clearly form a non-decreasing sequence in [0, 1], and by (2)(b)
and property (3), Un>1 UL is of full pi*-measure. Then define

ny = inf {n > 1: pH(UF) > |ln*]/2}.

(4) (Control of the growth speed ny and of the mass ||u*||)
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There is a dense subset D of (1,00) such that for every § € D, for
p-almost every u € [0,1], one can find an increasing sequence of integers
(Jk(u))k>1 such that for every k > 1, there exists Ly, € B}l(u) (u) satisfying

lim ,JL’“ =0 and
k—oo ji(u)
ni, < Jrg @i, and L7 <[t (21)

The next result is established in [11].

Theorem 4 Let {u,}nen be a sequence of points in [0,1], let {l,}nen be a
sequence of positive real numbers converging to zero. Let p be a positive Borel
measure such that supp(p) = [0,1] and (11) holds.

For every positive sequences € = (&,)nen and o = (0n)nen, define the limsup
set

SM(&T;/L(l)?g) = ﬂ U 12"-

N20 > Nl e O en < (T (T ) < pl(F) <[l | D —5m

Suppose that {(un, 1)}, forms an heterogeneous ubiquitous system with respect
to (u,7,(1)).

There exists a positive sequence € converging to 0 such that for every § > 1,
there exists a non-decreasing sequence 6 converging to 0 as well as a positive
Borel measure mg such that:

e ms(E) =0 for every Borel set E such that dim E' < 7,(1)/6 ,
o ms(S,(0,7,(1),8)) > 0.

In particular, dim S,,(3, 7,(1),&) > 7,(1)/4.

Moreover, if the system {(un,l,) }nen is weakly redundant (see Definition 4),

we precisely have dim S, (6, 7,(1),&) = 7,(1)/4.

The set S,(9, 7,(1),€) is constituted by points which are well approximated
at rate 0 > 1 by some points u,, these points being selected according to the
behavior of  around w,,. Thus Theorem 4 emphasizes a ubiquity property con-
ditioned by a measure u, and shows the existence of exceptional points related
simultaneously to the local behavior of the measure u and to the approxima-
tion rate by the system {(uy, l,) }». The condition |1, | =MW+ < (1), u(I7) <
(L) < |ln) =M= involved in the definition of the set S,,(9, 7,(1),€) appears
in the weaker form |I,|#M*ter < p(I,) < |, == in [11], but due to prop-
erty (2)(b) the work achieved in [11] makes it possible to add automatically

the condition on p(7;7) and p(Z,) and it yields Theorem 4.
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Remark 1 For some classes of measures p, it turns out that property (4) can
be simplified in the stronger one: There exists jo > 0 such that (21) holds
for all b-adic interval L of generation larger than jo. This is the case for
instance for the class of random Gibbs measures described in [9]. Unfortunately
independent random cascades do not satisfy this uniform property, and their
study required working with the weaker condition (4) (see Sections 1 and 7 as
well as [10]).

3.5 Conditions C1-3

Let p be an atomless positive Borel measure with a support equal to [0, 1].

Condition C1

There exist two positive constants v; and =, such that for every small enough
sub-interval I of [0, 1], [1|" < p(l) < |I].

Condition C2(h,, )

Recall that h,s = 7/(1)/8. By assumption the function F' : ¢ € [0,1]
1([0,¢]) is increasing and continuous on [0, 1].

The Poisson point process S can be written S = {(t,, An) }n>1, with [A,] \, 0.
Let {3;},;>1 be a sequence as found in Lemma 1.

For every (t,,\,) € S such that t, € G, we set u, = F~*(t,), and we
define the sequence [, as Z)Ffl (B(tn, |/\n|ﬁj)>‘. This ensures that (0,1) C
limsup,,_, ., B(tn,,/2).

Condition C2(h,g) is said to hold when (11) holds and when {(uy,l,)}n>1
forms an heterogeneous ubiquitous system with respect to (u, 7,,(1)).

We shall see in Section 7 that this holds under suitable assumptions when
4 is an independent multiplicative cascade. Consequently, the assertions of
Theorem 2 concerning the linear parts of the spectra apply to the process Zy,
defined in (3).
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Condition C3(h)

There exists a positive Borel measure my, on [0, 1] such that my,(E!) > 0 and
for every Borel set ' C [0,1] such that dim £ < 7;;(h), ms(E) = 0.

Suppose that y is a independent multiplicative cascade. It is shown in [10] that
if the function ¢y is everywhere finite, then with probability 1, condition
C3(h) holds for all h such that 7;(h) > 0. Consequently, the assertions of
Theorem 2 concerning the strictly concave parts of the spectra apply to the
process Zy, defined in (3).

4 Computation of the Hausdorff spectrum of X o F': Theorem 2

In this section, in order to simplify the notations, we assume that X = X,
i.e. B(d/,Q) =01n (9), so that X and Z in Theorem 2 are simply denoted X
and Z.

