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Email-address: seuret@univ-paris12.fr

Key words: Stochastic processes, Hausdorff measures and dimension, Multifractal
functions and measures, Self-similar measures
PACS: 60Gxx, 28A78, 28A80, 28C15

1 Introduction

The interest for multifractal stochastic processes is mainly motivated by the
need for accurate models in the study of the variability of wild signals. These
locally irregular signals come from physical phenomena such as fully developed
turbulence, TCP Internet traffic, variations of financial prices, or heart beats.

Fractional Brownian Motions (FBM), Lévy processes and multiplicative cas-
cades are frequently used when modeling these phenomena. However, these
processes are partly satisfactory for different reasons. FBM are monofractal,
and thus have the same Hölder exponents at every point. The two other models
are multifractal, i.e. the pointwise Hölder exponents take several values, and
the level sets of their Hölder exponents are dense fractal sets. Nevertheless the
singularity spectra of the Lévy processes have a very specific linear increas-
ing shape and, finally, the multifractal multiplicative cascades only generate
non-decreasing processes.

Other kinds of multifractal models were thus studied to go beyond these limi-
tations. For instance, Gaussian processes with non-constant prescribed Hölder
exponents are introduced in [2]. Another approach consists in generating mul-
tifractal random wavelet series [23,7].

Preprint submitted to Elsevier Science 23 January 2007



A third point of view consists in performing a (possibly multifractal) change
of time in a given stochastic process (Xt)t≥0. More precisely, given an atomless
positive Borel measure µ on R+ supported by an interval of the form [0, T ]
(T ∈ (0,∞)), then the process X ◦ µ([0, t]) is considered. This process shall
be viewed as the process X in (again, possibly multifractal) time µ.

The simplest situation lies in taking X equal to a monofractal process, like
the FBM (see [32,3,14] and Section 6). In this case, due to the monofractality
property, the multifractal nature of X ◦µ follows almost straightforward from
the one of µ (see Section 6). In the situation when it is assumed that X
also has multifractal sample paths, the multifractal time change creates more
interesting structures, both from the modeling and mathematical viewpoints
(see for instance [37] for preliminary results on this topic, especially concerning
large deviation spectra). The fine local study of the sample paths multifractal
properties is far more delicate than in the monofractal case. To our knowledge
it has never been achieved in a non-trivial case.

This paper deals with the case when X is a Lévy process. We provide con-
ditions on the measure µ under which the multifractal nature of the sample
paths of the process (Zt = X ◦ µ([0, t]))t≥0 can be described. Before going
further, we detail the reason which led us to consider this problem.

Let b be an integer ≥ 2 and W = (W0, . . . ,Wb−1) a positive random vector.
Then consider in the space of Laplace transforms of probability distributions
φ on R+ the equation

φ(u) = E
( b−1∏
i=0

φ(uWi)
)
, ∀ u ≥ 0. (1)

This equation, referred to as the smoothing transformation, is solved in [15,18].
It comes from the modeling of fully developed turbulence [31,30] and of in-
teracting particles systems. Subsequently, the problem is then to find all the
non-trivial solutions (i.e. 6≡ 1) of (1). The mapping

ϕW : q ∈ R 7→ − logb E
( b−1∑
i=0

W q
i

)
∈ R ∪ {−∞}. (2)

naturally arises in the problem’s solution. Indeed, under the assumption that
ϕW (p) > −∞ for some p > 1, it is proved by Durrett and Liggett in [15] that
(1) has non-trivial solutions if and only if there exists β ∈ (0, 1] such that
ϕW (β) = 0 and ϕ′W (β) ≥ 0. As a consequence of the concavity of the mapping
ϕW , such a β is unique and

β = inf{β′ ∈ [0, 1] : ϕW (β′) = 0}.

It is worth noting that the existence of non-trivial solutions in the general
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framework is almost entirely based on the existence of a non-trivial solution
in the case β = 1 with ϕ′W (1) > 0. Moreover, in this case, a fundamental
non-trivial solution is given by the Laplace transform of the probability distri-
bution of ‖µW‖, where µW is an independent multiplicative cascade on [0, 1]
generated by the random vector W = (W0, . . . ,Wb−1) used in (1), see [31,26]
and Section 7 for the construction of µW . This type of multiplicative cascade
measures has been extensively studied in [25,19,16,34,1,4]. Their well-known
multifractal properties are closely related to ϕW and (1).
Therefore, as soon as ϕW (1) = 0 and ϕ′W (1) > 0, it is possible to naturally as-

sociate the non-trivial stochastic process (ZW,t)t∈[0,1] =
(
µW ([0, t])

)
t∈[0,1]

with

(1) such that the Laplace transform of ZW,1 resolves (1). Moreover, this pro-
cess ZW,· is completely characterized by a statistical self-similarity property
(see (40) in Section 7).

This raises the problem of finding a natural process satisfying the same prop-
erties in the general case β ∈ (0, 1]. In the case β ∈ (0, 1), ϕW (β) = 0 and
ϕ′W (β) > 0, we recall how the solution φ of (1) is deduced in [15,18] from
the construction of ‖µW‖. First, the random vector Wβ = (W β

0 , . . . ,W
β
b−1) is

considered. By construction we get that ϕWβ
(1) = 0 and ϕ′Wβ

(1) > 0, and the
situation is reduced to the one described above.
Let φβ be the Laplace transform of ‖µWβ

‖. A non-trivial solution of (1) is
then given by the mapping φ : u 7→ φβ(u

β). Let Xβ be a β-stable Lévy subor-
dinator independent of µWβ

. Remark that the function φ is also the Laplace

transform of the random variable Z = Xβ

(
‖µWβ

‖
)

([15]). Hence, a method

to construct a stochastic process (ZW,t)t∈[0,1] associated with φ and fulfilling
the statistical self-similarity property (40) is then the following: Consider the
stochastic process

ZW,t = Xβ

(
µWβ

([0, t])
)

= Xβ(ZWβ ,t) (t ∈ [0, 1]). (3)

This process has the form of a Lévy process in multifractal time, and it pos-
sesses the required properties. Indeed, the Laplace transform of ZW,1 resolves
(1), and in addition, since Xβ has by construction independent increments
and is independent of µWβ

, the increments of ZW,t also satisfy the statistical
self-similarity property (40). Surprizingly enough, stable Lévy subordinators
and Mandelbrot multiplicative cascades thus appear as special elements of the
same class of processes (obtained by subordinating the integral of a Mandel-
brot cascade µW to an independent Lévy subordinator Xβ) obeying a certain
statistical self-similarity property.

Equation (1) can also be considered in the space of characteristic functions of
probability distributions on R. It is shown in [29] that if there exists β ∈ (1, 2]
such that ϕW (β) = 0 and ϕ′W (β) ≥ 0, then (1) possesses a non-trivial non-
positive solution. If ϕ′W (β) > 0, we associate naturally with that solution the
stochastic process (ZW,t)t≥0 formally defined as in (3), but with a symmetric
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β-stable Lévy process Xβ (a Brownian motion without drift if β = 2). Again,
the multifractal nature of (ZW,t)t≥0 appears to be related to ϕW .

We now resume the problem we address (i.e. to perform the multifractal anal-
ysis of a Lévy process in multifractal time) and our results.

First, the local regularity of a function f is measured in this paper as follows.
Let d ≥ 1, I a non-trivial subinterval of R+, and f : I → Rd. If x ∈ I, the
pointwise Hölder exponent hf (x) of f at x is defined 1 by

hf (x) = lim inf
y→x
y 6=x

log |f(y)− f(x)|
log |y − x|

, (4)

where | · | stands for the Euclidean norm, with the convention | log(0)| = ∞.

Then the multifractal nature of f is expressed in terms of the size of the
levels sets Ef

h of the function hf (·) defined by Ef
h = {x ∈ I : hf (x) = h}

(h ≥ 0). This size is measured by the Hausdorff dimension (denoted dim, see
Definition 3). Thus we focus on the estimation of the mapping

df : h ≥ 0 7→ dimEf
h ,

which is called singularity spectrum or Hausdorff multifractal spectrum of f .
A function (resp. a process) is said to be multifractal when its singularity
spectrum (resp. the singularity spectrum of its sample paths) is not reduced
to a single point (resp. with probability 1).

The singularity spectrum of Lévy processes (Xt)t≥0 – which corresponds in
our context to the case where the measure µ equals the Lebesgue measure – is
performed in [22] (see Theorem 1 below). There is no time change in this case:
Lévy processes without Brownian part have with probability 1 a non-trivial
linear multifractal spectrum. This typical shape is explained by the fact that
the jump points of Lévy processes satisfy a ubiquity property with respect to
the Lebesgue measure (the notion of ubiquity is detailed in Section 3.4).

In our context, when the measure µ is not monofractal, that is when the Hölder

1 This exponent does not coincide with the usual pointwise exponent, that we
denote Hf (x), which involves a polynomial ([20]). If hf (x) ∈ R+ \N∗, then hf (x) =
Hf (x) but the two notions may differ if hf (x) ∈ N∗. Nevertheless hf (x) is the
natural notion to be used here. Indeed, the study of (Zt) requires information on
the local behavior of t 7→ µ([0, ·]), i.e. on the Hölder exponents of the measure µ.
These exponents are in general more tractable by using a definition similar to (4)
than with the definition of [20].
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exponent function of the measure µ

hµ : t 7→ lim inf
r→0+

log µ(B(t, r))

log(r)
(5)

possesses several non-trivial level sets, the situation becomes subtler. We prove
that the local behavior of the process (Zt = X ◦ µ([0, t]))t≥0 is closely related
to some conditioned ubiquity properties (see Section 3.4), which combine con-
ditions on the jump points of (Zt) with conditions on the local behavior of µ.
Understanding these properties enables us to compute the singularity spec-
trum dZ , under suitable assumptions. These technical assumptions are fulfilled
by several classes of statistically self-similar measures µ with a construction
based on multiplicative cascade schemes, for instance some R+-martingales
(like µW above) in the sense of [24,6] or random Gibbs measures (see [9,10]).

Before summarizing our results, we start by recalling precisely the theorem
obtained in [22]. Let X = (Xt)t≥0 be a Rd-valued Lévy process. Recall that
X has stationary independent increments and that its characteristic function
takes the form E

(
ei〈λ|Xt〉

)
= e−tψ(λ), where

ψ(λ) = i〈a|λ〉+Q(λ)/2 +
∫

Rd

(
1− ei〈λ|x〉 + i〈λ|x〉1|x|≤1

)
π(dx)

and where a ∈ Rd, Q is a quadratic form, and π is a Radon measure on
Rd \ {0}, called the Lévy measure of X, satisfying∫

(1 ∧ |x|2)π(dx) <∞. (6)

Define the Blumenthal-Getoor exponent of X as

β = inf
{
γ ≥ 0 :

∫
|x|≤1

|x|γπ(dx) <∞
}
.

