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Abstract: The purpose of this article is the study of the new class of multifrac-
tal measures, which combines additive and multiplicative chaos, defined by

νγ,σ =
∑
j≥1

b−jγ

j2

∑
0≤ k≤bj−1

µ([kb−j , (k + 1)b−j))σδkb−j (γ ≥ 0, σ ≥ 1),

where µ is any positive Borel measure on [0, 1] and b is an integer ≥ 2.
The singularities analysis of the measures νγ,σ involves new results on the mass
distribution of µ when µ describes large classes of multifractal measures. These
results generalize ubiquity theorems associated with the Lebesgue measure.

Under suitable assumptions on µ, the multifractal spectrum dνγ,σ of νγ,σ is
linear on [0, hγ,σ] for some critical value hγ,σ. Then dνγ,σ is strictly concave on
the right of hγ,σ, and on this part it is deduced from the multifractal spectrum of
µ by an affine transformation. This untypical shape is the result of the combina-
tion between Dirac masses and atomless multifractal measures. These measures
satisfy multifractal formalisms. They open interesting perspectives in modeling
discontinuous phenomena.

1. Introduction

The multifractal nature of functions or measures possessing jump discontinu-
ities has been investigated in several situations [30,51,31,22,23]. The purpose
of this article is the construction and the multifractal analysis of a new class of
measures defined by infinite sums of Dirac masses. The study of these measures
gives rise to yet unknown multifractal behaviors. Moreover, this class illustrates
most of the multifractal behaviors one can expect from discontinuous measures
which satisfy some multifractal formalism. This is important for the purpose
of modeling discontinuous phenomena which are known to exhibit multifractal
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behaviors. Such behaviors occur for instance in geophysics [28] when considering
the spatial-temporal position and the intensity of seismic events, in telecommu-
nications where the TCP Internet traffic is known to be multifractal [38], and
also when studying financial time series [41].

The local regularity of a function or a measure µ at a point x is usually
described by an Hölder exponent hµ(x). Our work draws its interest from positive
Borel measures, and in this case the Hölder exponent is defined by

hµ(x) = lim inf
r→0+

logµ(B(x, r))
log r

,

where B(x, r) stands for the closed ball of radius r centered at x.
The multifractal analysis of µ consists in computing the size of the level sets

of this Hölder exponent h, Eµh = {x : hµ(x) = h}. More precisely, one often tries
to find the Hausdorff multifractal spectrum dµ of the measure µ defined by

h 7→ dµ(h) = dim(Eµh ),

where dimE stands for the Hausdorff dimension of the set E.
Multifractal analysis started in the context of the study of fully developed

turbulence with the following heuristics: In [26], Frisch and Parisi proposed a con-
nexion, via a Legendre transform, between the Hausdorff multifractal spectrum
of the energy dissipation measure µ and a kind of free energy function associated
with µ. In the recent past years, a substantial amount of work has been devoted
to compute the multifractal spectra of several classes of functions and mea-
sures [27,16,50,15,29,20,44,1,43,48,37,47,54,5,7,25]. These studies confirmed
this connexion, which is now known as multifractal formalism. We precise the
definition of this formalism in a short moment.

Among the measures which multifractal analysis has been performed, two
families can be distinguished by the typical shape of their spectrum.

Some measures, the construction of which is based on an additive scheme,
exhibit linear increasing spectrum (see Figure 1): There exists β ∈ (0, 1] such
that dµ(h) = βh for 0 ≤ h ≤ 1/β. Lévy subordinators [31] and the sums of Dirac
masses of [22] belong to this class. These measures are a form of additive chaos.
In these specific cases, the Hölder exponent at each point x is closely connected
to the approximation rate of x by jump points as well as to the masses carried
by these points. In this framework, the notion of “ubiquity” of some “resonant”
sets [2,18,19] is accountable for the linear shape of the multifractal spectrum.

Atomless measures with a construction involving a multiplicative scheme usu-
ally have a strictly concave spectrum, including a decreasing part (see Figure 1).
Multinomial measures, quasi-Bernoulli measures, Mandelbrot cascades and their
extensions, as well as the recent compound Poisson cascades, are examples of
such multiplicative chaos measures [14,40,33,17,7,8]. These measures typically
have a multifractal spectrum with the well-known ∩-shape, reflecting the valid-
ity of a multifractal formalism. This follows from the Large Deviations theory
(or from a similar argument) applied to the elements of a family of auxiliary
“Gibbs” measures {µh}h≥0 such that each µh is carried by the level set Eµh .

It is natural to try to mix these two distinct construction schemes. In this
article, we put the following scheme forward, where the jump points are the
b-adic points. The heterogeneity in the distribution of the masses assigned to
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these points is created with the use of an auxiliary measure µ. More precisely, if
µ is a positive Borel measure on [0, 1], let us consider the measure νγ,σ defined
with the help of two parameters γ ≥ 0 and σ ≥ 1 by

νγ,σ =
∑
j≥1

j−2
∑

0≤k≤bj−1

b−jγ µ([kb−j , (k + 1)b−j))σ δkb−j . (1)

The factor j−2 makes the series converge when γ = 0. In fact {j−2}j≥1 could be
replaced by any decreasing positive sequence {aj}j≥1 such that

∑
j≥1 aj < +∞

and | log aj | = o(j).
This class of measures has a fruitful structure, and it provides new impor-

tant examples of measures that fulfill a multifractal formalism. Moreover, the
measures νγ,σ have their natural counterparts in terms of discontinuous function
series and wavelet series (see [12,10]).

Let us mention that sets other than b-adic numbers could have been chosen
for the location of the Dirac masses. Similar constructions will be performed in
further works, using the rational numbers or some random families of points, as
well as suitable associated weights.

The construction we deal with in this paper is key to understand the main
ideas that rule the mixing between additive and multiplicative chaos. For the
sake of comprehensibility, we also choose to work in the one-dimensional case.

In order to fully understand the next results, let us now resume the notion of
multifractal formalism. A multifractal formalism for measures relates the multi-
fractal spectrum dµ to the Legendre transform of a scaling function associated
with µ (see [14,45] for complete mathematical foundations). A possible definition
for the scaling function [14] is

τµ : q ∈ R 7→ τµ(q) = lim inf
j→+∞

−1
j

logb
∑

0≤k≤bj−1

µ
(
[kb−j , (k + 1)b−j)

)q
, (2)

with the convention 0q = 0 ∀q (τµ does not depend on b if supp(µ) = [0, 1]).
In this paper, the multifractal formalism is said to hold for µ at exponent

h when the multifractal spectrum coincides with the Legendre transform of the
scaling function at h, i.e. when dimEµh = dµ(h) = τ∗µ(h) := infq∈R(qh − τµ(h)).
This formalism combines some level sets considered in [45] and the scaling func-
tion of [14], and is satisfied by the classes of measures mentioned above. More-
over, if one defines

qc(µ) = inf{q : τµ(q) = 0} and hc(µ) = τ ′µ(qc(µ)−), (3)

a linear spectrum starting at (0, 0) is equivalent to the fact that hc(µ) > 0 and
τ ′µ(qc(µ)+) = 0. Eventually, the spectrum exhibits a concave part on the right
side of τ ′µ(qc(µ)−) as soon as τµ is not linear when q < qc(µ). Notice that one
always has 0 < qc(µ) ≤ 1 and 0 ≤ hc(µ) ≤ qc(µ)−1.

We describe the properties and the multifractal structure of νγ,σ in two steps.
It is convenient to begin with the basic construction ν = ν0,1, and then to look
at the influence of the parameters (γ, σ).