By Lemma 1, there exists a non-decreasing sequence of positive real numbers
B = {B;};>1 converging to 3 such that, with probability 1, the set AE (defined
in (13)) equals R, . Such a sequence is fixed.

4.1 Characterization of the Holder exponents of Z = X o F

For every j > 1, for every t € G;, let I, = 2|F71([t — |\, + [N|%])| and
I, = [F7'(t) — l;, F7'(t) + l;]. These intervals were considered in condition
C2(h,,p) in Section 3.5. By construction of the {{;};, we have

0,1c ) U UWF')—L/2,F ') +1/2.

J>1 j>J teG,
Definition 6 Let o« >0, 6 > 1 and € > 0.

A real number ug is said to satisfy the property P(a,d,¢) if there exist an
nfinite number of jump points u of Z satisfying

= ol < Iey and 1585 < pn(Ipe) < 155, (22)

Remark that, by construction, if t = F(u) and t € G; for some integer j > 1,

then under (22) we also have 277 < lﬁj) if 7 1s large enough.

A real number ug is said to satisfy the property 75(04,5, e) if there exist an
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a+e

infinite number of jump points u of Z which satisfy (22) together with 1[;(_5) <

277 if F(u) € G, (notice that here 277 is approximately equal to the size of the
gump of Z at u).

We then set for h > 0

Ve >0, da >0, 40 > 1 such that

Tgpn=quel(0,1]:9 _ ) (23)
5 < h+e and u satisfies P(a,d,e)

~ Ve >0, da >0, 30 > 1 such that

7-5,11 =quc [O, 1] : o . ~ . (24)
5 < h+e and u satisfies P(a,d,e)

Heuristically, the point ug satisfies P(a,d,e) or 75(04,6, e) when it is well-
approximated by jump points u of Z, at rate § relatively to Ip(u), these
points being selected so that they satisfy p(/r(u))) ~ I3

Remark that if 0 < A’ < h, then we clearly obtain g C Ty C Ty
We denote S = {t eER,:INERY (t,)) € S}, i.e. S is the projection on

R of the Poisson point process S associated with X (¢), as well as the set of
jump points of X.

This section is devoted to the proof of the following result, which is a simple
consequence of next Propositions 4, 5 and 6.

Theorem 5 Assume that C1 holds. With probability 1, for every h > 0, we
have Ay, C EZ C By, where

Ij/-ﬁ’h \ (Uh’<h Egh’) U (Uh/<h 7-57]1/) US:| Zf() S h < hu7ﬁ

Ay ={"! < (25)
Ef\ (F7HS) UUsop F1(Ay)) ifh > s

g, — | (T \Unr<s Tow) UUnan Bl /0 < R ON/8 o
Uh’zh Eﬁh/ if h > Ty(0+)/6-

Consequently, in order to compute the singularity spectrum of Z, it remains
for us to find an upper bound for dim B, and a lower bound for dim A;,. This
is achieved in the next sections.

Proposition 4 Assume that C1 holds. With probability 1:

For every ug € [0, 1] not a jump point of Z, let h,(ug) = a > 0 and h,(uo) = @,
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and write tg = F(ug) € [0, ||u]]] and hx(ty) = 1/0y, where d,, > B. Then

a/5UO < hZ(UO) < a/5u0' (27>

PROOF. Let ¢ > 0. By the definition of h,(uo), there exists 7; > 0 such that

for every 0 < r <y, p(B(uo,r)) < re =, (28)

Let j, be the unique integer such that 277» < < 2777+,
By definition of @, we can also choose 7; small enough so that

for every 0 <7 <, if I € {Ij 15(uo), Ij-+2(uo), I;;Jrz(uo)}a (D) > roFe.
Remark that I, (ug) U 1, 12(uo) U I 1 5(ug) C B(ug,r). Similarly, using(ft?g
definition of hx(tg) = 1/6,, and Proposition 3, there exists 7, such that

for every number s such that |s| < 1y, X (to + 5) — X (to)| < s¥/%0~=, (30)
and for some sequence (h;);>1 such that |h;| \, 0,

| X (to + hy) — X (to)] > |hy["/ vt (31)

Since the function F' is continuous on [0, 1], we can thus choose 7; small enough
so that F(B(ug,m)) C B(to,n2).

o Let —; <7 <. By (30) and then (28), we have
|Z(ug + 1) — Z(ug)|=|X o Fug+ 1) — X o F(uy)|
< |F(u0 + 7“) _ F(u0)|1/6uo—e < |T|(oz+6)/5u0—(oz+8)s

since |F'(ug 4+ 1) — F(ug)| < p(B(ug,|r|)). This holds for every ¢ > 0, hence
the lower bound of (27).

e Let j be such that (31) holds, and let r; be the unique real number such
that F(ug + 1) = to + h;. We get
|Z (o + 1) = Z(uo)| = | X (to + hy) = X (to)| > |1y,

By (29), p([uo, o+ 73)) 2 U} a(u0)) 2 Iy, Since Flug + 1) — Flus) =
h;, we otain |h;| > |r;|*", and thus

|Z(u0 + Tj) — Z<UQ>| > |7“j|(a+5)/5uo+(a+e)e'
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Since this holds for an infinite number of r; converging to zero and then for
every € > 0, the conclusion follows.