We always have β ∈ [0, 2]. Remark that

β = sup
(
0, lim sup

j→+∞
j−1log2Cj

)
, where Cj =

∫
2−j−1≤|x|≤2−j

π(dx) (j ≥ 1). (7)

We focus on the pointwise Hölder exponents of sample paths of X, thus with-
out loss of generality we omit the jump points generated by the compound
process with intensity 1{|x|>1} π(dx). When

∫
(1 ∧ |x|)π(dx) < ∞, there are

also several ways to write X as the sum of a Brownian motion B with drift
a′ ∈ Rd and covariance matrix Q and of a Lévy process X̃ of Lévy measure
1{|x|≤1} π(dx), even when requiring that B and X̃ are independent.

For j ≥ 0, let πj(dx) = 1{2−j−1<|x|≤2−j}π(dx). Then let (Yj)j≥0 be a sequence
of independent compound Poisson processes such that the Lévy measure of Yj
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is πj. We then choose X̃. as follows:

X̃t =
∑
j≥0

Xj(t) where Xj(t) =

Yj(t) if β < 1,

Yj(t)−
∫
xπj(dx) if β ≥ 1.

(8)

Then a general Lévy process (with jumps of norm ≤ 1) has the form

X = X̃ +B(a′, Q), (9)

where B(a′, Q) is a Brownian motion with drift a′ ∈ Rd and covariance matrix
Q, independent of X̃ (of course if Q = 0 then B is degenerate).

We now state the theorem of [22] using the pointwise Hölder exponent intro-
duced above in (4) instead of the classical one.
By convention, dim E = −∞ means that the set E is empty.

Theorem 1 Let X be a Lévy process decomposed in the form X̃+B(a′, Q) as
in (8) and (9), and consider the associated process X̃. Suppose that β ∈ (0, 2]

and
∑
j≥1 2−j

√
Cj log(1 + Cj) < +∞ (this holds as soon as β < 2).

With probability 1, d
X̃

(h) = βh if h ∈ [0, 1/β] and −∞ otherwise.

The influence of B(a′, Q) is also studied in [22], and the corresponding result
is recalled in Theorem 3.

We now consider a positive Borel measure µ with a support equal to [0, 1] and
its integral F , i.e. F is the mapping u ∈ [0, 1] 7→ µ([0, u]). Let (Zu)u∈[0,1] be
the Lévy process in time F (or µ) given by (Zu = XF (u))u∈[0,1].

If µ is a multifractal measure, then F is a multifractal non-decreasing function.
We are going to assume that µ is atomless, hence F is also continuous on
[0, 1]. We use the pointwise exponent of µ defined in (5). If h ≥ 0, the level
sets Eµ

h of the measure µ are defined as Eµ
h = {u : hµ(u) = h}. Finally, the

singularity spectrum (or Hausdorff multifractal spectrum) of µ is the mapping
dµ : h 7→ dim Eµ

h .

The so-called scaling function τµ or Lq-spectrum associated with the measure
µ is involved in our result. It is classically defined for positive Borel measures
µ on [0, 1] as

τµ : q 7→ lim inf
j→+∞

−j−1 log2

∑
0≤k≤2j−1

µ
(
[k2−j, (k + 1)2−j)

)q
. (10)

The dyadic basis chosen in the definition (10) is not a restriction. Indeed, since
supp(µ) = [0, 1], a different integer basis b ≥ 2 would give the same value for
τµ.
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The Legendre transform f ∗ of a function f : R+ → R ∪ {−∞} is defined as
f ∗ : h 7→ infq∈R hq − f(q).

Roughly speaking, our result yields the singularity spectrum dZ of Z when the
measure µ obeys the multifractal formalism in the sense that dµ(h) = τ ∗µ(h) for
all h (for detailed studies of multifractal formalisms for measures, the reader
is referred to [13,35]). This property holds for many classes of statistically
self-similar measures µ. These measures also satisfy three technical conditions
C1-3 invoked in our statement. For sake of shortness in this introduction,
these conditions are specified later in Section 3.4. Among our assumptions, we
shall keep this property in mind:

τ ′µ(1) exists and is strictly positive. (11)

This implies that the lower and upper Hausdorff dimensions of µ coincide with
τ ′µ(1) (see [33] for the corresponding definitions).

We shall prove the following result, which includes Theorem 1 as the special
case where µ is the Lebesgue measure.

Theorem 2 Let X be a Lévy process decomposed in the form X̃+B(a′, Q) as

in (8) and (9). Suppose that β ∈ (0, 2], and
∑
j≥1 2−j

√
Cj log(1 + Cj) < +∞.

Let µ be an atomless positive Borel measure whose support is [0, 1], such that
(11) and C1 hold true.
We introduce the exponents hµ,β = τ ′µ(1)/β and αmax = sup{α : τ ∗µ(α) ≥ 0}.

Let (Z̃u)u∈[0,1] be the stochastic process defined by Z̃(u) = X̃µ([0,u]) (i.e. the
influence of B(a′, Q) in the decomposition (9) is not taken into account).

With probability 1:

(1) For every h ∈ [0, hµ,β), dZ̃(h) ≤ βh.
Moreover, if C2(hµ,β) holds, then for every h ∈ [0, hµ,β), dZ̃(h) = βh.

(2) If h ∈ [hµ,β, αmax/β], d
Z̃
(h) ≤ τ ∗µ(βh).

Moreover, if C3(βh) holds, then d
Z̃
(h) = τ ∗µ(βh).

(3) If h > αmax/β then E
Z̃
(h) = ∅.

The singularity spectrum of Z̃ is thus composed of two parts (see Figure
1): First a linear part of slope β, then a concave part which is a dilated and
translated version of (a part of) the singularity spectrum of the initial measure
µ. This shape reflects the combination of an additive structure (the Lévy
process) with a multiplicative structure (the multifractal measure µ). Such a
behavior is observed for the heterogeneous sums of Dirac masses studied in [8].
For the sequel, we note Dµ,β(h) the singularity spectrum obtained in Theorem
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Fig. 1. Typical multifractal spectra of Left: a statistically self-similar measure µ,
Middle: a Lévy process in multifractal time X̃ ◦ F when β > 1, and Right: when
β ≤ 1. Here hs is the Lebesgue-almost sure exponent, i.e. hs = τ ′µ(0

+).

2, i.e. it is the mapping

Dµ,β(h) =


βh if h ∈ [0, hµ,β)

τ ∗µ(βh) if h ∈ [hµ,β, αmax/β]

−∞ otherwise

(12)

Remark that the singularity spectrum of Z̃ is obtained as the Legendre trans-
form of the function

τµ,β(q) =

τµ(q/β) if q ≤ β,

0 otherwise

as soon as C2(hµ,β) and C3(h) hold true for all h ∈ [τ ′µ(1), αmax).

As said above, examples of measures illustrating our result are Gibbs measures
and their random counterparts studied in [17,27,9], and of course the indepen-
dent random cascades µW mentioned above in the study of the fixed points of
the smoothing transformation (1). Other examples are the compound Poisson
cascades and other R+-martingales studied in [5,3,6].

We now treat the general case, i.e. the influence of the drift and of the Brow-
nian component.

Theorem 3 Under the assumptions of Theorem 2, introduce the exponents
h̃µ,β = inf{h ≥ 0 : βh < τ ∗µ(h)} if β < 1 and hµ,β = inf{h ≥ 0 : βh < τ ∗µ(2h)}.
We always have h̃µ,β < hµ,β and hµ,β ≤ τ ′µ(1)/2 ≤ hµ,β.

Consider the two mappings (D̃µ,β is defined if β < 1)
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Fig. 2. Typical multifractal spectra of Left: a Lévy process in multifractal time
X̃ ◦ F when β < 1, and Right: when Q 6= 0, here with β = 1.

D̃µ,β(h)=


βh if h ∈ [0, h̃µ,β)

τ ∗µ(h) if h ∈ [h̃µ,β, αmax]

−∞ otherwise

and Dµ,β(h)=


βh if h ∈ [0, hµ,β)

τ ∗µ(2h) if h ∈ [hµ,β,
αmax

2
]

−∞ otherwise.

Let (Zu)u∈[0,1] be the stochastic process defined by Z(u) = Xµ([0,u]).

(1) Suppose that Q = 0 and (a′ = 0 if β < 1). With probability 1, the same
conclusions as for Theorem 2 occur here.

(2) Suppose that Q = 0, β < 1 and a′ 6= 0. With probability 1,

(a) dZ ≤ D̃µ,β.

(b) If C2(hµ,β) holds, then for every h ∈ [0, h̃µ,β), dZ(h) = D̃µ,β(h).

(c) If (τ ∗µ(h̃µ,β) = βh̃µ,β and C2(hµ,β) holds), or if (τ ∗µ(h̃µ,β) > βh̃µ,β and

C3(h̃µ,β) holds), then dZ(h̃µ,β) = D̃µ,β(h̃µ,β).

(d) If h ∈ (h̃µ,β, αmax] and C3(h) holds, then dZ(h) = D̃µ,β(h).

(e) If h > αmax then EZ(h) = ∅.
(3) Suppose that Q 6= 0. With probability 1,

(a) dZ ≤ Dµ,β.

(b) If C2(hµ,β) holds, then for every h ∈ [0, hµ,β), dZ(h) = Dµ,β(h).

(c) If (τ ∗µ(2hµ,β) = βhµ,β and C2(hµ,β) holds), or if (τ ∗µ(2hµ,β) > βhµ,β
and C3(2hµ,β) holds), then we have dZ(hµ,β) = Dµ,β(hµ,β).

(d) If h ∈ (hµ,β, αmax/2] and C3(2h) holds, then dZ(h) = Dµ,β(h).

(e) If h > αmax/2 then EZ(h) = ∅.

The conclusions of items (2) and (3) are simple consequences of the fact that
respectively a linear drift and a Brownian component are added to the “pure”
Lévy process X̃. The corresponding spectra are simply obtained as supremum
of two spectra. This explains their non-concave shapes (see Figure 2).
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The paper is organized as follows.
Section 2 recalls some useful properties of measures.
Section 3 introduces the main tools used in the proof of Theorem 2. Proper-
ties of Poisson point processes are discussed, and estimates for the increments
of X̃ obtained in [22] are recalled. Then, results on heterogeneous ubiquitous
systems (introduced in [11]) are stated, and conditions C1-3 are defined.
Section 4 is devoted to the proof of Theorem 2 when B(a′, Q) ≡ 0. Sections 5
and 6 complete the proof to yield the general case B(a′, Q) 6≡ 0.
Section 7 deals with the validity of condition C2(hµ,β) for independent multi-
plicative cascades, which play a central role in the fundamental example (3).

2 Local regularity of measures

For every j ≥ 1 and k ∈ [0, . . . , 2j − 1], Ij,k = [k2−j, (k + 1)2−j). I+
j,k and I−j,k

denote the intervals Ij,k + 2−j and Ij,k − 2−j.