In order to state our results, three technical conditions detailed along this
paper are required: Condition C1 ensures that the µ-mass of the b-adic intervals
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Fig. 1. Typical multifractal spectrum of Left: a measure µ built on an additive scheme,
Middle: on a multiplicative scheme, Right: of a measure ν under suitable assumptions on µ.
Here ht is the Lebesgue-almost sure exponent.

do not converge to 0 too fast as the intervals lengths converge to 0. C2(h)
requires that µ possesses some statistical self-similarity property and that there
exists a control of the “speed of renewal” of the level sets of the Hölder exponents
of µ (see properties (3) and (4) in Section 3.1). C3(h) is weaker than C2(h)
and implies the validity of the multifractal formalism for µ at h.

Though technical, conditions C1-3 are rather natural and are satisfied by
many classes of measures, as for instance the statistically self-similar measures
µ mentioned above obtained as limits of multiplicative processes. Examples of
such measures are detailed in Section 3.2.

Theorem 1. Let µ be a positive Borel measure such that supp(µ) = [0, 1], and
assume that C1 holds for µ. Let ν = ν0,1 be the measure given by formula (1).
1. If hc(µ) > 0, for every h ∈ [0, hc(µ)] one has dν(h) ≤ qc(µ)h.
If C2(hc(µ)) holds, for every h ∈ [0, hc(µ)] one has dν(h) = qc(µ)h, and the
multifractal formalism holds at h. Moreover, qc(ν) = qc(µ) and hc(ν) = hc(µ).
2. Let h ≥ hc(µ). Then dν(h) ≤ τ∗µ(h) if τ∗µ(h) ≥ 0, and Eνh = ∅ if τ∗µ(h) < 0.
If C3(h) holds, then dµ(h) = dν(h) = τ∗µ(h) = τ∗ν (h), and the multifractal
formalism holds at h.

Theorem 1 applies to the measure ν itself: the process can be iterated, the
spectrum being unchanged.

We shall see that τν(q) ≤ τµ(q) if q ≤ qc(µ) and τ∗µ(τ ′µ(q
+)) ≥ 0, and that

τν(q) = 0 if q > qc(µ). There is equality everywhere when C3(τ ′µ(q
+)) holds for

a dense countable set of q’s such that τ∗µ(τ ′µ(q
+)) ≥ 0 and τ ′µ(q

+) ≥ hc(µ). When
hc(µ) > 0, it is tempting, by analogy with the thermodynamical frame, to think
about the non-differentiability of τν at qc(ν) as a phase transition (see [53] and
also [25] for discussions). It might be worth of interest to establish whether there
is a link between our construction and this sort of phenomenon.

The following remark is key. Under the assumptions of Theorem 1 and when
hc(µ) = τ ′µ(qc(µ)−) > 0, multifractal formalisms that focus on level sets such
as Ẽνh = {x : limr→0

log ν(B(x,r))
log r = h} (defined using a limit rather than a

lim inf) do not hold for ν at h when 0 < h < hc(µ). This was noticed in [3]
where the authors consider the measure νγ,1 in the case where µ is the Lebesgue
measure. The same difficulty is encountered in [51] with some self-similar sums
of Dirac masses (close to our class ν0,1 when µ is multinomial). Nevertheless [51]
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concludes to a failure of the multifractal formalism since only the sets Ẽνh were
considered.

This phenomenon pleads for the choice of the sets Eνh defined using a lim inf,
because no information is lost: These sets always form a partition of [0, 1].

This choice led us to investigate in detail the repartition of the mass of µ.
More precisely, the validity of Theorem 1 depends on the following theorem,
which gives a lower bound of the dimension of sets that are related to µ and to
some approximation rate by b-adic numbers.

If ψ is a continuous positive function with ψ(0) = 0, and if h > 0, then Qhψ(I)
is said to hold for an interval I when |I|h+ψ(|I|) ≤ µ(I) ≤ |I|h−ψ(|I|).

Theorem 2. Let µ be a positive Borel measure such that supp(µ) = [0, 1], and
h > 0. For every ξ > 1, for every continuous positive function ψ with ψ(0) = 0
and for every positive sequence ε̃ = {εj}j≥1 converging to 0, let us define

Sξ,eε,ψ(h) =
⋂
n≥1

⋃
j≥n

⋃
k∈{0,...,bj−1}:

Qhψ([kb−j ,(k+1)b−j)) holds

[kb−j , kb−j + b−j(ξ−εj)]. (4)

Suppose that C2(h) holds. There exists a function ψ such that for every ξ > 1,
one can find a positive sequence ε̃ converging to 0 and a positive Borel measure
mξ on [0, 1] with the following properties: mξ(Sξ,eε,ψ(h)) > 0, and for every Borel
set E ⊂ [0, 1] with dimE < τ∗µ(h)/ξ, mξ(E) = 0. Thus, dimSξ,eε,ψ(h) ≥ τ∗µ(h)/ξ.

Theorem 2 appears to be the consequence of a stronger result, Theorem 3, that
we establish in Section 3. Theorem 2 and 3 apply to the measures µ mentioned
above as illustrations of Theorem 1 and described in Section 3.2.

Let us recall that if x ∈ R, and ξ ≥ 1, x is said to be ξ-approximated if there
exist an infinite number of b-adic numbers kb−j such that |kb−j − x| ≤ b−jξ.
With each x is associated its approximation rate

ξx = sup{ξ ≥ 1 : x is ξ-approximated}. (5)

One always has ξx ≥ 1, and it is shown in [20,32] for example that the set
{x ∈ R : ξx = ξ} has a Hausdorff dimension equal to 1/ξ.

Theorem 2 allows the computation of the Hausdorff dimension of the set of
points that are infinitely often close at rate ξ to b-adic numbers kb−j that verify
µ([kb−j , (k + 1)b−j)) ∼ b−jh.

Theorems 2 and 3 are referred to as “measure-conditioned ubiquity”. They
yield a generalization of the notion of ubiquity (see [19]), in the sense that
they involve an ubiquity property (i.e. an omnipresence) of sets of points that
must satisfy some property. Here we work with b-adic points in [0, 1] and the
property is related to the behavior of µ

(
[kb−j , (k + 1)b−j)

)
. In our context, the

“usual” ubiquity theorems [18,19,32] shall be understood as Theorem 3 applied
to µ = λ (the Lebesgue measure), and in this case Qhψ(I) corresponds to a
trivial condition. The property of the lim sup-sets Sξ,eε,ψ(h) to be non-empty is
thus remarkable, and strongly depends on the measure µ considered.

Let us now consider the measures νγ,σ defined by (1), where γ ≥ 0, σ ≥ 1.
Theorem 1’ Let µ be a positive Borel measure such that supp(µ) = [0, 1], and
assume that C1 holds for µ. Let γ ≥ 0 and σ ≥ 1.
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Let qγ,σ = inf{q ∈ R : τµ(σq) + γq = 0}, and hγ,σ = στ ′µ(σq
−
γ,σ) + γ.

1. If hγ,σ > 0, for every h ∈ [0, hγ,σ], dνγ,σ (h) ≤ qγ,σh.
If C2(hγ,σ−γσ ) holds, for every h ∈ [0, hγ,σ], dνγ,σ (h) = qγ,σh, and the multi-

fractal formalism holds at h. Moreover, qγ,σ = qc(νγ,σ) and hγ,σ = hc(νγ,σ).

2. Let h ≥ hγ,σ. Then dνγ,σ (h) ≤ τ∗µ
(
h−γ
σ

)
if τ∗µ

(
h−γ
σ

)
≥ 0, and E

νγ,σ
h = ∅ if

τ∗µ
(
h−γ
σ

)
< 0. If C3(h−γσ ) holds, then dνγ,σ (h) = τ∗µ

(
h−γ
σ

)
, and the multifractal

formalism holds at h.