Proposition 5 Assume that C1 holds and uy € T3, for some h > 0. Then
hz(UQ> S h.

PROOF. Let ¢ € (0,3). The proof uses the following Lemma of [21].

Lemma 5 Assume that a function f is discontinuous on a dense set of R.
For a fized x € R, assume also that there exists a sequence {ry,}, converging
to x such that for every n, f has right and left limits f(r}) and f(r;) at r,,
and |f(r}t) — f(r;))| = sp, > 0. Then

log sy,
hy(z) < liminM.
nteo |log |rn — |

Let (u,)n>1 be an infinite sequence of jump points of Z that verifies (22) for
a+te
ug as well as the fact that the size of the jump of Z at w,, is greater than [ 5(’;).

Lemma 5 yields then

ate
| log Ly a+e at+e &

ho(un) < lim inf n <

z(uo) < B ] = G o) —9)

Let 72 be as in C1. Since lim. g+ SUDs~1 45,72 o 522
follows.

Proposition 6 Assume that C1 holds. With probability 1, we have the follow-
ing property: For every ug € [0, 1] not a jump point of Z, if hz(ug) < h,(uo)/B,
then ug € 131, (ug)-

PROOF. Set h = hz(up), a = h,(up), to = F(up) and hx(ty) = 1/4,, for
some 4y, > (3. Necessarily, d,, > 3 otherwise, if d,, = (3, then by Proposition
4 we would have h > «a/p.

Let € > 0. By definition of h, there exists a sequence (7,),>1 such that |r,| \, 0
and | Z(ug + 1) — Z(ug)| > |ra|"°. We set u, = ug + r,, and t,, = F(u,). We
have | X (t,) — X (to)| > [ra|"*®, and [t, — to| = p([uo, un]) < p(B(uo, [rul)) <
7|7 by (28).

We denote by 7, the unique integer such that 277» < |t,, — to| < 27+, For
every ¢ > 0 we can write
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X(tn) = X(to) = > Xilta) = X;(to) + D Xj(tn) — Xj(to).
J<lgn/(B+e")] 32lin/(B+e")]

By Proposition 3, there exists ¢ > 0 such that (16) and (18) hold. We thus
have

o X)) — Xi(to)] > > X;(te) — X;(to)
J<[in/(B+e")] J<[jn/(B+€")]
> X () — X(to)] — |t — to] /17
> |Tn|h+6 - |7”n|%;§‘

The parameter € can be chosen small enough so that (h+¢)(f+¢) < a —e.
Then there exists C' > 0 such that for n large enough

> X (ta) = X (te)| = Clra|"*=. (32)
3<lin/(B+€")]

Remembering (18) and using again that |t, — to|Y/+9) < |r,|57%, we con-
clude that 37,1 /(a+ey X;(+) has a jump point between ¢, and ¢ (since the
contribution of the drift is not large enough to explain (32)).

Consider one among the jump points with tallest size, i.e. a real number T,
in [to, t,] such that T, is a jump point for X for some J, < [j,/(3 + ¢)] and
there is no jump point of X (¢) in [¢y, t,,] belonging to some G/, j* < J,,. Remark
that since hx(tg) = 1/8,,, for n large enough j,,/(dy, +€) < Jn < 7 /(B +€').

We now apply Lemma 2 with 7" = [u([0,1]) + 1] and 6 = d,,. We choose j,
large enough so that ¢;, and 7;, are less than /2. Let k be the unique integer
such that tg € (k277" (k 4+ 1)277"). We get [to, t,] C I = Uj—p_a_ pr2 1.0 By
Lemma 2 applied to the five intervals contained in I, the number of jumps in
the interval [to,t,] of all the X,’s, j < [ In } is less than 5 - 2/nin |

B+e’ |’

Using (32) and the existence of T,,, we obtain

D] +5- 27270 > N7 X () = Xj(to)| > Clra|™,
J<[in/B+e’]

where D stands for the contribution of the drift of all the X,’s, j < [ ijs’}’

on the interval [to, t,]. But, again by (18), |D| < |tn — to|Y/ ) < |r,| 57 . As

above, since G72 > h, for n large enough 5 - 292 2= > Clr,|"*+¢, for another

constant C. This enables to compare 2~/ with |r,|. Indeed, since C1 yields

Jn = O(! 10g(|rn|)|) and 7;, goes to 0 when n — +o00, we obtain

2—Jn Z C|7“n|h+2€ Z |7“n|h+36. (33)
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Denote by U, the real number F~'(T,), and consider I, = Ipq,) (the inter-
vals [, for t € G were defined at the beginning of Section 4.1). By construction
this interval satisfies p(Iz,) > 2 -277"#m. Thus uy € Iz, for n large enough
because (3, J, < 512,% < jn. Thus by (28) 2-27/Fm < pu(Iy,) < I7. < for n
large enough. We write pu(I7,) = I for some o, > a — 2e.