If u ∈ (0, 1), ∀j ≥ 1, Ij(u) denotes the unique dyadic interval of length 2−j,
semi-open to the right, containing u. Then define I+

j (u) = Ij(u) + 2−j and
I−j (u) = Ij(u)− 2−j.

The diameter of a set B is denoted by |B|. For the rest of the paper, the
convention log(0) = −∞ is adopted.

Definition 1 Let µ be a positive Borel measure on [0, 1]. For u0 ∈ (0, 1), the
lower and upper Hölder exponents of µ at u0 are respectively defined by

αµ(u0) = lim inf
j→+∞

log µ(Ij(u0))

log |Ij(u0)|
and αµ(u0) = lim sup

j→+∞

log µ(Ij(u0))

log |Ij(u0)|

When αµ(u0) = αµ(u0), their common value is denoted αµ(u0) and called the
Hölder exponent of µ at u0.

The left and right lower and upper Hölder exponents of µ at u0 are defined by

α−µ (u0) = lim inf
j→+∞

log µ(I−j (u0))

log |I−j (u0)|
and α+

µ (u0) = lim inf
j→+∞

log µ(I+
j (u0))

log |I+
j (u0)|

and α−µ (u0) = lim sup
j→+∞

log µ(I−j (u0))

log |I−j (u0)|
and α+

µ (u0) = lim sup
j→+∞

log µ(I+
j (u0))

log |I+
j (u0)|

.

Similarly, when they coincide, α−µ (u0) and α+
µ (u0) denote their common value.

Finally, we define

hµ(u0) = max(α−µ (u0), αµ(u0), α
+
µ (u0))
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and for h ≥ 0

E
µ
h = {u ∈ [0, 1] : hµ(u) = h}.

We see that (the exponent hµ(·) and its level sets Eµ
h are defined in (5))

hµ(u0) = min(α−µ (u0), αµ(u0), α
+
µ (u0)) = lim inf

r→0+

log µ(B(u0, r))

log |B(u0, r)|
.

Definition 2 If µ is a positive Borel measure on [0, 1], and α ≥ 0, denote by
Ẽµ
α the set {x : α−µ (x) = αµ(x) = α+

µ (x) = α}.

The following proposition puts together classical results derived from the mul-
tifractal formalism for measures (see [13,35]). It provides upper bounds for
the Hausdorff dimension of union of level sets Eµ

α, Ẽµ
α and E

µ

α. The singularity
spectrum dµ and the scaling function τµ were introduced in Section 1. For the
reader’s convenience we recall the definition of the Hausdorff dimension.

Definition 3 Let s ≥ 0. The s-dimensional Hausdorff measure of a set E,
Hs(E), is defined as

Hs(E) = lim
r↘0

Hs
r(E), with Hs

r(E) = inf
{∑

i

|Ei|s
}
,

the infimum being taken over all the countable families of sets Ei such that
|Ei| ≤ r and E ⊂ ⋃

iEi. Then, the Hausdorff dimension of E, dim E, is
defined as dim E = inf{s ≥ 0 : Hs(E) = 0} = sup{s ≥ 0 : Hs(E) = +∞}.

Proposition 1 Let µ be a positive Borel measure on [0, 1] and let α ≥ 0.

(1) dim Ẽµ
α ≤ dµ(α) ≤ τ ∗µ(α).

(2) If α ∈ [0, τ ′µ(0
+)], then dim

⋃
α′≤αE

µ
α′ ≤ τ ∗µ(α).

(3) If α ≥ τ ′µ(0
+), then dim

⋃
α′≥α

(
Eµ
α′ ∪ E

µ
α′

)
≤ τ ∗µ(α).

(4) If τ ∗µ(α) < 0, then Eµ
α = ∅.

Next proposition follows from the definition of τµ and Tchernov inequalities.

Proposition 2 Let µ be a positive Borel measure on [0, 1]. For every α ≥ 0,
C > 0 and ε > 0, there exists a scale J such that j ≥ J implies

log
(
#
{
k ∈ {0, .., 2j − 1} :µ(Ij,k) ≥ C2−j(α+ε)

})
log 2j

≤ sup
α′≤α+ε

τ ∗µ(α
′) + ε.

11



3 Tools

In this section, we are given the Lévy process X, decomposed into the sum
X = X̃ +B(a′, Q) described in (9).

3.1 Some notations

We denote by S the Poisson point process with intensity `⊗π associated with
the Lévy process X(t), where ` stands for the Lebesgue measure on R+ and
π is the Lévy measure.

For every j ≥ 1, let

Gj = {t : (t, λ) ∈ S for some λ such that |λ| ∈ (2−j−1, 2−j]}.

For t ∈ Gj, λt is the unique element λ ∈ Rd such that (t, λ) ∈ S. The jumps of
the process Xj(t) are thus exactly located at the points of Gj, and the value
of the jump of Xj at t ∈ Gj is λt.

For every j ≥ 1 and for every δ > 0, Ajδ is the union of intervals

Ajδ =
⋃
t∈Gj

B(t, 2−(j+1)δ).

We clearly have
⋃
t∈Gj

B(t, |λt|δ) ⊃ Ajδ. Eventually, for every sequence δ̃ =
{δj}j of non-negative numbers, we denote

A
δ̃

= lim sup
j→+∞

Ajδj =
⋂
J≥1

⋃
j≥J

Ajδj . (13)

3.2 Coverings and weak redundancy properties associated with Poisson point
processes

It is known [38,22] that with probability 1, for every δ < β, if the sequence
δ̃ is constantly equal to δ, then A

δ̃
= R+ (recall (13)). An easy adaptation of

the proof of Lemma 3 in [22] yields the following slightly stronger result.

Lemma 1 With probability 1, there exists a non-decreasing non-negative se-
quence β̃ = (βj)j≥1 converging to β such that A

β̃
= R+.

Notice that if the Lévy process is stable and if we can write in polar coordinates
π(dr, dθ) = αr−(1+β) drν(dθ) with α ≥ 1/2 and ν a probability measure on

12



the unit sphere, then the constant sequence (βj = β)j can be chosen in the
previous statement.

The problem of covering by Poisson intervals is connected with the problem
of counting the number of points of S whose projection on R+ falls in a given
dyadic interval Ij,k = [k2−j, (k + 1)2−j). Next Lemmas 2 and 4 are devoted
to this question.

Lemma 2 For δ > β and ε̃ = {εj}j≥1 a sequence of positive numbers, and
for every integers j and k, let

Kδ,ε̃
j,k = #

{
t ∈ Ij,k : t ∈ Gj′ for some j′ ∈ [j/δ, j/(β + εj)]

}
. (14)

There exist two sequences {εj}j≥1 and {ηj}j≥1 of positive real numbers converg-
ing to 0 such that for every integer T > 0, with probability 1: For every δ > β,
for every j ≥ 1 large enough (depending on δ), for every k ∈ {0, . . . , 2jT −1},
we have Kδ,ε̃

j,k ≤ 2jηj .

PROOF. By definition of β, there exists a positive non-increasing sequence

ε̃(1) = {ε(1)
j }j converging to zero such that Cj ≤ 2j(β+ε

(1)
j ).

Let T be a positive integer. Let δ > β. For every j ≥ 1 and k ∈ {0, . . . , 2jT −
1}, the random variable Kδ,ε̃(1)

j,k is a Poisson variable with intensity Cδ,ε̃(1)

j =

2−j
∑

j/δ≤j′≤j/(β+ε
(1)
j )

Cj′ ≤ 2−j
∑

j/δ≤j′≤j/(β+ε
(1)
j )

2
j′(β+ε

(1)

j′ ) ≤ Mj,δ2
j((β+ε

(1)

[j/δ]
)/(β+ε

(1)
j )−1)

,

where Mj,δ is equal to 22
(β+ε

(1)

[j/δ]
)/(β+ε

(1)
j

)

2
β+ε

(1)

[j/δ]−1

. In fact it is easily checked that the

sequence Mj,δ can be bounded by a constant Mβ independent of δ and j since

the sequence {ε(1)
j } is bounded. Thus Cδ,ε̃(1)

j ≤ Mβ2
j((β+ε

(1)

[j/δ]
)/(β+ε

(1)
j )−1)

, for
every j and every δ.

Moreover, since the sequence {ε(1)
j } is non-increasing and converges to zero

as j → +∞, (β + ε
(1)
[j/δ])/(β + ε

(1)
j ) − 1 is bounded by {ε(δ)

j } = {2ε(1)
[j/δ]/β},

which is a non-increasing sequence depending on δ. Thus Cδ,ε̃(1)

j is bounded by

Mβ2
jε

(δ)
j .

We consider εj = ε
(1)
[j/ log(j+1)] for all j ≥ 1. For every δ > β, for j large enough,

we have εj ≥ ε
(δ)
j , and thus Cδ,ε̃

j ≤ Cδ,ε̃(1)

j ≤ 2jεj (actually, without loss of

generality, we can change a little bit the sequence {ε(δ)
j } so that it takes into

account the constant Mβ).

13



We now use the following lemma which is a simple consequence of the Stirling
formula

Lemma 3 There exists an integer r > 0 such that for j large enough, for every
Poisson random variable N of parameter C > 0, P(N > r(j + C)) ≤ 2−2j.

Let P δ
j = P

(
∃k ∈ {0, . . . , 2jT − 1} : Kδ,ε̃

j,k ≥ r(j + Cδ,ε̃
j )
)
. By Lemma 3 for j

large enough we have P δ
j ≤ 2−2j2jT so

∑
j≥1 P

δ
j < +∞. The Borel-Cantelli

lemma implies that for every j large enough, for every k ∈ {0, . . . , 2jT − 1},
Kδ,ε̃
j,k ≤ 2jηj , where ηj is the positive sequence converging to 0 at infinity defined

by 2jηj = r(j+Cδ,ε̃
j ). This yields the uniform control over k ∈ {0, . . . , 2jT −1}

of Kδ,ε̃
j,k for every δ > β with probability 1, and finally with probability 1 for

all δ > β since the random functions δ 7→ Kδ,ε̃
j,k are non-decreasing.

We need to introduce the notion of weakly redundant system in R+. This notion
is later determinant to get upper bounds for the level sets of Hölder exponents.

Definition 4 Let (xn)n≥0 ∈ RN
+ and (λn)n≥0 a positive sequence converging

to 0. For every T > 0 and j ≥ 0, we introduce the sets of indices

Tj =
{
n : xn ∈ [0, T ], 2−(j+1) < λn ≤ 2−j

}
. (15)

The family {(xn, λn)}n∈N is said to form a weakly redundant system if for
every T > 0 there exists a sequence of integers (NT,j)j≥0 such that

(i) limj→∞(log2NT,j)/j = 0.

(ii) for every j ≥ 1, Tj can be decomposed into NT,j pairwise disjoint sub-
sets (denoted Tj,1, . . . , Tj,NT,j

) such that for each 1 ≤ i ≤ NT,j, the family{
B(xn, λn) : n ∈ Tj,i

}
is composed of disjoint balls.