The spectrum dνγ,σ has in fact the same shape as the one of dν (i.e. composed
of two parts), but γ and σ allow us to “play” with the slope of the linear part
and the shape of the (strictly) concave part.

The measures νγ,σ give the possibility to reach examples of measures m which
illustrate all possible pairs 0 < qc(m) ≤ 1, 0 ≤ hc(m) ≤ q−1

c (m). This makes
this class valuable. Until now, the case qc(m) < 1 and hc(m) > 0 was obtained
only when qc(m)hc(m) = 1 and when m is the derivative of a Lévy subordinator
[31] or m = νγ,1 in the case where µ is the Lebesgue measure [3].

The cases qc(m) = 1, 0 < hc(m) ≤ 1 are reached for example with m = ν by
using multinomial measures µ in Theorem 1. The introduction of the parameters
γ and σ allows us to reach all the possibilities qc(m) < 1 and hc(m) > 0 with
m = νγ,σ and the same choice for µ.

The case hc(µ) = 0 is particularly remarkable. In this case, C2(hc(µ)) of
Theorem 1 is useless. When C3(h) is satisfied by µ for every h such that τ∗µ(h) >
0, dµ has the classical ∩-shape, and it begins at (0, 0). To our knowledge, this
kind of behavior appears only in the case qc(µ) = 1 in [42,51,5]. The construction
of m = ν0,σ with such measures illustrates the cases qc(m) < 1 and hc(m) = 0.

Section 2 recalls the definitions of Hölder exponents and of the multifractal
formalism adapted to our construction. Conditions C1 and C3(h) are given.

Section 3 holds the definition of Condition C2(h) and the proof of Theorem
3, which implies Theorem 2. Subsection 3.2 indicates classes of measures µ that
fulfill conditions C1-3, and thus yield explicit examples of measures ν. Section
4 contains the proof of Theorem 1. Some observations, especially concerning the
validity of the multifractal formalism for νγ,σ, are gathered in Section 5.

2. General settings

Fix b an integer greater than 2. For j ≥ 1 and k ∈ [0, . . . , bj − 1], one sets
Ij,k = [kb−j , (k+1)b−j). I+

j,k and I−j,k denote the intervals Ij,k+b−j and Ij,k−b−j .
If x ∈ (0, 1), ∀j ≥ 1 Ij(x) denotes the b-adic interval of length b−j that

contains x. Then define I+
j (x) = Ij(x) + b−j and I−j (x) = Ij(x)− b−j . For each

j ≥ 1, kj,x is the unique integer such that Ij(x) = [kj,xb−j , (kj,x + 1)b−j).
A b-adic number kb−j is said to be irreducible if the fraction k

bj is irreducible.
|B| always denotes the diameter of the set B. Eventually, for the rest of the
paper, we adopt the convention log(0) = −∞.

2.1. Local regularity of measures.
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Definition 1. Let µ be a positive Borel measure on [0, 1], x0 ∈ [0, 1]. One sets

hµ(x0) = lim inf
r→0+

logµ(B(x0, r))
log |B(x0, r)|

= lim inf
j→+∞

logµ(B(x0, b
−j))

log |B(x0, b−j)|
. (6)

The lower and upper Hölder exponents of µ at x0 are respectively defined by

αµ(x0) = lim inf
j→+∞

logµ(Ij(x0))
log |Ij(x0)|

and αµ(x0) = lim sup
j→+∞

logµ(Ij(x0))
log |Ij(x0)|

When αµ(x0) = αµ(x0), their common value is denoted αµ(x0) and called the
Hölder exponent of µ at x0.

The left and right lower and upper Hölder exponents of µ at x0 are defined by

α−µ (x0) = lim inf
j→+∞

logµ(I−j (x0))

log |I−j (x0)|
and α+

µ (x0) = lim inf
j→+∞

logµ(I+
j (x0))

log |I+
j (x0)|

and α−µ (x0) = lim sup
j→+∞

logµ(I−j (x0))

log |I−j (x0)|
and α+

µ (x0) = lim sup
j→+∞

logµ(I+
j (x0))

log |I+
j (x0)|

.

Similarly, when they coincide, α−µ (x0) and α+
µ (x0) denote their common value.

The reader can check that hµ(x) = min(α−µ (x), αµ(x), α
+
µ (x)).

Definition 2. For every positive Borel measure µ on [0, 1] and for every α ≥ 0,
let Eµα = {x : hµ(x) = α} and Ẽµα =

{
x : αµ(x) = α+

µ (x) = α−µ (x) = α
}
.

The mapping dµ : α ≥ 0 7→ dim(Eµα) is called the multifractal spectrum of µ.
One also sets d̃µ(α) = dim Ẽµα.

2.2. Legendre and Large Deviation spectrum, multifractal formalism. The Leg-
endre transform of a function ϕ : R → R ∪ {−∞} is defined by ϕ∗ : h 7→
inf
p∈R

(ph− ϕ(p)).

Let µ be a positive Borel measure on [0, 1]. The function τµ defined by (2) is
known to be concave, non-decreasing, and the mapping h 7→ τ∗µ(h) is referred to
as the Legendre spectrum of µ.

Definition 3. Let µ be a positive Borel measure on R. Let us define, ∀α ≥
0, η > 0 and j ≥ 1, Nj,η(α) = #

{
k : log µ(Ij,k)

log b−j ∈ [α − η, α + η]
}
, and

dgη(α) = lim sup
j→+∞

j−1 logbNj,η(α). The large deviation spectrum of µ is the map-

ping dgµ : α 7→ limη→0+ dgη(α).

The following lemma follows from standard arguments. It gives a heuristic
interpretation of the large deviation spectrum and is used in Section 4.3.

Lemma 1. Let µ be a positive Borel measure on [0, 1]. For every 0 ≤ β ≤ α, for
every ε > 0 and η > 0, there exists a scale J such that j ≥ J implies

log
(
#

{
k : b−jα ≤ µ(Ij,k) ≤ b−jβ

})
log bj

≤ sup
max(β−η,0)≤α′≤α+η

dgµ(α
′) + ε.
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The Legendre and large deviation spectra are useful in multifractal analysis,
more on these topics can be found in [52]. They are more tractable than dµ, and
they yield upper bounds for dµ. Remark that the maximum of α 7→ τ∗µ(α) is
always reached at τ ′µ(0

+).

Proposition 1. 1. Let α ≥ 0. One has d̃µ(α) ≤ dgµ(α) ≤ τ∗µ(α) and d̃µ(α) ≤
dµ(α) ≤ τ∗µ(α). If τ∗µ(α) < 0 then Eµα = ∅.
2. If α ∈ [0, τ ′µ(0

+)] then dim
⋃
α′≤αE

µ
α′ ≤ τ∗µ(α).

3. If α ≥ τ ′µ(0
+) then dim

⋃
α′≥αE

µ
α′ ≤ τ∗µ(α).

This is deduced from Theorem 1 of [14], Proposition 2.5 of [45], Theorem 1 of
[39], Lemma 4.2 of [6] and the fact that Ẽµα ⊂ Eµα ∩ {x : αµ(x) = α}.

Definition 4. A positive Borel measure µ on [0, 1] is said to obey the multifractal
formalism at α ≥ 0 if dµ(α) = dim(Eµα) = τ∗µ(α).

2.3. Conditions C1, C2(h) and C3(h).

Definition 5. Let µ be a positive Borel measure with supp(µ) = [0, 1].
- Condition C1: There exists a constant B such that ∀j, ∀k = 0, .., bj − 1,
µ(Ij,k) ≥ b−Bj.
- Condition C2(h): see Definition 6 in next Section 3.
- Condition C3(h): There exists a positive Borel measure mh on [0, 1] such
that mh(Ẽ

µ
h ) > 0 and for every Borel set E ⊂ [0, 1] such that dimE < τ∗µ(h),

one has mh(E) = 0.