Now, we know that |ug—U,| < |r,|. But |r,| < 9 InitE < C’lfw;b’"(hwg) by (33).
Define ¢, = m For € small enough and n large enough, we see that
6, > 1 (since h < a/3).

If 7, is the constant of condition C1, for every n large enough, the couple
(ctn, 0,,) belongs to the square [0, 7] X [1,dy, + €]. Without loss of generality
by extracting a subsequence, we can assume that (o, d,,) converges to (ayg, o).

By construction 2 < h + 4. Hence P(ao, do, 4¢) holds.

PROOF OF THEOREM 5. Let h > 0 and ug € E?. By Propositions 5 and
6, Uy € Uh/gh Egh’ U T-ﬁ,h \ Uh’<h %ﬁh AISO, by PrOpOSition 4 Uy € Uh’Zh Egh"
Consequently EZ C B,

Propositions 5 and 6 clearly imply that 75, \ K Unr<n E’gh/) U (Uh,<h ’Tg,h/) U

S| Cc EZ. Thus Aj, C Ef when h < hy, 5.

Finally, when h > hy, g, if ug € Ay, by Proposition 4 hz(ug) = h,(uo)/3 (since
h,(ug) = hy(ug)). Hence Aj, C EF.

4.2 Upper bound for the singularity spectrum of Z

Let us start by the decreasing part of the spectrum.

Proposition 7 With probability 1, for every h > 7,,(07)/f3, dim F? < 7, (Bh)
and EF =0 if h > aumay /8.

PROOF. This Proposition 7 directly follows from Theorem 5 used when
h > 7/(07)/3 (which yields Ejf C By,), and then from item (3) of Proposition
1 to find an upper bound for dim B,.

In order to get an upper bound for the increasing part of the multifractal
spectrum of Z, some notations and new sets are needed.
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For every j > 1,t € Gjand 6 > 1, let
19 = BF(1),1). (34)
We consider, for a > 0, ¢ > 0 and § > 1, the sets

Tose= () U U 1. (35)

J21 2T eGP te<u(I)<if e

The Hausdorff dimension of the sets T, is easily tractable (as shown by
the following proposition). Moreover, these sets are closely related with the
sets T p,.

Lemma 6 Assume that C1 holds for . For every a > 0 such that T;(Oé) >0,
0>1ande >0

Supa’§a+5 T:(O[) te

dimT,s. <
1m be > 5

(36)

PROOF. We first use Lemma 4. Due to the definition of I;, the weak re-
dundancy property of S = U;so{(t, |\e|%) : t € G;} implies the existence of
a non-negative sequence (§;);>o converging to 0 such that as soon as G; # 0,
the set {[; : t € G;} can be written as a union of 2/% families G;; of pairwise
disjoint intervals.

We have Tt 5. = Ny>1 Uj>s Sj, where

S; = U 1. (37)

teG; 10T e <pu(I)<I1¥ ¢

Fix ag € (0,7,(0%)). Let a € [ap,7,(07)) and ¢ € (0,9/2). Let J > 1 and
j > J.Lett € Gj and let J; denotes the unique integer such that 277 < || <
27T 12 < () < 197°, then at least one of the intervals Ij, 5 such
that 1,405 N I; # 0 must satisfy u(lj,42k) > 1—16l§“+5 > 2~ Wit2)(e+e)  where
C'is a constant depending only on a.. Moreover, due to C1 and the definition
of the interval I;, there exists two positive constants v and 7’ independent of

t such that for j large enough, vj < J; +2 < +/j.

For every integer m > 1, let Fy, = {lnx : p(Lpni) > C’2‘m<a+€)} for every 1.
We deduce from the last considerations that every I; belonging to some G;;
and satisfying pu(I;) > 1§7° must intersect an element I of U, F,,. In

this case, |I]° < \It(é)| < O|I|° for some constant C' depending only on 6.