Lemma 4 Consider the Poisson point process S =
⋃
j≥0Gj. Let (βj)j≥0 be a

non-decreasing sequence converging to β.

With probability 1, the family
⋃
j≥0{(t, |λt|βj) : t ∈ Gj} forms a weakly redun-

dant system.

PROOF. This is a direct consequence of the estimates obtained in the proofs
of Lemmas 5 and 8 of [22] for the numbers Nj,k = #{t ∈ Gj : t ∈ [k2−j, (k +
1)]2−j} when β = 1.
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3.3 Local regularity of the Lévy process X̃

As a consequence of the work achieved by Jaffard in [22], the increments of X̃
satisfy the following almost-sure properties.

Proposition 3 Let ε > 0. With probability 1:

Let t0 ≥ 0 be not a jump point of X̃(t), and write hX(t0) = 1/δ for some
δ ≥ β. For η small enough, there exists ε′ > 0 such that for all t ≥ 0,

if |t− t0| ≤ η, then
∑

j≥ log2 |t−t0|−1

β+ε′

|Xj(t)−Xj(t0)| ≤ |t− t0|1/(β+ε) (16)

and |X(t)−X(t0)| ≤ |t− t0|1/(δ+ε). (17)

Moreover, still for |t−t0| ≤ η, if
∑
j<

log2 |t−t0|−1

β+ε′
Xj(·) has no jump point between

t and t0, we get

∑
j<

log2 |t−t0|−1

β+ε′

|Xj(t)−Xj(t0)| ≤ |t− t0|1/(β+ε). (18)

Equation (18) implies that when β ≥ 1 the contribution of the sum of all the

drifts associated with the processes Xj(t), j <
log2 |t−t0|−1

β+ε′
, on a given interval

[t0, t], is always less than |t− t0|1/(β+ε).

3.4 Heterogeneous ubiquity and Hausdorff dimensions of limsup sets

General results of what we call “heterogeneous ubiquity” are obtained in [11]
(see also [12]). Here, a simpler version adapted to our context is stated. It
plays a similar role as the geometric Theorem 2 used in [22], but makes it
possible to work out problems raised here by considering a multifractal time
change. Some additional notations have to be introduced.

Let {un}n∈N be a sequence of points in [0, 1] and {ln}n∈N a sequence of positive
real numbers converging to zero. Let δ > 1. For every n ∈ N we set

In = [un−ln, un+ln], Ĩ+
n = [un+ln/4], Ĩ−n = [un−ln/4, un], Iδn = [un−lδn, un+lδn].

In addition, given an integer b ≥ 2, for u ∈ [0, 1], we set
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Bj(u) =
{
In : u ∈ In, ln ∈ (b−(j+1), b−j]

}
, (19)

Bδj (u) =
{
Ij′,k′ : ∃In ∈ Bj(u) such that Ij′,k′ ⊂ Iδn

}
. (20)

Definition 5 Let {un}n∈N be a sequence of points in [0, 1], and let {ln}n∈N be
a sequence of positive real numbers converging to zero.

Let µ be a positive Borel measure such that supp(µ) = [0, 1] and (11) holds.

The system {(un, ln)}n is said to form an heterogeneous ubiquitous system with
respect to (µ, τ ′µ(1)) if the following holds true.

(1) There exists a non-increasing sequence (ϕj)j≥0 with the properties:

(a) limj→∞ ϕj = 0, (jϕj)j≥0 is non-decreasing at +∞ and limj→∞ jϕj =
+∞.

(b) ∀ ε > 0, (j(ε− ϕj))j≥0 is non-decreasing at +∞ ,

(c) Properties (2), (3) and (4) below hold.

(2) There exist an integer b ≥ 2 such that

(a) µ-almost every t ∈ [0, 1] belongs to
⋂
N≥0

⋃
n≥N [un − ln/2, un + ln/2].

(b) For µ-almost every t ∈ [0, 1], there exists an integer j(t) such that
∀j ≥ j(t), ∀ k such that |k − kbj,t| ≤ 1,

b−j(τ
′
µ(1)+ϕj) ≤ µ([kb−j, (k + 1)b−j]) ≤ b−j(τ

′
µ(1)−ϕj),

where kbj,t is the unique integer k such that t ∈ [kb−j, (k+1)b−j). Thus
(2)(b) implies for µ-a.e. t ∈ [0, 1] a precise control of the µ-mass of
the three b-adic intervals around t.

(3) (Self-similarity of µ) For every b-adic subinterval L of [0, 1], let fL denote
the canonical affine mapping from L onto [0, 1]. There exists a measure
µL on L, equivalent to the restriction of µ to L, such that property (2)(b)
holds for the measure µL ◦ f−1

L instead of the measure µ.

Let jL = logb
(
|L|−1

)
and for every n ≥ 1, let

UL
n =

t ∈ L :


∀ j ≥ n+ jL, ∀ k, |k − kbj,t| ≤ 1,

µL
(
[kb−j, (k + 1)b−j]

)
≤
(
b−j

|L|

)τ ′µ(1)−ϕj−jL

 .
The sets UL

n clearly form a non-decreasing sequence in [0, 1], and by (2)(b)
and property (3),

⋃
n≥1 U

L
n is of full µL-measure. Then define

nL = inf
{
n ≥ 1 : µL(UL

n ) ≥ ‖µL‖/2
}
.

(4) (Control of the growth speed nL and of the mass ‖µL‖)
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There is a dense subset D of (1,∞) such that for every δ ∈ D, for
µ-almost every u ∈ [0, 1], one can find an increasing sequence of integers
(jk(u))k≥1 such that for every k ≥ 1, there exists Lk ∈ Bδ

jk(u)(u) satisfying

lim
k→∞

jLk

jk(u)
= δ and

nLk
≤ jLk

. ϕjLk
and |Lk|

ϕjLk ≤ ‖µLk‖. (21)

The next result is established in [11].

Theorem 4 Let {un}n∈N be a sequence of points in [0, 1], let {ln}n∈N be a
sequence of positive real numbers converging to zero. Let µ be a positive Borel
measure such that supp(µ) = [0, 1] and (11) holds.

For every positive sequences ε̃ = (εn)n∈N and δ̃ = (δn)n∈N, define the limsup
set

Sµ(δ̃, τ
′
µ(1), ε̃) =

⋂
N≥0

⋃
n≥N : |ln|τ

′
µ(1)+εn≤µ(Ĩ+n ),µ(Ĩ−n )≤µ(In)≤|ln|τ

′
µ(1)−εn

Iδnn .

Suppose that {(un, ln)}n forms an heterogeneous ubiquitous system with respect
to (µ, τ ′µ(1)).

There exists a positive sequence ε̃ converging to 0 such that for every δ ≥ 1,
there exists a non-decreasing sequence δ̃ converging to δ as well as a positive
Borel measure mδ such that:

• mδ(E) = 0 for every Borel set E such that dimE < τ ′µ(1)/δ ,

• mδ

(
Sµ(δ̃, τ

′
µ(1), ε̃)

)
> 0.

In particular, dim Sµ(δ̃, τ
′
µ(1), ε̃) ≥ τ ′µ(1)/δ.

Moreover, if the system {(un, ln)}n∈N is weakly redundant (see Definition 4),
we precisely have dim Sµ(δ̃, τ

′
µ(1), ε̃) = τ ′µ(1)/δ.

The set Sµ(δ̃, τ
′
µ(1), ε̃) is constituted by points which are well approximated

at rate δ > 1 by some points un, these points being selected according to the
behavior of µ around un. Thus Theorem 4 emphasizes a ubiquity property con-
ditioned by a measure µ, and shows the existence of exceptional points related
simultaneously to the local behavior of the measure µ and to the approxima-
tion rate by the system {(un, ln)}n. The condition |ln|τ

′
µ(1)+εn ≤ µ(Ĩ+

n ), µ(Ĩ−n ) ≤
µ(In) ≤ |ln|τ

′
µ(1)−εn involved in the definition of the set Sµ(δ̃, τ

′
µ(1), ε̃) appears

in the weaker form |ln|τ
′
µ(1)+εn ≤ µ(In) ≤ |ln|τ

′
µ(1)−εn in [11], but due to prop-

erty (2)(b) the work achieved in [11] makes it possible to add automatically
the condition on µ(Ĩ+

n ) and µ(Ĩ−n ) and it yields Theorem 4.
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Remark 1 For some classes of measures µ, it turns out that property (4) can
be simplified in the stronger one: There exists j0 ≥ 0 such that (21) holds
for all b-adic interval L of generation larger than j0. This is the case for
instance for the class of random Gibbs measures described in [9]. Unfortunately
independent random cascades do not satisfy this uniform property, and their
study required working with the weaker condition (4) (see Sections 1 and 7 as
well as [10]).

3.5 Conditions C1-3

Let µ be an atomless positive Borel measure with a support equal to [0, 1].

Condition C1

There exist two positive constants γ1 and γ2 such that for every small enough
sub-interval I of [0, 1], |I|γ1 ≤ µ(I) ≤ |I|γ2 .

Condition C2(hµ,β)

Recall that hµ,β = τ ′µ(1)/β. By assumption the function F : t ∈ [0, 1] 7→
µ([0, t]) is increasing and continuous on [0, 1].

The Poisson point process S can be written S = {(tn, λn)}n≥1, with |λn| ↘ 0.
Let {βj}j≥1 be a sequence as found in Lemma 1.

For every (tn, λn) ∈ S such that tn ∈ Gj, we set un = F−1(tn), and we

define the sequence ln as 2
∣∣∣F−1

(
B
(
tn, |λn|βj

))∣∣∣. This ensures that (0, 1) ⊂
lim supn→∞B(un, ln/2).

Condition C2(hµ,β) is said to hold when (11) holds and when {(un, ln)}n≥1

forms an heterogeneous ubiquitous system with respect to (µ, τ ′µ(1)).

We shall see in Section 7 that this holds under suitable assumptions when
µ is an independent multiplicative cascade. Consequently, the assertions of
Theorem 2 concerning the linear parts of the spectra apply to the process ZW
defined in (3).
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Condition C3(h)

There exists a positive Borel measure mh on [0, 1] such that mh(Ẽ
µ
h ) > 0 and

for every Borel set E ⊂ [0, 1] such that dimE < τ ∗µ(h), mh(E) = 0.

Suppose that µ is a independent multiplicative cascade. It is shown in [10] that
if the function ϕW is everywhere finite, then with probability 1, condition
C3(h) holds for all h such that τ ∗µ(h) > 0. Consequently, the assertions of
Theorem 2 concerning the strictly concave parts of the spectra apply to the
process ZW defined in (3).

4 Computation of the Hausdorff spectrum of X̃ ◦ F : Theorem 2

In this section, in order to simplify the notations, we assume that X = X̃,
i.e. B(a′, Q) = 0 in (9), so that X̃ and Z̃ in Theorem 2 are simply denoted X
and Z.