3. Conditioned ubiquity

3.1. Main result. Let us detail the assumptions that make Theorem 3 below
work. The measure ν is built on the b-adic numbers, but the analysis of the
initial measure µ may be naturally done using another base c. This is the case
for instance for multinomial measures built in basis c, or for the c-adic Man-
delbrot random multiplicative cascades. We shall thus deal with two bases si-
multaneously. When working in a basis b′, Ib

′

j,k denotes the closed b′-adic in-
terval [kb′−j , (k + 1)b′−j ], and if x ∈ [0, 1), kb

′

j,x is the integer k such that
x ∈ [kb′−j , (k + 1)b′−j) and Ib

′

j (x) = Ib
′

j,kb
′
j,x

.

Assume that an atomless measure µ such that supp(µ) = [0, 1] is given, as
well as two exponents α > 0 and β > 0 and an integer b ≥ 2.

Our assumptions are as follows.

H(α,β): (1) There exist two continuous non-decreasing functions ϕ and ψ
defined on R+ such that:
- ϕ(0) = ψ(0) = 0, r 7→ r−ϕ(r) and r 7→ r−ψ(r) are non-increasing near 0+, and
limr→0+ r−ϕ(r) = +∞.
- ∀ε > 0, r 7→ rε−ϕ(r) is non-decreasing near 0 (which implies that r 7→ rβ/ξ−γϕ(r)

is non-decreasing near 0 for β, γ, ξ > 0).
- The next properties (2), (3) and (4) hold.
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(2) There exist an integer c ≥ 2, a constant M (depending on b and c) and
a positive Borel measure m such that supp(m) = [0, 1] and

m-a.e, ∃ n, ∀ j ≥ n, m
(
Icj (x)

)
≤ |Icj (x)|β−ϕ(c−j). (7)

m-a.e, ∃ n, ∀ j ≥ n, PM (Icj,k) holds for |k − kcj,x| ≤ 2b2c. (8)

where PM (I) is said to hold for an interval I when

M−1|I|α+ψ(|I|) ≤ µ
(
I
)
≤M |I|α−ψ(|I|). (9)

Notice that β ≤ 1 since we work in R.

(3) (Self-similarity property of m) For every closed c-adic subinterval I of
[0, 1], let fI be the affine increasing mapping from I onto [0, 1]. There exists a
measure mI on I, equivalent to the restriction of m to I, such that the measure
mI ◦ f−1

I satisfies (7), and with the same exponent β.

For every n ≥ 1, for every closed c-adic interval I of [0, 1], let

EIn =
{
x ∈ I : ∀ j ≥ n+ logc(|I|−1), mI

(
Icj (x)

)
≤

( |Icj (x)|
|I|

)β−ϕ( c−j|I|

)}
.

The sets EIn form a non-decreasing sequence and by (7)
⋃
n≥1E

I
n is of full mI -

measure. Let us define

nI = inf
{
n ≥ 1 : mI(EIn) ≥ ‖mI‖/2

}
.

For x ∈ [0, 1) and j ≥ 0, let Ij(b, x) the set of b-adic intervals of maximal
length included in [kj,xc−j , (kj,x + 1/2)c−j ]. Then if L = [kb−j , (k + 1)b−j ] ∈
Ij(b, x), for ξ > 1 let Lξ be the set of c-adic intervals of maximal length included
in [kb−j , kb−j + b−jξ]. Finally we define

Iξj (x) =
⋃

L∈Ij(b,x)

Lξ. (10)

(4) (Control of the speed of renewal nI and of the mass ‖mI‖) There exists a
dense subset D of (1,∞) such that for every ξ ∈ D, the property P(ξ) holds,
where P(ξ) is: for m-almost every x ∈ (0, 1), for every j large enough, there
exists I ∈ Iξj (x) such that

nI ≤ logc
(
|I|−1)ϕ(|I|) and |I|ϕ(|I|) ≤ ‖mI‖. (11)

Definition 6. Let µ be a positive Borel measure such that supp(µ) = [0, 1], and
an integer b ≥ 2. C2(h) is said to hold for µ if H(h, τ∗µ(h)) holds.

The assumptions on ϕ and ψ in (1) are purely technical, but non restrictive
in practice. Assumption (2) allows to control m-almost everywhere the local be-
haviors of the analyzed measure µ and of the analyzing measure m. Assumption
(3) emphasizes a self-similarity property of the analyzing measure m. Eventu-
ally, assumption (4) is a control (for some c-adic intervals I) of ‖mI‖ and of the
speed of renewal of the control (7) for the measure mI ◦ f−1

I .
Assumptions (3) and (4) supply the monofractality property of the measures

m used in [19,32]. For these monofractal measures, there exist β > 0, C > 0 and
r0 > 0 such that ∀x ∈ supp(m), ∀ 0 < r ≤ r0, C−1rβ ≤ µ

(
B(x, r)

)
≤ Crβ .
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Theorem 3. Let µ be a positive Borel measure such that supp(µ) = [0, 1]. For
ξ,M ′ ≥ 1, α > 0 and ε̃ = {εj}j≥1 a non-negative sequence let

Sξ,eε,M ′(α) =
⋂
n≥1

⋃
j≥n

⋃
k∈{0,...,bj−1}:PM′ (Ibj,k) holds

[kb−j , kb−j + b−j(ξ−εj)].

Let α, β > 0 and suppose that H(α,β) holds. There exists M ′ ≥ 1 such that for
every ξ > 1, one can find a non-increasing sequence ε̃ converging to 0 and a
positive Borel measure mξ on [0, 1] such that mξ(Sξ,eε,M ′(α)) > 0, and for every
x ∈ Sξ,eε,M ′(α), one has

lim sup
r→0+

mξ

(
B(x, r)

)
rβ/ξ−5ϕ(r)

<∞. (12)

Moreover, if ξ ∈ D then ε̃ can be taken equal to {0}n≥1.

Corollary 1. If H(α,β) holds, then there exists M ′ ≥ 1 such that for every
ξ > 1, one can find a sequence ε̃ such that Hf (Sξ,eε,M ′(α)) > 0, where Hf is the
generalized Hausdorff dimension Hf associated with the dimension (or gauge)
function f : r 7→ rβ/ξ−5ϕ(r).

The mass distribution principle [20] implies that dim Sξ,eε,M ′(α) ≥ β/ξ, and
for every Borel set E such that dimE < β/ξ, mξ(E) = 0.

Theorem 2 is thus a consequence of the above corollary (the condition Qhψ is
equivalent to the condition PM up to a small correction of the function ψ).

The following property is used repeatedly in the sequel. Due to the assumption
on ϕ and ψ, there exists a constant C > 0 such that

for every 0 < r ≤ s ≤ 1, s−ϕ(s) ≤ Cr−ϕ(r) and s−ψ(s) ≤ Cr−ψ(r). (13)

Moreover, all along the proof, each time it occurs, C denotes a positive constant
which depends only on α, β, ξ, ϕ and ψ.

Before starting the proof, let us establish the following lemma.

Lemma 2. Let N ∈ N, and x ∈ (0, 1) such that PM (Icj,k) holds for k ∈ {kcj,x −
2b2c, . . . , kcj,x+2b2c} for every j ≥ N . Then there exists a constant M ′ (depend-
ing only on b, c and µ) such that for every j ≥ N and every b-adic interval I of
maximal length contained in [kcj,xc

−j , (kcj,x + 1/2)c−j ], PM ′(I) holds.

Proof. Let us fix j ≥ N and I a b-adic interval of maximal length contained in
[kcj,xc

−j , (kcj,x + 1/2)c−j ]. One has |I| ≥ c−j

2b2 . Consequently, since I ⊂ Icj (x) and
since both PM (Icj (x)) and (13) hold, there exists M ′ ≥ 1 depending only on b,
c and µ such that µ(I) ≤M ′|I|α−ψ(|I|).