Moreover, since the elements of G;; are pairwise disjoint, the intervals I of
U, j<m<~7j Fin previously selected intersect at most two elements of G;;. Also,
we learn from Proposition 2 that for m large enough, the cardinality of F;, is

less than or equal to 2™(Pa’<are Ti(e)Fe)

J<m<~'j
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Now let s > (supoé,gwE () + 5) /9. Recall Definition 3. It follows from the
previous remarks that for some constant C’ > 0,

Mg (Tase) < D > )

J2J teGyiete<u(Iy)<iee

<YX X ErsyYy ¥ o2y o

72 LeG it <u(ly) j2J i yj<m<y'j I€Fn
S 20C Z ijj Z 2785m2m(supa/Sa+g ‘r;(o/)Jrg)7
j=J vi<m<y'j

Since &; — 0 when j — 400, limj_.oo HEg—s (Tase) = 0, thus dim 75, 5. < s.

Proposition 8 Assume that C1 holds. With probability 1, for every exponent
h e [0,7,(0%)/8), dim E7 < D, g(h) (recall that D, is defined in (12)).

PROOF. If h = 0, then it follows from Proposition 4 that EZ is contained
in the set F~1(S) U Ef U (Ns=1A4s). Thus dim EZ = 0.

Fix now h € (0, T*/L(gﬂ ). Item (2) of Theorem 5 implies that dim EZ is bounded

by dim EZ < max (dim Tsn \ Up<n Topr, dim Uacgn Eg). Item (2) of Propo-

sition 1 yields dim Ua<g, B < 7,;(8h). It remains to find an upper bound for
dim %,h-

For every € > 0, 73, C U (0,6)€QXQ T, s-. Lemma 6 yields
a>0,7;(a)>0,6>1,a/B5<h+e

dim 7-57}1 < sup dim Ta,5,5

(2,0)€QxQ
a>0,7; (2)>0,0>1, 0/ B6<h+e

sup,/ ) + ¢
S sup o’ <a+e M( )

(a,6)€QxQ 0
a>0,7;(a)>0,0>1, o/ B<h+e

<max(B(h +¢e)di(h,¢),dz(h,€)),

. SUPy/<ate Th(a)+e
h dl(hag) - SupaZﬁh = (; ’
where &o(h B SUD /< aie Th(a)+e
2(h,€) = SUP<acph, r3(a)20,521,a/B5<hie — 5

Since Bh < 7,,(07), lim. o dy(h, ) = 7;;(Bh).
The next observations are already done in [8] (they are easy to check using
the continuity of 77 on its support and the fact that sup,>. s (a)>0 Ti(a)/ais

reached for a = 7;,(17)):
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o If h < 7/(1)/8, then lim. o dy(h,e) = 1.
o If h > 7/(1)/8, then lim. o di(h,e) = 7;(Bh)/Bh.

We finally get the desired upper bound for dim 75, and thus also for dim E7.
4.8  Lower bound for the singularity spectrum of Z

Proposition 9 Suppose that C1 holds. With probability 1, for every h > h, 3
such that C3(0h) holds, dim E7 > 77:(5h).

PROOF. Fix a realization of Z and h > h, 3 such that C3(3h) holds.

Let mgp, be the measure given by C3(3h). Combining C3(Sh) and item (1)
of Theorem 5, it is enough to prove that mgy, (U5>,@ E5> = 0 and mg, (Egh N

F~Y(S)) = 0, where Ey = Efj, 0 (F~1(4;) \ F71(S)).

Since S is countable and the family of sets A is monotonic, it remains to show
that dim Es < 7%(8h) for every 6 > (3. Fix such a 0 and let u € Ej.

. log [t—F'(u
Let 0p) = limsup; . sup,cg, % Since F(u) € As, 0pw) > 6. Let
(tn)n>1 be a sequence of points of S verifying lim,, =BT = R
Denote u,, = F~Y(t,). Since u € Eﬁh, we get

log |u — uy, | log | F(u) — F(u,)|

lim su lim su
el T logly,  Bhomaa? log ;.
Moreover, since u € [ N Egh, we also have lim,, % . But by
construction of the I; ’s we know that lim,,_, w 0. Consequently,
" g P‘tn
log |u — wu,, ) 0
lim sup gl | Flu > —>1.
n—00 lOg ltn ﬂ ﬁ

It follows from these remarks that Es C T, 5/, for all € > 0. Lemma 6 yields
that dim Es < 87*(6h)/0 < 7*(6h).

Proposition 10 Suppose that C1 and C2(hu75) hold. Then, with probabil-
ity 1, for every § > 1, dim EZ ' (1)/(88) = 7(1)/9; equivalently, for every 0 <

h < hs, dim EZ = dy(h) > Bh.
PROOF. Let § > 1, h=h,3/0 and d = 7/,(1) /0.
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Fix a realization of Z and S such that the properties involved in condition
C2(h,p) are satisfied. Theorem 4 provides us with the non-decreasing se-
quence 5 converging to d, the positive sequence & converging to 0, the set
S.(6,7 /.(1),€), and the measure m;.

By construction, all the points of S,,(9, 7,(1),€) satisfy 75(7';L(1),5, g) for all
e >0.S0 S,(9, 7,(1),8) C Ts.1. Moreover, ms(S,(9, 7,(1),€)) > 0, which, by
Theorem 4, implies that dim S,,(9, 7,(1),8) > 7'(1)/6 = Bh.