By Lemma 1, there exists a non-decreasing sequence of positive real numbers
β̃ = {βj}j≥1 converging to β such that, with probability 1, the set A

β̃
(defined

in (13)) equals R+. Such a sequence is fixed.

4.1 Characterization of the Hölder exponents of Z = X ◦ F

For every j ≥ 1, for every t ∈ Gj, let lt = 2|F−1([t − |λt|βj , t + |λt|βj ])| and
It = [F−1(t) − lt, F

−1(t) + lt]. These intervals were considered in condition
C2(hµ,β) in Section 3.5. By construction of the {βj}j, we have

[0, 1] ⊂
⋂
J≥1

⋃
j≥J

⋃
t∈Gj

[F−1(t)− lt/2, F
−1(t) + lt/2].

Definition 6 Let α ≥ 0, δ ≥ 1 and ε > 0.

A real number u0 is said to satisfy the property P(α, δ, ε) if there exist an
infinite number of jump points u of Z satisfying

|u− u0| ≤ lδ−εF (u) and lα+ε
F (u) ≤ µ

(
IF (u)

)
≤ lα−εF (u). (22)

Remark that, by construction, if t = F (u) and t ∈ Gj for some integer j ≥ 1,

then under (22) we also have 2−j ≤ l
α−ε
β+ε

F (u) if j is large enough.

A real number u0 is said to satisfy the property P̃(α, δ, ε) if there exist an
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infinite number of jump points u of Z which satisfy (22) together with l
α+ε
β−ε

F (u) ≤
2−j if F (u) ∈ Gj (notice that here 2−j is approximately equal to the size of the
jump of Z at u).

We then set for h > 0

Tβ,h =

u ∈ [0, 1] :

∀ε > 0, ∃α ≥ 0, ∃ δ ≥ 1 such that
α
βδ
≤ h+ ε and u satisfies P(α, δ, ε)

 , (23)

T̃β,h =

u ∈ [0, 1] :

∀ε > 0, ∃α ≥ 0, ∃ δ ≥ 1 such that
α
βδ
≤ h+ ε and u satisfies P̃(α, δ, ε)

 . (24)

Heuristically, the point u0 satisfies P(α, δ, ε) or P̃(α, δ, ε) when it is well-
approximated by jump points u of Z, at rate δ relatively to IF (u), these
points being selected so that they satisfy µ(IF (u))) ∼ lαF (u).

Remark that if 0 < h′ ≤ h, then we clearly obtain T̃β,h′ ⊂ Tβ,h′ ⊂ Tβ,h.

We denote S =
{
t ∈ R+ : ∃ λ ∈ Rd, (t, λ) ∈ S

}
, i.e. S is the projection on

R+ of the Poisson point process S associated with X(t), as well as the set of
jump points of X.

This section is devoted to the proof of the following result, which is a simple
consequence of next Propositions 4, 5 and 6.

Theorem 5 Assume that C1 holds. With probability 1, for every h > 0, we
have Ah ⊂ EZ

h ⊂ Bh, where

Ah =

T̃β,h \
[(⋃

h′<hE
µ
βh′

)
∪
(⋃

h′<h Tβ,h′
)
∪ S

]
if 0 ≤ h < hµ,β

Ẽµ
βh \

(
F−1(S) ∪ ⋃δ>β F−1(Aδ)

)
if h ≥ hµ,β.

(25)

Bh =


(
Tβ,h \

⋃
h′<h T̃β,h′

)
∪ ⋃

h′≤hE
µ
βh′ if 0 ≤ h ≤ τ ′µ(0

+)/β,⋃
h′≥hE

µ
βh′ if h ≥ τ ′µ(0

+)/β.
(26)

Consequently, in order to compute the singularity spectrum of Z, it remains
for us to find an upper bound for dimBh and a lower bound for dimAh. This
is achieved in the next sections.

Proposition 4 Assume that C1 holds. With probability 1:

For every u0 ∈ [0, 1] not a jump point of Z, let hµ(u0) = α ≥ 0 and hµ(u0) = α,
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and write t0 = F (u0) ∈ [0, ‖µ‖] and hX(t0) = 1/δu0 where δu0 ≥ β. Then

α/δu0 ≤ hZ(u0) ≤ α/δu0 . (27)

PROOF. Let ε > 0. By the definition of hµ(u0), there exists η1 > 0 such that

for every 0 < r ≤ η1, µ(B(u0, r)) ≤ rα−ε. (28)

Let jr be the unique integer such that 2−jr ≤ r ≤ 2−jr+1.

By definition of α, we can also choose η1 small enough so that

for every 0 < r ≤ η1, if I ∈ {I−jr+2(u0), Ijr+2(u0), I
+
jr+2(u0)}, |µ(I)| ≥ rα+ε.

(29)
Remark that I−jr+2(u0) ∪ Ijr+2(u0) ∪ I+

jr+2(u0) ⊂ B(u0, r). Similarly, using the
definition of hX(t0) = 1/δu0 and Proposition 3, there exists η2 such that

for every number s such that |s| ≤ η2,|X(t0 + s)−X(t0)| ≤ s1/δu0−ε, (30)

and for some sequence (hj)j≥1 such that |hj| ↘ 0,

|X(t0 + hj)−X(t0)| ≥ |hj|1/(δu0+ε). (31)

Since the function F is continuous on [0, 1], we can thus choose η1 small enough
so that F (B(u0, η1)) ⊂ B(t0, η2).

• Let −η1 ≤ r ≤ η1. By (30) and then (28), we have

|Z(u0 + r)− Z(u0)|= |X ◦ F (u0 + r)−X ◦ F (u0)|
≤ |F (u0 + r)− F (u0)|1/δu0−ε ≤ |r|(α+ε)/δu0−(α+ε)ε

since |F (u0 + r) − F (u0)| ≤ µ(B(u0, |r|)). This holds for every ε > 0, hence
the lower bound of (27).

• Let j be such that (31) holds, and let rj be the unique real number such
that F (u0 + rj) = t0 + hj. We get

|Z(u0 + rj)− Z(u0)| = |X(t0 + hj)−X(t0)| ≥ |hj|1/(δu0+ε).

By (29), µ([u0, u0 + rj]) ≥ µ(I+
jrj +2(u0)) ≥ |rj|α+ε. Since F (u0 + rj)−F (u0) =

hj, we otain |hj| ≥ |rj|α+ε, and thus

|Z(u0 + rj)− Z(u0)| ≥ |rj|(α+ε)/δu0+(α+ε)ε.
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Since this holds for an infinite number of rj converging to zero and then for
every ε > 0, the conclusion follows.

Proposition 5 Assume that C1 holds and u0 ∈ T̃β,h for some h ≥ 0. Then
hZ(u0) ≤ h.

PROOF. Let ε ∈ (0, β). The proof uses the following Lemma of [21].

Lemma 5 Assume that a function f is discontinuous on a dense set of R.
For a fixed x ∈ R, assume also that there exists a sequence {rn}n converging
to x such that for every n, f has right and left limits f(r+

n ) and f(r−n ) at rn,
and |f(r+

n )− f(r−n )| = sn > 0. Then

hf (x) ≤ lim inf
n→+∞

| log sn|
| log |rn − x0||

.

Let (un)n≥1 be an infinite sequence of jump points of Z that verifies (22) for

u0 as well as the fact that the size of the jump of Z at un is greater than l
α+ε
β−ε

F (un).
Lemma 5 yields then

hZ(u0) ≤ lim inf
n→+∞

| log l
α+ε
β−ε

F (un)|
| log |lF (un)|δ−ε|

≤ α+ ε

(δ − ε)(β − ε)
≤ (h+ ε)

α+ ε

α

δ

δ − ε

β

β − ε
.

Let γ2 be as in C1. Since limε→0+ supδ>1,α≥γ2/2
α+ε
α

δ
δ−ε

β
β−ε = 1, the conclusion

follows.

Proposition 6 Assume that C1 holds. With probability 1, we have the follow-
ing property: For every u0 ∈ [0, 1] not a jump point of Z, if hZ(u0) < hµ(u0)/β,
then u0 ∈ Tβ,hZ(u0).

PROOF. Set h = hZ(u0), α = hµ(u0), t0 = F (u0) and hX(t0) = 1/δu0 for
some δu0 ≥ β. Necessarily, δu0 > β otherwise, if δu0 = β, then by Proposition
4 we would have h ≥ α/β.

Let ε > 0. By definition of h, there exists a sequence (rn)n≥1 such that |rn| ↘ 0
and |Z(u0 + rn)−Z(u0)| ≥ |rn|h+ε. We set un = u0 + rn, and tn = F (un). We
have |X(tn) −X(t0)| ≥ |rn|h+ε, and |tn − t0| = µ([u0, un]) ≤ µ(B(u0, |rn|)) ≤
|rn|α−ε by (28).

We denote by jn the unique integer such that 2−jn ≤ |tn − t0| < 2−jn+1. For
every ε′ > 0 we can write
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X(tn)−X(t0) =
∑

j<[jn/(β+ε′)]

Xj(tn)−Xj(t0) +
∑

j≥[jn/(β+ε′)]

Xj(tn)−Xj(t0).

By Proposition 3, there exists ε′ > 0 such that (16) and (18) hold. We thus
have

∑
j<[jn/(β+ε′)]

|Xj(tn)−Xj(t0)| ≥
∣∣∣∣ ∑
j<[jn/(β+ε′)]

Xj(tn)−Xj(t0)
∣∣∣∣

≥ |X(tn)−X(t0)| − |tn − t0|1/(β+ε)

≥ |rn|h+ε − |rn|
α−ε
β+ε .

The parameter ε can be chosen small enough so that (h+ ε)(β + ε) < α− ε.
Then there exists C > 0 such that for n large enough∑

j<[jn/(β+ε′)]

|Xj(tn)−Xj(t0)| ≥ C|rn|h+ε. (32)

Remembering (18) and using again that |tn − t0|1/(β+ε) ≤ |rn|
α−ε
β+ε , we con-

clude that
∑
j<[jn/(β+ε′)]Xj(·) has a jump point between tn and t0 (since the

contribution of the drift is not large enough to explain (32)).

Consider one among the jump points with tallest size, i.e. a real number Tn
in [t0, tn] such that Tn is a jump point for XJn for some Jn < [jn/(β + ε′)] and
there is no jump point ofX(t) in [t0, tn] belonging to someGj′ , j

′ < Jn. Remark
that since hX(t0) = 1/δu0 , for n large enough jn/(δu0 + ε) ≤ Jn ≤ jn/(β + ε′).

We now apply Lemma 2 with T = [µ([0, 1]) + 1] and δ = δu0 . We choose jn
large enough so that εjn and ηjn are less than ε/2. Let k be the unique integer
such that t0 ∈ [k2−jn , (k + 1)2−jn). We get [t0, tn] ⊂ I =

⋃
l=k−2,...,k+2 Ijn,l. By

Lemma 2 applied to the five intervals contained in I, the number of jumps in
the interval [t0, tn] of all the Xj’s, j <

[
jn
β+ε′

]
, is less than 5 · 2jnηjn .