Conversely, I contains at least one c-adic interval J of generation j′ = j +
[logc(2b2)]+1 which is distant from Icj′(x) by at most 2b2c ·c−j′ . By our assump-
tion this implies that PM (J) holds so µ(I) ≥M |J |α+ψ(|J|) ≥M |J |α+ψ(|I|) if |I|
is small enough (ψ is non-increasing near 0). Since |I|

|J| is bounded, there exists
M ′ ≥ 1 which depends only on b, c and µ such that µ(I) ≥M ′−1|I|α+ψ(|I|).



Multifractal additive and multiplicative chaos 11

Proof. Let ξ > 1 and let {ξn}n≥0 ∈ DN be a non-decreasing sequence converging
to ξ. To each ξn can be applied P(ξn). Let M ′ ≥ 1 be the constant computed
in last Lemma 2. We shall construct step by step the sequence ε̃, a generalized
Cantor set Kξ in Sξ,eε,M ′(α), and simultaneously the measure mξ on Kξ.

In the sequel, the closure of an interval Icj,k is also denoted Icj,k.

- First step: The first generation of intervals involved in the construction of
Kξ is taken as follows. Let us focus on ξ1.

Let L0 = [0, 1]. By assumptions (2) and P(ξ1), there exist a subset ẼL0 of
EL0
nL0

of m-measure larger than ‖m‖/4 and an integer n′L0
≥ nL0 such that for

every x ∈ ẼL0 , for every j ≥ n′L0
, there exists I ∈ Iξ1j (x) such that (11) holds

and simultaneously

∀ j ≥ n′L0
, PM (Icj,k) holds for k ∈ {kcj,x − 2b2c, . . . , kcj,x + 2b2c}. (14)

The set ẼL0 possesses a Cantor-like structure:

ẼL0 =
⋂

j≥n′L0

⋃
k:∃x∈ eEL0 , Icj,k=I

c
j (x)

Icj,k. (15)

For j ≥ n′L0
, let us define G̃1(j) =

{
Icj,k : ∃ x ∈ ẼL0 , Icj,k = Icj (x)

}
.

Let Icj,k be a c-adic interval in G̃1(j), x ∈ ẼL0 ∩ Icj,k and a c-adic interval I ∈
Iξ1j (x) such that (11) holds. Let IbJ,K ∈ Ij(b, x) such that I ⊂ [Kb−J ,Kb−Jξ1 ] ⊂
IbJ,K . By Lemma 2, PM ′(IbJ,K) holds.

One remarks that one ensured by construction the existence of a constant C
(depending on b and c only) such that ∀I ∈ Iξ1j (x), C−1|I| ≤ |Icj,k|ξ1 ≤ C|I|.

Hence, with every c-adic interval Icj,k in G̃1(j) is associated another (closed)
smaller c-adic interval I = Icj′,k′ . Eventually (this is the key property to ensure
that the generalized Cantor set will be included in Sξ,eε,M ′(α)) one remarks that
Icj′,k′ ⊂ [Kb−J ,Kb−J + b−Jξ1 ] ⊂ Icj,k for some Kb−J such that PM ′(IbJ,K) holds.

We denote Icj′,k′ = Icj,k. Conversely, if a c-adic interval I can be written J for

some larger c-adic interval J , one writes J = I. These small intervals Icj,k, for
some choice of j, will be the first generation of c-adic intervals used to construct
Kξ. Let us define G1(j) =

{
Icj,k : Icj,k ∈ G̃1(j)

}
. Notice that if I and I ′ are two

distinct elements of G1(j), the distance between I and I ′ is at least |I|/2.
On the algebra generated by the elements of G1(j), a probability measure mξ

is defined by

mξ(I) =
m(I)∑

Icj,k∈ eG1(j)
m(Icj,k)

.

By the assumption made on the measure m and (13), one has

m(I) ≤ |I|β−ϕ(|I|) ≤ C|I|β/ξ1 |I|−ϕ(|I|) ≤ C|I|β/ξ1 |I|−ϕ(|I|).

Moreover, using the Cantor-like structure (15),
∑
Icj,k∈ eG1(j)

m(Icj,k) ≥ m(ẼL0) ≥
‖m‖/4. As a consequence,

∀ I ∈ G1(j), mξ(I) ≤ 4‖m‖−1C|I|−ϕ(|I|)|I|β/ξ1 .
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By (1), j1 can be chosen large enough so that ∀ I ∈ G1(j1), 4‖m‖−1C ≤
|I|−ϕ(|I|) . We choose the c-adic elements of the first generation of the construc-
tion of Kξ as being those of G1 := G1(j1). By construction,

∀ I ∈ G1, mξ(I) ≤ |I|β/ξ1−2ϕ(|I|). (16)

- Second step: We construct the second generation of intervals. Consider ξ2.
For every L ∈ G1, using assumptions (3) and (4), one can find a subset ẼL of
ELnL such that mL

(
ẼL

)
≥ ‖mL‖/4 and an integer n′L ≥ nL such that ∀x ∈ ẼL,

for every j ≥ n′L + logc
(
|L|−1

)
, there exists I ∈ Iξ2j (x) such that (11) holds and

(as in (14))

∀ j ≥ n′L + logc
(
|L|−1

)
, PM (Icj,k) holds for |k − kcj,x| ≤ 2b2c. (17)

One has ẼL =
⋂
j≥n′L+logc

(
|L|−1

) ⋃
k:∃x∈ eEL,Icj,k=Icj (x) Icj,k, and one can define for

every j ≥ n′L + logc
(
|L|−1

)
the set G̃L2 (j) =

{
Icj,k : ∃ x ∈ ẼL, Icj,k = Icj (x)

}
.

Then, another set GL2 (j) of closed c-adic intervals is obtained from G̃L2 (j)
by the same procedure as G1(j) is constructed from G̃1(j) in the first step.
Thus, with every c-adic interval Icj,k in G̃L2 (j) is now associated a b-adic interval
[Kb−J , (K + 1)b−J ] and another closed c-adic interval Icj′,k′ with the following
properties:
- their lengths satisfy C−1|Icj′,k′ | ≤ |Icj,k|ξ2 ≤ C|Icj′,k′ |,
- Icj′,k′ ⊂ [Kb−J ,Kb−J + b−Jξ2 ] ⊂ Icj,k and PM ′(IbJ,K) holds.
Here again, one writes Icj′,k′ = Icj,k and Icj,k = Icj′,k′ .

Let us define GL2 (j) =
{
Icj,k : Icj,k ∈ G̃L2 (j)

}
. On the algebra generated by

the elements I of GL2 (j), an extension of the restriction to the interval I of the
measure mξ is defined by

mξ(I) =
mL(I)∑

Icj,k∈ eGL2 (j)m
L(Icj,k)

mξ(L).

By the assumption made on the measure mI , one shows that

mL(I) ≤
( |I|
|L|

)β−ϕ( |I|
|L|

)
≤ C|I|β/ξ2 |L|−β

( |I|
|L|

)−ϕ( |I|
|L|

)
≤ C|I|β/ξ2 |L|−β |I|−ϕ(|I|),

where (13) has been used. Moreover
∑
Icj,k∈ eGL2 (j)m

L(Icj,k) ≥ mL(ẼL) ≥ ‖mL‖/4.

Consequently, using (16) to get an upper bound for mξ(L), one obtains

mξ(I) ≤ mξ(L)
4

‖mL‖
C|I|β/ξ2 |L|−β |I|−ϕ(|I|)≤4C|L|β/ξ1−β−2ϕ(|L|)

‖mL‖
|I|β/ξ2−ϕ(|I|).