When proving Proposition 8, we established that every set of the non-decreasing
sequence (73, ) <p is of Hausdorff dimension less than Sh. Thus ms(Up<nZ3,s) =
0. Also ms(Up <nEf,) = 0 by Proposition 1. Thus

s (5,607 [( U ) (U o) 5] =0

Using Theorem 5(1) and the fact that S, (4, 7.(1),€) C Tsp, we get that
mgs(E¥) > 0, hence the conclusion.

5 The case a’ # 0 and ) = 0: Item (1) and (2) of Theorem 3

In this section, we use the decomposition (9) with a’ # 0 and @ = 0 to write
Z(t) = X(F(t)) + F(t)a, with a € R\ {0}. We write Z = X o F.

We begin by relating the function hz with h; and hp. We first notice that
hr = h,. Then, equation (4) implies that hz(u) > min (hg(u),h“(u)) for
every u € [0,1] with equality if hz(u) # h,(u). Also, the study achieved in

22] yields hg, ,;, = min(hg, 1). This implies that:

e When 3 < 1, for every u € [0,1], hz(u) < hy,(u).
e When (> 1, for every u € [0,1], h <h

From the previous discussion, we deduce that when 3 <1

Unsn By otherwise

and when (> 1

57 o | Uren ELUEL it h <7.(0)/5,
" Un'>sn £, otherwise '
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By using Theorem 5(2), Proposition 1 and the estimates obtained in the proof
of Proposition 8, we conclude that

Dus(h) ifB<1
Vh>0, dy(h) < 4 Desth) A0 <,
D, 3(h) otherwise.

The following remarks yield the lower bound.

e Suppose that 8 < 1. Let h > Eu7ﬁ. If C3(h) holds, then it follows from
the proof of Proposition 9 that for my-almost every u € [0,1], hz(u) =
h,(u)/B > h,(u). Consequently, hy(u) = h,(u) my-almost everywhere. This
yields dim E > 77(h).

Suppose now that C2(h,s) holds. If 0 < h < h,g, then let 6 = h,g/h.
Lemma 5 combined with the continuity of I yield that the set S, (4, 7/,(1),&) \

[(Uh,<h Egh/> U (Uh,<h ’Tﬁ,h/> U S} is included in EZ. We conclude that
dim EZ > (h, as in the proof of Proposition 10.

e Suppose that § > 1. The case h < h, 3 is treated as the case h < h,.z
when 8 < 1. If h > h, 3, then Lemma 5 combined with the continuity of

F yield E’gh \ (F‘l(g) U Us>z F‘l(A(;)) C E?. We conclude as in the proof
of Proposition 9.

6 The case @ # 0: Item (3) of Theorem 3

We begin with a proposition which takes care of the Brownian part B o F.

Proposition 11 Let pu be a positive measure on [0,1] and By a Brownian
motion. With probability 1, Yug € [0,1], hy(u)/2 < hp, ,or(uo) < hy(uo)/2.

PROOF. Let ¢ > 0. For almost every sample path of B s,

Vto, Wt close enough to to, |B1ja(t) — Bija(to)] < [t — to|/* 75, (38)

and there is an infinite number of ¢,, converging to ty such that
|Bij2(t) = Buya(to)] = [t — to["/**. (39)
Let ug € [0, 1]. For u close enough to wug, (38) implies that
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[Bijz 0 F(u) = Bigz 0 Fluo)| < |[F(u) = F(ug)| 7 < Ju — ug| ") =20/272),

for some constant C'. Moreover, by (39) there is an infinite number of points
u, = F~Y(t,) such that

1By 0 F(u) — Bija o Fug)| > |F(u,) — F(ug)|"/**

> |uy — ug|Prwo)te)(1/2+4e)

The result follows.

As a consequence of Proposition 11, we obtain (see [37] and references therein
for results of the same kind on B o p).

Proposition 12 Let p be a positive Borel measure on [0,1], let By be a
Brownian motion. With probability 1, for every h >0, dpor(h) < 7;(2h) and
EPer =0 if 7(2h) > 0. Moreover, if C3(2h) holds, dpor(h) = 7;:(2h).

PROOF. Let h > 7:(07)/2. By Proposition 11, EF°" C Upsap E},, and by
Proposition 1 dim Ujsqp, By < 771(2R).

Let h < 7:(07)/2. By Proposition 11, EF°" C Uy <oy, E}, and by Proposition
1, we get dim Uh’SQh E]l;/ S 7—:(2h>

If C3(2h) holds, EY, C EP°F and dim B}, = 7/(2h).

Theorem 2., item (3) is obtained using the same arguments as in Section 5.