Using (32) and the existence of Tn, we obtain

|D|+ 5 · 2jnηjn 2−Jn ≥
∑

j<[jn/β+ε′]

|Xj(tn)−Xj(t0)| ≥ C|rn|h+ε,

where D stands for the contribution of the drift of all the Xj’s, j <
[
jn
β+ε′

]
,

on the interval [t0, tn]. But, again by (18), |D| ≤ |tn − t0|1/(β+ε) ≤ |rn|
α−ε
β+ε . As

above, since α−ε
β+ε

> h, for n large enough 5 · 2jnηjn 2−Jn ≥ C|rn|h+ε, for another

constant C. This enables to compare 2−Jn with |rn|. Indeed, since C1 yields

jn = O
(
| log(|rn|)|

)
and ηjn goes to 0 when n→ +∞, we obtain

2−Jn ≥ C|rn|h+2ε ≥ |rn|h+3ε. (33)
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Denote by Un the real number F−1(Tn), and consider ITn = IF (Un) (the inter-
vals It for t ∈ Gj were defined at the beginning of Section 4.1). By construction
this interval satisfies µ(ITn) ≥ 2 · 2−JnβJn . Thus u0 ∈ ITn for n large enough
because βJnJn ≤

βJn

β+ε′
jn < jn. Thus by (28) 2 · 2−JnβJn ≤ µ(ITn) ≤ lα−εTn

for n

large enough. We write µ(ITn) = lαn
Tn

for some αn ≥ α− 2ε.

Now, we know that |u0−Un| ≤ |rn|. But |rn| ≤ 2−Jn
1

h+3ε ≤ Cl
αn

βJn
(h+3ε)

Tn
by (33).

Define δn = αn

βJn (h+3ε)
. For ε small enough and n large enough, we see that

δn ≥ 1 (since h < α/β).

If γ1 is the constant of condition C1, for every n large enough, the couple
(αn, δn) belongs to the square [0, γ1] × [1, δu0 + ε]. Without loss of generality
by extracting a subsequence, we can assume that (αn, δn) converges to (α0, δ0).
By construction α0

βδ0
≤ h+ 4ε. Hence P(α0, δ0, 4ε) holds.

PROOF OF THEOREM 5. Let h ≥ 0 and u0 ∈ EZ
h . By Propositions 5 and

6, u0 ∈
⋃
h′≤hE

µ
βh′ ∪ Tβ,h \

⋃
h′<h T̃β,h′ . Also, by Proposition 4 u0 ∈

⋃
h′≥hE

µ
βh′ .

Consequently EZ
h ⊂ Bh.

Propositions 5 and 6 clearly imply that T̃β,h \
[(⋃

h′<hE
µ
βh′

)
∪
(⋃

h′<h Tβ,h′
)
∪

S
]
⊂ EZ

h . Thus Ah ⊂ EZ
h when h < hµ,β.

Finally, when h ≥ hµ,β, if u0 ∈ Ah, by Proposition 4 hZ(u0) = hµ(u0)/β (since
hµ(u0) = hµ(u0)). Hence Ah ⊂ EZ

h .

4.2 Upper bound for the singularity spectrum of Z

Let us start by the decreasing part of the spectrum.

Proposition 7 With probability 1, for every h ≥ τ ′µ(0
+)/β, dimEZ

h ≤ τ ∗µ(βh)
and EZ

h = ∅ if h > αmax/β.

PROOF. This Proposition 7 directly follows from Theorem 5 used when
h ≥ τ ′µ(0

+)/β (which yields EZ
h ⊂ Bh), and then from item (3) of Proposition

1 to find an upper bound for dimBh.

In order to get an upper bound for the increasing part of the multifractal
spectrum of Z, some notations and new sets are needed.
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For every j ≥ 1, t ∈ Gj and δ ≥ 1, let

I
(δ)
t = B(F−1(t), lδt ). (34)

We consider, for α ≥ 0, ε > 0 and δ ≥ 1, the sets

Tα,δ,ε =
⋂
J≥1

⋃
j≥J

⋃
t∈Gj : l

α+ε
t ≤µ(It)≤lα−ε

t

I
(δ)
t . (35)

The Hausdorff dimension of the sets Tα,δ,ε is easily tractable (as shown by
the following proposition). Moreover, these sets are closely related with the
sets Tβ,h.

Lemma 6 Assume that C1 holds for µ. For every α > 0 such that τ ∗µ(α) ≥ 0,
δ ≥ 1 and ε > 0

dimTα,δ,ε ≤
supα′≤α+ε τ

∗
µ(α) + ε

δ
. (36)

PROOF. We first use Lemma 4. Due to the definition of It, the weak re-
dundancy property of S =

⋃
j≥0{(t, |λt|βj) : t ∈ Gj} implies the existence of

a non-negative sequence (ξj)j≥0 converging to 0 such that as soon as Gj 6= ∅,
the set {It : t ∈ Gj} can be written as a union of 2jξj families Gj,i of pairwise
disjoint intervals.

We have Tα,δ,ε =
⋂
J≥1

⋃
j≥J Sj, where

Sj =
⋃

t∈Gj : l
α+ε
t ≤µ(It)≤lα−ε

t

I
(δ)
t . (37)

Fix α0 ∈ (0, τ ′µ(0
+)). Let α ∈ [α0, τ

′
µ(0

+)) and ε ∈ (0, α0/2). Let J ≥ 1 and
j ≥ J . Let t ∈ Gj and let Jt denotes the unique integer such that 2−Jt < |It| ≤
2−Jt+1. If lα+ε

t ≤ µ(It) ≤ lα−εt , then at least one of the intervals IJt+2,k such
that IJt+2,k ∩ It 6= ∅ must satisfy µ(IJt+2,k) ≥ 1

16
lα+ε
t ≥ C2−(Jt+2)(α+ε), where

C is a constant depending only on α. Moreover, due to C1 and the definition
of the interval It, there exists two positive constants γ and γ′ independent of
t such that for j large enough, γj ≤ Jt + 2 ≤ γ′j.

For every integer m ≥ 1, let Fm = {Im,k : µ(Im,k) ≥ C2−m(α+ε)} for every i.
We deduce from the last considerations that every It belonging to some Gj,i
and satisfying µ(It) ≥ lα+ε

t must intersect an element I of
⋃
γj≤m≤γ′j Fm. In

this case, |I|δ ≤ |I(δ)
t | ≤ C|I|δ for some constant C depending only on δ.

Moreover, since the elements of Gj,i are pairwise disjoint, the intervals I of⋃
γj≤m≤γ′j Fm previously selected intersect at most two elements of Gj,i. Also,

we learn from Proposition 2 that for m large enough, the cardinality of Fm is
less than or equal to 2m(supα′≤α+ε τ

∗
µ(α′)+ε).
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Now let s >
(

supα′≤α+ε τ
∗(α) + ε

)
/δ. Recall Definition 3. It follows from the

previous remarks that for some constant C ′ > 0,

Hs
C′2−γJ (Tα,δ,ε) ≤

∑
j≥J

∑
t∈Gj : l

α+ε
t ≤µ(It)≤lα−ε

t

|I(δ)
t |s

≤
∑
j≥J

∑
i

∑
It∈Gj,i:l

α+ε
t ≤µ(It)

|I(δ)
t |s ≤

∑
j≥J

∑
i

∑
γj≤m≤γ′j

2
∑
I∈Fm

C|I|sδ

≤ 2C
∑
j≥J

2jξj
∑

γj≤m≤γ′j
2−sδm2m(supα′≤α+ε τ

∗
µ(α′)+ε),

Since ξj → 0 when j → +∞, limJ→∞Hs
C′2−γJ (Tα,δ,ε) = 0, thus dim Tα,δ,ε ≤ s.

Proposition 8 Assume that C1 holds. With probability 1, for every exponent
h ∈ [0, τ ′µ(0

+)/β), dimEZ
h ≤ Dµ,β(h) (recall that Dµ,β is defined in (12)).

PROOF. If h = 0, then it follows from Proposition 4 that EZ
h is contained

in the set F−1(S) ∪ Eµ
0 ∪ (∩δ>1Aδ). Thus dimEZ

h = 0.

Fix now h ∈ (0,
τ ′µ(0+)

β
). Item (2) of Theorem 5 implies that dimEZ

h is bounded

by dimEZ
h ≤ max

(
dim Tβ,h \

⋃
h′<h T̃β,h′ , dim

⋃
α≤βhE

µ
α

)
. Item (2) of Propo-

sition 1 yields dim
⋃
α≤βhE

µ
α ≤ τ ∗µ(βh). It remains to find an upper bound for

dim Tβ,h.

For every ε > 0, Tβ,h ⊂
⋃

(α,δ)∈Q×Q
α>0, τ∗µ(α)≥0, δ≥1, α/βδ≤h+ε

Tα,δ,ε. Lemma 6 yields

dim Tβ,h≤ sup
(α,δ)∈Q×Q

α>0, τ∗µ(α)≥0, δ≥1, α/βδ≤h+ε

dim Tα,δ,ε

≤ sup
(α,δ)∈Q×Q

α≥0, τ∗µ(α)≥0, δ≥1, α/βδ≤h+ε

supα′≤α+ε τ
∗
µ(α

′) + ε

δ

≤max(β(h+ ε)d1(h, ε), d2(h, ε)),

where

d1(h, ε) = supα≥βh
supα′≤α+ε τ

∗
µ(α′)+ε

α
,

d2(h, ε) = sup0≤α<βh, τ∗µ(α)≥0, δ≥1, α/βδ≤h+ε
supα′≤α+ε τ

∗
µ(α′)+ε

δ
.

Since βh ≤ τ ′µ(0
+), limε→0 d2(h, ε) = τ ∗µ(βh).

The next observations are already done in [8] (they are easy to check using
the continuity of τ ∗µ on its support and the fact that supα≥0: τ∗µ(α)≥0 τ

∗
µ(α)/α is

reached for α = τ ′µ(1
−)):
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• If h ≤ τ ′µ(1)/β, then limε→0 d1(h, ε) = 1.

• If h ≥ τ ′µ(1)/β, then limε→0 d1(h, ε) = τ ∗µ(βh)/βh.

We finally get the desired upper bound for dim Tβ,h and thus also for dim EZ
h .

4.3 Lower bound for the singularity spectrum of Z

Proposition 9 Suppose that C1 holds. With probability 1, for every h ≥ hµ,β
such that C3(βh) holds, dimEZ

h ≥ τ ∗µ(βh).

PROOF. Fix a realization of Z and h ≥ hµ,β such that C3(βh) holds.

Let mβh be the measure given by C3(βh). Combining C3(βh) and item (1)

of Theorem 5, it is enough to prove that mβh

(⋃
δ>β Eδ

)
= 0 and mβh

(
Ẽµ
βh ∩

F−1(S)
)

= 0, where Eδ = Ẽµ
βh ∩ (F−1(Aδ) \ F−1(S)).