One can choose j2(L) large enough so that for every integer j ≥ j2(L), for every
c-adic interval I in GL2 (j), 4‖mL‖−1C|L|β/ξ1−β−2ϕ(|L|) ≤ |I|−ϕ(|I|).
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Then, taking j2 = max
{
j2(L) : L ∈ G1

}
, and defining G2 =

⋃
L∈G1

GL2 (j2),
this yields an extension of mξ to the algebra generated by the elements of
G1

⋃
G2 and such that for every I ∈ G1

⋃
G2, since ξ2 ≥ ξ1,

mξ(I) ≤ |I|β/ξ2−2ϕ(|I|). (18)

- Third step: We end the induction. Assume that the first nth generations
of intervals G1, . . . , Gn are found for some integer n ≥ 2. Assume also that a
probability measure mξ on the algebra generated by

⋃
1≤p≤nGp is defined and

that the following properties hold (the fact that this holds for n = 2 comes from
the two previous steps):

(i) the elements of Gp are closed c-adic intervals and pairwise disjoint. With
each I ∈ Gp is associated an interval I such that the I’s, I ∈ Gp, are pairwise
distinct c-adic intervals of the same generation, with C−1|I|ξp ≤ |I| ≤ C|I|ξp
for some universal constant C. If I and I ′ are two distinct elements of Gp, the
distance between I and I ′ is at least |I|/2.

(ii) For every 2 ≤ p ≤ n, each element I of Gp is a subinterval of an element
L of Gp−1. Moreover, I ⊂ L, logc

(
|I|−1

)
≥ nL + logc

(
|L|−1

)
and I ∩ ELnL 6= ∅.

(iii) For every 1 ≤ p ≤ n and I ∈ Gp, there is a b-adic interval Ibj,k =
[kb−j , (k + 1)b−j) such that I ⊂ [kb−j , kb−j + b−jξp ] ⊂ I and PM ′(Ibj,k) holds.

(iv) For every I ∈
⋃

1≤p≤nGp, mξ(I) ≤ |I|β/ξp−2ϕ(|I|) ≤ |I|β/ξ−2ϕ(|I|).

(v) For every 1 ≤ p ≤ n− 1, L ∈ Gp, and I ∈ Gp+1 such that I ⊂ L,

mξ(I) ≤ 4‖mL‖−1mξ(L)mL(I).

The construction of a generation Gn+1 of c-adic intervals and an extension of mξ

to the algebra generated by the elements of
⋃

1≤p≤n+1Gp such that properties
(i) to (v) hold for n+ 1 instead of n is done in the same way as when n = 1.

For every n ≥ 1, let Jn = sup{J : ∃I ∈ Gn, ∃K, I ⊂ [Kb−J ,Kb−J +
b−Jξn ] ⊂ I and PM ′(IbJ,K) holds} and J0 = 1. Then for every n ≥ 1, for every
j ∈ [Jn−1 + 1, Jn], one sets εj = ξ − ξn.

By induction, and due to the separation property (i), we obtain a sequence
(Gn)n≥1 and a probability measure mξ on σ

(
I : I ∈

⋃
n≥1Gn

)
such that prop-

erties (i) to (v) hold for every n ≥ 2. Let us define Kξ =
⋂
n≥1

⋃
I∈Gn I.

By construction, mξ(Kξ) = 1 and because of property (iii) Kξ ⊂ Sξ,eε,M ′(α).
Eventually, the measure mξ is extended to B([0, 1]) in the usual way: mξ(B) :=
mξ(B ∩Kξ) for every B ∈ B([0, 1]).

- Last step: Proof of (12). If I ∈ Gn, we set g(I) = n (the generation of the
interval I). Let us fix I an open subinterval of [0, 1] of length smaller than the
lengths of the elements of G1, and assume that I ∩Kξ 6= ∅. Let L be the element
of largest diameter in

⋃
n≥1Gn such that I intersects at least two elements of

Gg(L)+1 included in L. This implies that I does not intersect any other element
of Gg(L), and as a consequence mξ(I) ≤ mξ(L). We distinguish three cases:
• If |I| ≥ |L|, one has

mξ(I) ≤ mξ(L) ≤ |L|β/ξ−2ϕ(|L|) ≤ C|I|β/ξ−2ϕ(|I|). (19)



14 Julien Barral, Stéphane Seuret

• If |I| ≤ c−nL−1|L|, let L1, . . . , Ld be the elements of Gg(L)+1 which intersect
I. They are all sons of L. Property (v) above yields

mξ(I) =
d∑
i=1

mξ(I ∩ Li) ≤ mξ(L)
4

‖mL‖

d∑
i=1

mL(Li).

Let n be the unique integer such that c−n ≤ |I| < c−n+1. Recall

ELnL =
⋂

j≥nL+logc(|L|−1)

⋃
k:Icj,k∩ELnL 6=∅

Icj,k. (20)

Due to property (i), d ≥ 2 implies |I| ≥ |Li|/2. Hence the scale of the in-
tervals Li (which equals − logc |Li|) is larger than n − 1. Combining this with
(ii) and (20), one can write that

⋃d
i=1 Li ⊂

⋃
k:I∩Icn−1,k∩ELnL 6=∅

Icn−1,k. There

are at most 2 terms in the previous union. Since |I| ≤ c−nL−1|L|, one has
n−1 ≥ nL+logc

(
|L|−1

)
. Thus for each k such that I∩Icn−1,k∩ELnL 6= ∅ one has

mL(Icn−1,k) ≤
(
|Icn−1,k|
|L|

)β−ϕ( |Icn−1,k|
|L|

)
≤ C

(
|I|
|L|

)β( |I|
|L|

)−ϕ( |I|
|L|

)
, where C de-

pends only on β. This yields

mξ(I) ≤ mξ(L)
4

‖mL‖

d∑
i=1

mL(Li) ≤ mξ(L)
4

‖mL‖
2C

(
|I|
|L|

)β ( |I|
|L|

)−ϕ( |I|
|L|

)

≤ mξ(L)
C

‖mL‖

( |I|
|L|

)β
|I|−ϕ(I)

We then use consecutively two facts. First by (iv), mξ(L) ≤ |L|β/ξ|L|−2ϕ(|L|) ≤

C|L|β/ξ|I|−2ϕ(|I|). This implies thatmξ(I) ≤
C

‖mL‖
|I|β/ξ|I|−3ϕ(|I|)

( |I|
|L|

)β(1−1/ξ)

,

which is smaller than C‖mL‖−1|I|β/ξ|I|−3ϕ(|I|) since r 7→ rβ(1−1/ξ) is bounded
near 0. Then (4) yields an upper bound for ‖mL‖−1 and

mξ(I) ≤ C|L|−ϕ(|L|)|I|β/ξ|I|−3ϕ(|I|) ≤ C|I|β/ξ|I|−4ϕ(|I|). (21)

• c−nL−1|L| < |I| ≤ |L|: one needs at most cnL+2 contiguous intervals of
length c−nL−1|L| to cover I. For these intervals, the estimate (21) can be used.
Thus for |I| small enough, and using again assumption (4),

mξ(I) ≤ CcnL+2
(
c−nL−1|L|

)β/ξ(
c−nL−1|L|

)−4ϕ(c−nL−1|L|)

≤ CcnL |I|β/ξ|I|−4ϕ(|I|) ≤ C|L|−ϕ(|L|)|I|β/ξ|I|−4ϕ(|I|) ≤ C|I|β/ξ|I|−5ϕ(|I|).