7 Back to the fixed points of the smoothing transformation (1)

7.1 Recalls on Mandelbrot multiplicative cascades iy, and some self-similarity
properties of X o

Recall how the measure uy on [0,1] is obtained. Let A be the alphabet
{0,...,b—1} and A* = U,50 A" (A° contains the empty word @). Consider a
sequence ((Wo(w), . ’Wb_l(w)))weA* of independent copies of W. Forn > 1,
let pw,, be the measure defined on [0, 1] by uniformly distributing on every
b-adic interval of the form [2221 wpb k0 4+ 0, wkb_k’}, wiws -+ - w, € A",
the mass W, (0) - W, (wq) - - - Wi, (wiws - - - wy,—1). Then, with probability 1,

n
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the sequence of multiplicative cascades (uw.,)n>1 converges weakly on [0, 1],
as n — 00, to a measure uy called the independent multiplicative cascade

measure associated with W.
The real number ¢}, (1) has a geometric interpretation: Both the lower and

upper Hausdorff dimensions of puy equal ¢}, (1) (for the definitions of these

dimensions, see [36,26]).
Consider such a measure u = uy, and assume that g and the Lévy process
X are independent. The probability space (€2,[P) can be written as a product
(s xQ,,Ps®P,), where (2g,Pg) and (£2,,P,) are the probability spaces on
which are respectively defined the Poisson point process S and the measure

If, moreover, X = X3 and 1 = pw, as in Section 1, the reader can check that

L.
the following property holds: Vn > 1
2(0) [T Wy (wr - wi0)) . (40)

weA™

d
(ZW,(k:—i-l)b—" - Zw,kb—n) = (
0<k<b—" k=1

where, on the right hand side,
e the set A" is described in lexicographical order,

e the random vectors (Wy(w), ..., W,_1(w))’s are i.i.d. with W,

e the random values Z(w)’s are i.i.d. with Zy;; and are independent of the

(Wo(w), ..., Wy_1(w))’s.
Also, if the function ¢y defined in (2) is not equal to —oo on a neighborhood
of (—00,2] and ¢y, () > 0, then it follows from [34,1,4] that 7, = ¢, on the
interval J = {g < 1: ¢}y, (¥, (q)) = 0} almost surely. This yields 7,5 = ow

on the interval Jg = - J
7.2 The validity of C2(h, g) when p is a Mandelbrot measure

log?(j) for every j > 1 and let (j,),>1 be an increasing sequence
B (recall (7)). Let (n,),>1 be the sequence of

Let ;=

such that lim, .o j, " log, C;,
sequence (j);>1 of Lemma 1 so that 2-Urt28ip > p=me(mu(D=¢ny)  This last

technical point is used at the end of the proof of Proposition 14.

It is shown in [10] that properties (1) and (2)(b) of Definition 5 are fulfilled P,,-

almost surely by p with our choice of ¢;. Moreover, by our choice of (5;);>1
in Lemma 1 and {(u,,l,)} in C2(h, ), property (2)(a) of Definition 5 is

~1/2
integers defined by n, = inf{k : b=*uM=¥C; < 1}. We can choose the
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automatically fulfilled. So it remains to show that properties (3) and (4) of
Definition 5 are satisfied PP,-almost surely and Pg ® P,-almost surely respec-
tively.

Property (3) comes from the statistical self-similarity of u: For v € A*, let p"
be the measure constructed on [0, 1] in the same way as y is, but with the fam-

ily of random vectors ((Wé’(w), . ,Wg’_l(w)))weA* = ((Wo(v-w), ooy Whoq (v
w)))weA* instead of ((Wgw), e Wb_l(w)>>we,4*' Let |v| stand for the length
of the word v and define L, = [Z‘kil vpb™F b7l Z‘klil Ukb_k] By construc-
tion, P,-almost surely, the restriction of the measure p to L, is equal to
W ()W, (1) -+ - Wy (01 -+ - v —1) - ¥ 0 f1,, (the invertible function f,, is de-
fined in Definition 5 (3)). Consequently, property (3) holds P,-almost surely
with the choice ulv = u¥ o fr,.

For n > 1 let

Viji>n, Vk [k-k,|<1,

Ul =<telo,1]: ‘ ‘ =
/ﬂ’([kb‘ﬂ, (k + 1)()—3]) < pim)—e))

n

Then let
ny=inf{n >1: p(UY) > ||p]l/2}.

It remains us to show that Pg ® P, almost surely, there exists a dense subset
D of (1,00) such that for every 6§ € D, for p-almost every u € [0, 1], there
exists an increasing sequence of integers (jx(u))g>1 such that for every k > 1

there exists L,, € B?k(u) (u) satisfying limy_. jt’(’ﬂ) = ¢ and

M, < [vn] @ and b7 < ] (41)

The function F' is still defined by F(t) = u([0,t]). For every w € A™, let
Ny(ws,w,) be the number of points of the Poisson point process S falling
in F(L,) x (27U»*D 279]. Conditionally on s, the variable N, is a Pois-
son variable with intensity j(L,)C};,. Then, the orthogonal projection of SN
(F(Ly) x (270D 279¢]) onto F(L,,) is equal to {C1,...,Cn, }, where ((;)is1 is
a sequence of independent random variables (under Pg), uniformly distributed
in F(Ly).