Since S is countable and the family of sets Aδ is monotonic, it remains to show
that dim Eδ < τ ∗(βh) for every δ > β. Fix such a δ and let u ∈ Eδ.

Let δF (u) = lim supj→∞ supt∈Gj

log |t−F (u)|
log |λt| . Since F (u) ∈ Aδ, δF (u) ≥ δ. Let

(tn)n≥1 be a sequence of points of S verifying limn→∞
log |tn−F (u)|

|λtn |
= δF (u).

Denote un = F−1(tn). Since u ∈ Ẽβh, we get

lim sup
n→∞

log |u− un|
log ltn

=
1

βh
lim sup
n→∞

log |F (u)− F (un)|
log ltn

.

Moreover, since u ∈ Itn ∩ Ẽβh, we also have limn→∞
log ltn

log |F (Itn )| = 1
βh

. But by

construction of the Itn ’s we know that limn→∞
log |F (Itn )|

log |λtn |
= β. Consequently,

lim sup
n→∞

log |u− un|
log ltn

=
δF (u)

β
≥ δ

β
> 1.

It follows from these remarks that Eδ ⊂ Tβh,δ/β,ε for all ε > 0. Lemma 6 yields
that dim Eδ ≤ βτ ∗(βh)/δ < τ ∗(βh).

Proposition 10 Suppose that C1 and C2(hµ,β) hold. Then, with probabil-
ity 1, for every δ > 1, dimEZ

τ ′µ(1)/(βδ) ≥ τ ′(1)/δ; equivalently, for every 0 <

h < hβ, dimEZ
h = dZ(h) ≥ βh.

PROOF. Let δ > 1, h = hµ,β/δ and d = τ ′µ(1)/δ.
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Fix a realization of Z and S such that the properties involved in condition
C2(hµ,β) are satisfied. Theorem 4 provides us with the non-decreasing se-

quence δ̃ converging to δ, the positive sequence ε̃ converging to 0, the set
Sµ(δ̃, τ

′
µ(1), ε̃), and the measure mδ.

By construction, all the points of Sµ(δ̃, τ
′
µ(1), ε̃) satisfy P̃(τ ′µ(1), δ, ε) for all

ε > 0. So Sµ(δ̃, τ
′
µ(1), ε̃) ⊂ T̃β,h. Moreover, mδ(Sµ(δ̃, τ

′
µ(1), ε̃)) > 0, which, by

Theorem 4, implies that dim Sµ(δ̃, τ
′
µ(1), ε̃) ≥ τ ′(1)/δ = βh.

When proving Proposition 8, we established that every set of the non-decreasing
sequence (Tβ,h′)h′<h is of Hausdorff dimension less than βh. Thusmδ(∪h′<hTβ,δ) =
0. Also mδ(∪h′<hEµ

βh′) = 0 by Proposition 1. Thus

mδ

(Sµ(δ̃, τ
′
µ(1), ε̃) \

[( ⋃
h′<h

Eµ
βh′

)
∪
( ⋃
h′<h

Tβ,h′
)
∪ S

] > 0.

Using Theorem 5(1) and the fact that Sµ(δ̃, τ
′
µ(1), ε̃) ⊂ T̃β,h, we get that

mδ(E
Z
h ) > 0, hence the conclusion.

5 The case a′ 6= 0 and Q = 0: Item (1) and (2) of Theorem 3

In this section, we use the decomposition (9) with a′ 6= 0 and Q = 0 to write
Z(t) = X̃(F (t)) + F (t)a, with a ∈ Rd \ {0}. We write Z̃ = X̃ ◦ F .

We begin by relating the function hZ with h
Z̃

and hF . We first notice that

hF = hµ. Then, equation (4) implies that hZ(u) ≥ min
(
h
Z̃
(u), hµ(u)

)
for

every u ∈ [0, 1] with equality if h
Z̃
(u) 6= hµ(u). Also, the study achieved in

[22] yields h
X̃+a′Id

= min(h
X̃
, 1). This implies that:

• When β ≤ 1, for every u ∈ [0, 1], hZ(u) ≤ hµ(u).
• When β > 1, for every u ∈ [0, 1], hZ(u) ≤ h

X̃
(F (u)) · hµ(u) ≤ hµ(u)/β.

From the previous discussion, we deduce that when β ≤ 1

EZ
h ⊂


⋃
h′≤hE

Z̃
h′ ∪ E

µ
h′ if h ≤ τ ′µ(0

+),⋃
h′≥hE

µ
h′ otherwise

and when β > 1

EZ
h ⊂


⋃
h′≤hE

Z̃
h′ ∪ E

µ
h′ if h ≤ τ ′µ(0

+)/β,⋃
h′≥βhE

µ
h′ otherwise

.
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By using Theorem 5(2), Proposition 1 and the estimates obtained in the proof
of Proposition 8, we conclude that

∀ h ≥ 0, dZ(h) ≤

D̃µ,β(h) if β < 1,

Dµ,β(h) otherwise.

The following remarks yield the lower bound.

• Suppose that β < 1. Let h ≥ h̃µ,β. If C3(h) holds, then it follows from
the proof of Proposition 9 that for mh-almost every u ∈ [0, 1], h

Z̃
(u) =

hµ(u)/β > hµ(u). Consequently, hZ(u) = hµ(u) mh-almost everywhere. This
yields dimEZ

h ≥ τ ∗µ(h).

Suppose now that C2(hµ,β) holds. If 0 < h ≤ h̃µ,β, then let δ = hµ,β/h.

Lemma 5 combined with the continuity of F yield that the set Sµ(δ̃, τ
′
µ(1), ε̃)\[(⋃

h′<hE
µ
βh′

)
∪
(⋃

h′<h Tβ,h′
)
∪ S

]
is included in EZ

h . We conclude that

dim EZ
h ≥ βh, as in the proof of Proposition 10.

• Suppose that β ≥ 1. The case h < hµ,β is treated as the case h < h̃µ,β
when β < 1. If h ≥ hµ,β, then Lemma 5 combined with the continuity of

F yield Ẽµ
βh \

(
F−1(S) ∪ ⋃δ>β F−1(Aδ)

)
⊂ EZ

h . We conclude as in the proof
of Proposition 9.

6 The case Q 6= 0: Item (3) of Theorem 3

We begin with a proposition which takes care of the Brownian part B ◦ F .

Proposition 11 Let µ be a positive measure on [0, 1] and B1/2 a Brownian
motion. With probability 1, ∀u0 ∈ [0, 1], hµ(u0)/2 ≤ hB1/2◦F (u0) ≤ hµ(u0)/2.

PROOF. Let ε > 0. For almost every sample path of B1/2,

∀t0, ∀t close enough to t0, |B1/2(t)−B1/2(t0)| ≤ |t− t0|1/2−ε, (38)

and there is an infinite number of tn converging to t0 such that

|B1/2(t)−B1/2(t0)| ≥ |t− t0|1/2+ε. (39)

Let u0 ∈ [0, 1]. For u close enough to u0, (38) implies that
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|B1/2 ◦ F (u)−B1/2 ◦ F (u0)| ≤ |F (u)− F (u0)|1/2−ε ≤ |u− u0|(hµ(u0)−ε)(1/2−ε).

for some constant C. Moreover, by (39) there is an infinite number of points
un = F−1(tn) such that

|B1/2 ◦ F (un)−B1/2 ◦ F (u0)| ≥ |F (un)− F (u0)|1/2+ε

≥ |un − u0|(hµ(u0)+ε)(1/2+ε).

The result follows.

As a consequence of Proposition 11, we obtain (see [37] and references therein
for results of the same kind on B ◦ µ).

Proposition 12 Let µ be a positive Borel measure on [0, 1], let B1/2 be a
Brownian motion. With probability 1, for every h ≥ 0, dB◦F (h) ≤ τ ∗µ(2h) and
EB◦F
h = ∅ if τ ∗µ(2h) > 0. Moreover, if C3(2h) holds, dB◦F (h) = τ ∗µ(2h).

PROOF. Let h ≥ τ ∗µ(0
+)/2. By Proposition 11, EB◦F

h ⊂ ⋃
h′≥2hE

µ
h′ , and by

Proposition 1 dim
⋃
h′≥2hE

µ
h′ ≤ τ ∗µ(2h).

Let h ≤ τ ∗µ(0
+)/2. By Proposition 11, EB◦F

h ⊂ ⋃
h′≤2hE

µ
h′ , and by Proposition

1, we get dim
⋃
h′≤2hE

µ
h′ ≤ τ ∗µ(2h).

If C3(2h) holds, Ẽµ
2h ⊂ EB◦F

h and dim Ẽµ
2h = τ ∗µ(2h).

Theorem 2., item (3) is obtained using the same arguments as in Section 5.

7 Back to the fixed points of the smoothing transformation (1)

7.1 Recalls on Mandelbrot multiplicative cascades µW , and some self-similarity
properties of X ◦ µ

Recall how the measure µW on [0, 1] is obtained. Let A be the alphabet
{0, . . . , b− 1} and A∗ =

⋃
n≥0An (A0 contains the empty word ∅). Consider a

sequence
(
(W0(w), . . . ,Wb−1(w))

)
w∈A∗

of independent copies of W . For n ≥ 1,

let µW,n be the measure defined on [0, 1] by uniformly distributing on every

b-adic interval of the form
[∑n

k=1wkb
−k, b−n +

∑n
k=1wkb

−k
]
, w1w2 · · ·wn ∈ An,

the mass Ww1(∅) ·Ww2(w1) · · ·Wwn(w1w2 · · ·wn−1). Then, with probability 1,
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the sequence of multiplicative cascades (µW,n)n≥1 converges weakly on [0, 1],
as n → ∞, to a measure µW called the independent multiplicative cascade
measure associated with W .

The real number ϕ′W (1) has a geometric interpretation: Both the lower and
upper Hausdorff dimensions of µW equal ϕ′W (1) (for the definitions of these
dimensions, see [36,26]).

Consider such a measure µ = µW , and assume that µ and the Lévy process
X are independent. The probability space (Ω,P) can be written as a product
(ΩS×Ωµ,PS⊗Pµ), where (ΩS,PS) and (Ωµ,Pµ) are the probability spaces on
which are respectively defined the Poisson point process S and the measure
µ.

If, moreover, X = Xβ and µ = µWβ
as in Section 1, the reader can check that

the following property holds: ∀n ≥ 1

(
ZW,(k+1)b−n − ZW,kb−n

)
0≤k<b−n

d≡
(
Z(w)

n∏
k=1

Wwk
(w1 · · ·wk−1)

)
w∈An

, (40)

where, on the right hand side,

• the set An is described in lexicographical order,

• the random vectors (W0(w), . . . ,Wb−1(w))’s are i.i.d. with W ,

• the random values Z(w)’s are i.i.d. with ZW,1 and are independent of the
(W0(w), . . . ,Wb−1(w))’s.