The constant C > 0 does not depend on the interval I.
Remembering (19) and (21), and using assumption (1), one gets that for

every nontrivial subinterval L of [0, 1], mξ(L) ≤ C|L|β/ξ|L|−5ϕ(|L|).
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3.2. Examples of measures µ that satisfy C1, C2 and C3. We are going to
describe four classes of statistically self-similar measures. For all these measures,
property C1 follows easily from their study in the papers mentioned below.

• Deterministic Gibbs measures. Let µ be a Gibbs measure associated with an
Hölder potential φ in the dynamical system ([0, 1), T ), where T (x) = cx mod 1
with c an integer ≥ 2 (see [46]). The multifractal analysis of µ is performed for
instance in [14,48,24]. In this case the function τµ is analytic, and the fact that
C3(h) holds for all h of the form τ ′µ(q), q ∈ R, is an easy consequence of the
works mentioned above.

The fact that C2(τ ′µ(q)) holds for all q ∈ R is also simple in this case. Let
q ∈ R. To see that H(τ ′µ(q), τ

∗
µ(τ ′µ(q))) holds, choose the analyzing measure m

to be the Gibbs measure associated with the potential qφ (instead of φ for µ).
The law of the iterated logarithm applied to the Birkhoff sums associated with
φ with respect to m (see Chapter 7 of [49]) show that property (2) holds with
ϕ(t) = ψ(t) = C

( log log | log t|
| log(t)|

)1/2 for some C > 0. Also, if mI ◦ f−1
I = m, it is

obvious that (3) and (4) hold, and the speed of renewal nI does not depend on
I.

• Random Gibbs measures. We consider the following particular class. We fix a
potential φ as above, and a sequence ω = (ωn)n≥0 of independent random phases
uniformly distributed in [0, 1]. If j ≥ 1 one denotes by ω(j) the sequence (ωn)n≥j .
For n ≥ 1 and x ∈ [0, 1], let Sn(φ, ω)(x) =

∑n−1
k=0 φ(T kx + ωk). It follows from

the thermodynamic formalism for random transformations (see [35]) that, with
probability one, the sequence of measures

µφ,ωj (dx) =
exp

(
Sj(φ, ω)(x)

)∫
[0,1]

exp
(
Sj(φ, ω)(u)

)
du

dx

converges weakly to a Gibbs measure µ. The fact that C3(h) holds for every h
of the form τ ′µ(q), almost surely, is a consequence of [36]. The stronger property
“C3(h) holds almost surely for all h of the form τ ′µ(q)” is established in [9].
The fact that, with probability one, H(τ ′µ(q), τ

∗
µ(τ ′µ(q))) holds for all q ∈ R is

established in [11]. Given ω in the probability space such that µ(ω) is defined,
for q ∈ R one takes m as a weak limit of a subsequence of the sequence (µqφ,ωj )j .
In the same way, for j ≥ 1, one defines m(j) as a weak limit of a subsequence
of (µqφ,ω

(j)

k )k. Then, if I is a c-adic interval of generation j, the measure mI is
defined so that mI ◦ f−1

I = m(j). One gets (2), (3) and (4) with ψ(t) = ϕ(t) =

| logb(t)|−
1
8
(
log | logb(t)|

) 1
2+η for some η > 0. Moreover, since all the measures

mI only depend on the generation of I, and not on I, [11] shows that the control
(11) holds for all I of sufficiently large generation.

• Canonical cascades measures. These measures are studied in particular in [40,
34,29,43,5,6,11]. Let W be a positive random variable with expectation equal
to 1, and let (WJ)J∈I be a sequence of independent copies of W indexed by
the set I of c-adic subintervals of [0, 1). The canonical cascade measure µ is the
almost sure weak limit of the measure-valued martingale µj defined on [0, 1] by

µj(dx) =
∏

c−j≤|J|≤c−1, x∈J

WJ dx.
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Let τ̃ : q ∈ R 7→ q − 1 − logc E(W q). The condition τ̃ ′(1−) > 0 is necessary
and sufficient to ensure that, with probability one, µ is non-degenerate, that is
non equal to zero [34]. We assume τ̃ ′(1−) > 0 and then define J , the interior of
the interval {q ∈ R : τ̃ ′(q)q − τ̃(q) > 0}. We assume that J is a neighborhood
of [0, 1]. It is proved in the works mentioned above that, with probability one, τ̃
and τµ coincide on the closure of J , and also that C3(h) holds for all h of the
form τ ′µ(q), q ∈ J .

The following fact is established in [11]: For every q ∈ J , with probability
one, H(τ ′µ(q), τ

∗
µ(τ ′µ(q))) holds. Also, with probability one, H(τ ′µ(q), τ

∗
µ(τ ′µ(q)))

holds for almost-every q ∈ J (with respect to the Lebesgue measure).
For q ∈ J , the analyzing measure m is obtained as µ but with the weights

Wq,J = W q
J/E(W q) instead of the WJ ’s, and the measure mI ◦ f−1

I is the
measure obtained as m, but with the weights W I

q,J := Wq,f−1
I (J). Moreover,

ψ(t) = | log(t)|− 1
2
(
log | log(t)|

) 1
2+η and ϕ(t) =

(
log | log(t)|

)−κ for some η, κ > 0.
Contrary to the case of random Gibbs measures, the measuresmI are pairwise

distinct. This reflects a higher degree of randomness in the construction: While
only j i.i.d random phases are needed to construct µφ,ωj , bj independent copies of
W enter in the definition of µj . This makes impossible to get uniformly over the
c-adic intervals of sufficiently large generation the control (11) with a suitable
function ϕ.

• Compound Poisson cascades. Theses measures were recently introduced in [7].
Their construction is as follows (we do not enter the details here). Let θ > 0
and let Λ be the measure on the strip R× (0, 1] given by its density Λ(dtdλ) =
θλ−2dtdλ. Let S be a Poisson point process with intensity Λ. With each M =
(tM , λM ) ∈ S can be associated a positive integrable random variable WM in
such a way that the WM ’s are i.i.d, and also independent of S. Then for (t, ε) ∈
[0, 1]×(0, 1] define Cε(t) = {(s, λ) ∈ R× [0, 1] : ε ≤ λ < 1, t−λ/2 < s ≤ t+λ/2}.
The compound Poisson cascade measure µ on [0, 1] is the almost sure weak limit,
as ε→ 0, of the measure-valued martingale

µε(dt) = εθ(E(W )−1)
∏

M∈S∩Cε(t)

WM dt.

Let τ̃(q) = −1 + q
(
1 + θ(E(W ) − 1)

)
− θ(E(W q) − 1). It is shown in [11] that

under the same assumptions on τ̃ as for canonical cascades measures, one has
for µ formally the same conclusions on C2(h) and C3(h) as for these measures.

Extensions of µ are proposed in [4] and in [8], where for instance the following
extended construction is developed: If φ is chosen as for the Gibbs measures, let

µ̃ε(dt) = ε
θ

“
E(W )

R
[0,1] exp(φ(t) dt−1

” ∏
M∈S∩Cε(t)

WM exp
(
φ
(
λ−1
M (t− tM − λM/2)

))
dt.

The techniques developed for µ in [11] also hold for the limit of µ̃ε.

4. Proof of Theorem 1

The claims on the multifractal formalism and the identification of qc(ν) and
hc(ν) are postponed to Section 5.
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Before stating some results, let us remark that one has for some constant C
independent of j, k, and µ

for every
k

bj
, ν(Ij,k) ≥ ν({kb−j}) ≥ j−2µ(Ij,k), (22)

if
k

bj
irreducible, ν(Ij,k) =

∑
j′≥j

∑
k′b−j′∈Ij,k

µ(Ij′,k′)
j′2

=
∑
j′≥j

µ(Ij,k)
j′2

≤ C
µ(Ij,k)
j

. (23)

4.1. First properties of ν. Remember the definition (5) of ξx. Obviously, if x
is a b-adic number kb−j and if Kb−J is its irreducible representation, either
hν(x) = 0 if µ(IJ,K) > 0, or hν(x) = +∞ if µ(IJ,K) = 0.