We set C, = ¢; and G = F~1(¢) . If 6 > 1, v(0,C,) stands for the word of

generation [§|wl] + 1 such that ¢, € L5z

If t € [0,1) and n > 1, then we denote by w,(t) the element w of A" such
that ¢ € Ly,
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The validity of (/) is a consequence of the following propositions.

Proposition 13 Let 6 > 1. With P-probability 1, for u-almost every t, if p is
large enough, then (41) holds with v, = v(6, Cu, (1))-

Proposition 14 With P-probability 1, for p-almost every t, there are in-
finitely many p’s such that Ny, ) > 1, that is C, 1) s a jump point of X.

Forn >1landv € A*let R,(v) = /ﬂ((U];)C). The proof of Proposition 13 uses
the following result which is a consequence of our choice for ¢; and Lemma 1
in [10].

Lemma 7 For every n > 1, the random variables R, (v), v € A*, are iden-
tically distributed. Denote R, () = R,. Then, for all h € (0,1), E ((Rn)h> =

)

PROOF OF PROPOSITION 13. Let Q be the probability measure de-
fined on B(Qs) ® B(Q,) ® B([0,1]) by

Q(A) = E( /[071] La(wss s ?) ,u(dt)).

Notice that Q-almost surely means for Pg® P,-almost every (ws,w,,), for j,,-
almost every t. Let ¢; = jo;, 1, = [dn,] + 1 and p, = log3/2(np). By the
Borel-Cantelli lemma, and since p, < v, for p large enough, it is enough to
prove that

> Q (b Ry, (v(6, Cuny)) > 1/2) < 00 (42)
p>1
p=>1

We establish (42). For p > 1 and h € (0,1), we have

Q (17" Ry, (v(8, Cuy)) = 1/2) < 207" Eq (R% (v(o. 5wnp(t)))h> (44

In addition, Eg (Rwrp (v(6. Ewnp(t)))h) _ E( S Ry, (006.6)" u(Lw)).

weA"P

Given u,w € A*, w < u means that L, C L,. We obtain
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E (R, (v0.00) nll)) = X E(L(C) R, (@n(La)

ue AP+l <y

= X E(1F<Lu><cw>R%<u>’w<Lw>)

ueAlbmpl+l <y

= Y B, (Ps(Cu € F(L)) Ry, (u)'u(Ly))

ue AP qy<y

> E("?ELL‘:))’,RwT,,(um(Lw))= S E(IF(L) B, W)

uE.A[é"pH_l, w=u UEA[éan_l, w=u

It follows from the previous equality and the structure of y that

Eo (R, (006, Cuny)) ) = E(Rus, (0" 1)

where v is any element of .A* Since it is assumed that p is positive with prob-
ability 1 as well as E(X524 W) < oo for some a > 1, it follows from [15] that
a can be chosen so that IE(|| ,uH ) < 0. Consequently, the Holder inequality
yields E(Ry, (u)"|u]]) < E(||u||°‘)1/°‘E(RZf;)1/°", where ™! 4+ /7! = 1. The
conclusion follows by using (44) together with Lemma 7 applied with h small
enough.

We move to (43). For p > 1 and h € (0, 1), we have

o) <HM’U(5,<wnP(t))H < b—pp) < b—pphEQ (|’MU(57Cwnp(t))H—h> ‘

Computations comparable to those used in establishing (42) show that

6<wn t — -
Eq (Il ®< ) = E (™) < oo.

The conclusion follows from our choice for p,.

PROOF OF PROPOSITION 14. Let w, € Q, such that yp = p(w,) is
defined and positive, and let ¢t € (0,1) in the set of full y-measure described
in property (2)(b) of Definition 5. The random variables Ny, )(+,wu), p > 1,
are Py independent, and

Ps(Nuw, (- wi) = 1) =1 = exp (= (L, )C5, )

Due to the definition of n, and property (2)(b), for p large enough, we have 1—

exp (—,u(Lwnp(t))C'jp) > 1—exp(—1),80 ¥p>1 Ps(Nu, ) (-;wu) > 1) = co. The
Borel-Cantelli lemma allows to conclude that Pg-almost surely Ny, ) (ws, wy,) >
1 for infinitely many p. Since this holds P,-almost surely, for p-almost every
t, we get the desired result by the Fubini theorem.
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A final important remark is that the constraint 2-Ur+D8» > b’”P(TL(j)"P"P)
imposed on f3;, ensures that t € [u, — 1,,/2, uy, +1,/2] if u, stands for ,, -
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