Also, if the function ϕW defined in (2) is not equal to −∞ on a neighborhood
of (−∞, 2] and ϕ′W (β) > 0, then it follows from [34,1,4] that τµ = ϕWβ

on the
interval J = {q ≤ 1 : ϕ∗Wβ

(ϕ′Wβ
(q)) ≥ 0} almost surely. This yields τµ,β ≡ ϕW

on the interval Jβ = β · J .

7.2 The validity of C2(hµ,β) when µ is a Mandelbrot measure

Let ϕj = j−1/2 log2(j) for every j ≥ 1 and let (jp)p≥1 be an increasing sequence
such that limp→∞ j−1

p log2Cjp = β (recall (7)). Let (np)p≥1 be the sequence of

integers defined by np = inf{k : b−k(τ
′
µ(1)−ϕk)Cjp ≤ 1}. We can choose the

sequence (βj)j≥1 of Lemma 1 so that 2−(jp+2)βjp ≥ b−np(τ ′µ(1)−ϕnp ). This last
technical point is used at the end of the proof of Proposition 14.

It is shown in [10] that properties (1) and (2)(b) of Definition 5 are fulfilled Pµ-
almost surely by µ with our choice of ϕj. Moreover, by our choice of (βj)j≥1

in Lemma 1 and {(un, ln)} in C2(hµ,β), property (2)(a) of Definition 5 is
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automatically fulfilled. So it remains to show that properties (3) and (4) of
Definition 5 are satisfied Pµ-almost surely and PS ⊗ Pµ-almost surely respec-
tively.

Property (3) comes from the statistical self-similarity of µ: For v ∈ A∗, let µv

be the measure constructed on [0, 1] in the same way as µ is, but with the fam-

ily of random vectors
(
(W v

0 (w), . . . ,W v
b−1(w))

)
w∈A∗

=
(
(W0(v·w), . . . ,Wb−1(v·

w))
)
w∈A∗

instead of
(
(W0w), . . . ,Wb−1(w))

)
w∈A∗

. Let |v| stand for the length

of the word v and define Lv =
[∑|v|

k=1 vkb
−k, b−|v| +

∑|v|
k=1 vkb

−k
]
. By construc-

tion, Pµ-almost surely, the restriction of the measure µ to Lv is equal to
Wv1(∅)Wv2(v1) · · ·Wv|v|(v1 · · · v|v|−1) ·µv ◦fLv (the invertible function fLv is de-
fined in Definition 5 (3)). Consequently, property (3) holds Pµ-almost surely
with the choice µLv = µv ◦ fLv .

For n ≥ 1 let

U v
n =

t ∈ [0, 1] :

 ∀ j ≥ n, ∀ k, |k − kbj,t| ≤ 1,

µv
(
[kb−j, (k + 1)b−j]

)
≤ b−j(τ

′
µ(1)−ϕj)

 .
Then let

nv = inf
{
n ≥ 1 : µv(U v

n) ≥ ‖µv‖/2
}
.

It remains us to show that PS ⊗ Pµ almost surely, there exists a dense subset
D of (1,∞) such that for every δ ∈ D, for µ-almost every u ∈ [0, 1], there
exists an increasing sequence of integers (jk(u))k≥1 such that for every k ≥ 1

there exists Lvk
∈ Bδ

jk(u)(u) satisfying limk→∞
|vk|
jk(u)

= δ and

nvk
≤ |vk| . ϕ|vk| and b−|vk|ϕ|vk| ≤ ‖µvk‖. (41)

The function F is still defined by F (t) = µ([0, t]). For every w ∈ Anp , let
Nw(ωS, ωµ) be the number of points of the Poisson point process S falling
in F (Lw) × (2−(jp+1), 2−jp ]. Conditionally on µ, the variable Nw is a Pois-
son variable with intensity µ(Lw)Cjp . Then, the orthogonal projection of S ∩
(F (Lw)×(2−(jp+1), 2−jp ]) onto F (Lw) is equal to {ζ1, . . . , ζNw}, where (ζi)i≥1 is
a sequence of independent random variables (under PS), uniformly distributed
in F (Lw).

We set ζw = ζ1 and ζ̃w = F−1(ζw) . If δ > 1, v(δ, ζ̃w) stands for the word of
generation [δ|w|] + 1 such that ζ̃w ∈ Lv(δ,ζ̃w)

.

If t ∈ [0, 1) and n ≥ 1, then we denote by wn(t) the element w of An such
that t ∈ Lw.
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The validity of (4) is a consequence of the following propositions.

Proposition 13 Let δ > 1. With P-probability 1, for µ-almost every t, if p is
large enough, then (41) holds with vk = v(δ, ζ̃wnp (t)).

Proposition 14 With P-probability 1, for µ-almost every t, there are in-
finitely many p’s such that Nwnp (t) ≥ 1, that is ζwnp (t) is a jump point of X.

For n ≥ 1 and v ∈ A∗ let Rn(v) = µv
(
(U v

n)
c
)
. The proof of Proposition 13 uses

the following result which is a consequence of our choice for ϕj and Lemma 1
in [10].

Lemma 7 For every n ≥ 1, the random variables Rn(v), v ∈ A∗, are iden-

tically distributed. Denote Rn(∅) = Rn. Then, for all h ∈ (0, 1), E
(
(Rn)

h
)

=

O(b− log2(n)).

PROOF OF PROPOSITION 13. Let Q be the probability measure de-
fined on B(ΩS)⊗ B(Ωµ)⊗ B([0, 1]) by

Q(A) = E
( ∫

[0,1]
1A(ωS, ωµ, t)µ(dt)

)
.

Notice that Q-almost surely means for PS⊗Pµ-almost every (ωS, ωµ), for µωµ-

almost every t. Let ψj = jϕj, rp = [δnp] + 1 and ρp = log3/2(np). By the
Borel-Cantelli lemma, and since ρp ≤ ψrp for p large enough, it is enough to
prove that

∑
p≥1

Q
(
bρpRψrp

(
v(δ, ζ̃wnp (t))

)
≥ 1/2

)
<∞ (42)

∑
p≥1

Q
(
‖µv(δ,ζ̃wnp (t))‖ ≤ b−ρp

)
<∞. (43)

We establish (42). For p ≥ 1 and h ∈ (0, 1), we have

Q
(
bρpRψrp

(
v(δ, ζ̃wnp (t))

)
≥ 1/2

)
≤ 2hbρphEQ

(
Rψrp

(
v(δ, ζ̃wnp (t))

)h)
. (44)

In addition, EQ

(
Rψrp

(
v(δ, ζ̃wnp (t))

)h)
= E

( ∑
w∈Anp

Rψrp

(
v(δ, ζ̃w)

)h
µ(Lw)

)
.

Given u,w ∈ A∗, w � u means that Lu ⊂ Lw. We obtain
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E
(
Rψrp

(
v(δ, ζ̃w)

)h
µ(Lw)

)
=

∑
u∈A[δnp]+1, w�u

E
(
1Lu(ζ̃w)Rψrp

(u)µ(Lw)
)

=
∑

u∈A[δnp]+1, w�u

E
(
1F (Lu)(ζw)Rψrp

(u)hµ(Lw)
)

=
∑

u∈A[δnp]+1, w�u

EPµ

(
PS
(
ζw ∈ F (Lu)

)
Rψrp

(u)hµ(Lw)
)

=
∑

u∈A[δnp]+1, w�u

E
(
|F (Lu)|
|F (Lw)|

Rψrp
(u)hµ(Lw)

)
=

∑
u∈A[δnp]+1, w�u

E
(
|F (Lu)|Rψrp

(u)h
)
.

It follows from the previous equality and the structure of µ that

EQ

(
Rψrp

(
v(δ, ζ̃wnp (t))

)h)
= E(Rψrp

(u)h‖µu‖),

where u is any element of A∗. Since it is assumed that µ is positive with prob-
ability 1 as well as E(

∑b−1
k=0W

α
k ) <∞ for some α > 1, it follows from [15] that

α can be chosen so that E(‖µ‖α) < ∞. Consequently, the Hölder inequality
yields E(Rψrp

(u)h‖µu‖) ≤ E(‖µ‖α)1/αE(Rhα′
ψrp

)1/α′ , where α−1 + α′−1 = 1. The

conclusion follows by using (44) together with Lemma 7 applied with h small
enough.

We move to (43). For p ≥ 1 and h ∈ (0, 1), we have

Q
(
‖µv(δ,ζ̃wnp (t))‖ ≤ b−ρp

)
≤ b−ρphEQ

(
‖µv(δ,ζ̃wnp (t))‖−h

)
.

Computations comparable to those used in establishing (42) show that

EQ

(
‖µv(δ,ζ̃wnp (t))‖−h

)
= E

(
‖µ‖1−h

)
<∞.

The conclusion follows from our choice for ρp.

PROOF OF PROPOSITION 14. Let ωµ ∈ Ωµ such that µ = µ(ωµ) is
defined and positive, and let t ∈ (0, 1) in the set of full µ-measure described
in property (2)(b) of Definition 5. The random variables Nwnp (t)(·, ωµ), p ≥ 1,
are PS independent, and

PS
(
Nwnp (t)(·, ωµ) ≥ 1

)
= 1− exp

(
− µ(Lwnp (t))Cjp

)
.

Due to the definition of np and property (2)(b), for p large enough, we have 1−
exp

(
−µ(Lwnp (t))Cjp

)
≥ 1−exp(−1), so

∑
p≥1 PS(Nwnp (t)(·, ωµ) ≥ 1) = ∞. The

Borel-Cantelli lemma allows to conclude that PS-almost surelyNwnp (t)(ωS, ωµ) ≥
1 for infinitely many p. Since this holds Pµ-almost surely, for µ-almost every
t, we get the desired result by the Fubini theorem.
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A final important remark is that the constraint 2−(jp+1)βjp ≥ b−np(τ ′µ(1)−ϕnp )

imposed on βjp ensures that t ∈ [un − ln/2, un,+ln/2] if un stands for ζ̃wnp (t).
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[2] A. Ayache, J. Lévy Véhel, Generalized Multifractional Brownian Motion:
Definition and Preliminary Results, Fractals - Theory and Applications in
Engineering (1999).

[3] E. Bacry and J.-F. Muzy, Log-infinitely divisible multifractal processes,
Commun. Math. Phys. 236, (2003) 449–475.

[4] J. Barral, Continuity of the multifractal spectrum of a statistically self-similar
measure, J. Theoretic. Probab. 13, (2000) 1027–1060.

[5] J. Barral and B. Mandelbrot, Multifractal products of cylindrical pulses,
Probab. Theory Relat. Fields 124, (2002) 409–430.

[6] J. Barral and B. Mandelbrot, Random multiplicative multifractal measures,
Parts I,II,III Fractal Geometry and Applications: A Jubilee of Benôıt
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