Lemma 3. Assume C1 for µ. If x ∈ supp(µ) and ξx = +∞, hν(x) = 0.

Proof. Let be B be as in C1. Let M > B. Since ξx = +∞, there exists an
infinite number of b-adic numbers kb−j with j ≥ J such that |kb−j −x| ≤ b−jM .
Let k0b

−j0 be such a b-adic number. Let J0 = [Mj0]− 2 and let K0 be such that
K0b

−J0 = k0b
−j0 . Since |k0b

−j0 − x| ≤ b−j0M , one has |K0b
−J0 − x| ≤ b−(J0+1),

and thus K0b
−J0 ∈ B(x, b−J0). Using (22), for some constant C depending on

B and M one has

ν(B(x, b−J0)) ≥ ν({k0b
−j0}) ≥ j−2

0 µ(Ij0,k0) ≥ j−2
0 b−Bj0 ≥ CJ−2

0 b−
B
M J0 .

There exists an infinite number of integers J0 such that last inequality holds,
thus hν(x) ≤ B/M . This remains true for any M > B, thus hν(x) = 0.

Proposition 2. Let x ∈ Eµα for some α ≥ 0, and assume that its approximation
rate by the b-adic numbers ξx is finite. Then α

ξx
≤ hν(x) ≤ α.

Proof. Let ε > 0. Let us first obtain an upper bound for hν(x).
By definition of α, there exists an infinite number of integers j0 such that

max
(
µ(I−j0(x)), µ(Ij0(x)), µ(I+

j0
(x))

)
≥ b−j0(α+ε). Let j0 be such an integer, and

let us then find a lower bound of ν(B(x, b−(j0−1))). It is obvious that I−j0(x) ∪
Ij0(x) ∪ I+

j0
(x) ⊂ B(x, b−(j0−1)). Thus using (22), one gets

ν(B(x, b−(j0−1))) ≥ max(ν(I−j0(x)), ν(Ij0(x)), ν(I
+
j0

(x)))

≥ j−2
0 max(µ(I−j0(x)), µ(Ij0(x)), µ(I+

j0
(x))) ≥ j−2

0 b−j0(α+ε).

This implies hν(x) = lim infj→+∞
log ν(B(x,b−(j−1)))
log |B(x,b−(j−1))| ≤ α + ε. This remains true

for every ε > 0, hence the result.
Let us move to the lower bound. By definition of ξx, there exists J ′ such that

j ≥ J ′ implies ∀k, |kb−j − x| ≥ b−j(ξx+ε). Moreover, x ∈ Eµα, thus there exists a
scale J ′′ such that j ≥ J ′′ implies max(µ(I−j (x)), µ(Ij(x)), µ(I+

j (x))) ≤ b−j(α−ε).
One sets J = max([2(ξx + 1)J ′], [2(ξx + 1)J ′′]).
Let j0 ≥ J , and consider B(x, b−j0). For every j ≥ j0 + 1, one has∑
kb−j∈B(x,b−j0 )

µ(Ij,k) ≤ µ(I−j0(x)) + µ(Ij0(x)) + µ(I+
j0

(x)) ≤ 3 b−j0(α−ε).
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since B(x, b−j0) ⊂ I−j0(x) ∪ Ij0(x) ∪ I
+
j0

(x). This yields

ν(B(x, b−j0)) = ν
({kj0,x

bj0

})
+ ν

({kj0,x + 1
bj0

})
+

∑
j≥j0+1

1
j2

∑
kb−j∈B(x,b−j0 )

µ(Ij,k)

≤ ν
({kj0,x

bj0

})
+ ν

({kj0,x + 1
bj0

})
+

∑
j≥j0+1

1
j2

3 b−j0(α−ε).

Thus for any x ∈ Eµα and for j0 large enough, one has

ν(B(x, b−j0)) ≤ ν({kj0,xb−j0}) + ν({(kj0,x + 1)b−j0}) + Cj−1
0 b−j0(α−ε). (24)

This inequality will later be of a great importance. We distinguish three cases:
- if kj0,x is a multiple of b: kj0,xb

−j0 can be written as an irreducible fraction
K0b

−J0 with J0 < j0. Since |K0b
−J0−x| ≤ b−j0 ≤ b−(J0+1), K0b

−J0 is the b-adic
number that is the closest to x at scale J0.

The integer J has been chosen large enough so that the reduced scale J0 is
greater than J ′. Hence one gets that |K0b

−J0 − x| ≥ b−J0(ξx+ε).
Thus b−J0(ξx+ε) ≤ |K0b

−J0 − x| ≤ b−j0 , which implies j0 ≤ J0(ξx + ε).
Moreover, since J0 ≥ J ′′, one obtains µ(IJ0,K0) ≤ b−J0(α−ε). One can now get
an upper bound for ν({kj0,xb−j0}). Indeed, for some constant Cξx that depends
on ξx,

ν({kj0,xb−j0}) ≤
∑
j≥J0

j−2µ(IJ0,K0) ≤ CJ−1
0 b−J0(α−ε) ≤ Cξxj

−1
0 b−j0

α−ε
ξx+ε .

- if kj0,x + 1 is a multiple of b: the same arguments apply also here, and
ν({(kj0,x + 1)b−j0}) ≤ Cξxj

−1
0 b−j0

α−ε
ξx+ε .

- if kj0,x (or kj0,x) is not a multiple of b: then by (23) one has ν({kj0,xb−j0}) ≤
Cj−1

0 b−j0(α−ε) (or ν({(kj0,x + 1)b−j0}) ≤ Cj−1
0 b−j0(α−ε).

Eventually, ν(B(x, b−j0)) ≤ 2Cξxj
−1
0 b−j0

α−ε
ξx+ε +Cj−1

0 b−j0(α−ε) ≤ Cj−1
0 b−j0

α−ε
ξx+ε .

As a consequence, hν(x) ≥ α−ε
ξx+ε

, and this is true ∀ε > 0, hence the result.

4.2. Decomposition of Eνh. The following sets are needed.

Definition 7. Let µ be a positive Borel measure, and α ≥ 0, ξ ≥ 1 be two real
numbers. Let ε > 0. For every point x, the property L(α, ξ, ε) is said to hold at
x if there exist η ≤ ε, and an infinite number of b-adic numbers kb−j that verify

b−j(α+η) ≤ µ([kb−j , (k + 1)b−j)) ≤ b−j(α−η) and |kb−j − x| ≤ 2 b−jξ. (25)

Let now h ≥ 0. The set Fh is defined by

Fh =
{
x :

∀ε > 0, ∃α ≥ 0, ξ ≥ 1 such that
α
ξ ≤ h+ ε and L(α, ξ, ε) holds at x

}
(26)

It is obvious to verify that for any 0 ≤ h ≤ h′, Fh ⊂ Fh′ .

Proposition 3. Let h > 0. One has Eνh = Fh\
⋃
h′<h Fh′ .
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Before proving Proposition 3, we first study the sets Fh.

Lemma 4. If x ∈ Fh for some h ≥ 0, then hν(x) ≤ h.

Proof. Let ε > 0, and (α, ξ) such that α
ξ ≤ h + ε and L(α, ξ, ε) holds at x. For

some η < ε, denote by knb−jn an infinite sequence of b-adic numbers such that

b−jn(α+η) ≤ µ([knb−jn , (kn + 1)b−jn)) ≤ b−jn(α−η) and |knb−jn − x| ≤ 2 b−jnξ.

Since ν(B(x, 2b−jnξ)) ≥ 1
j2n
µ([knb−jn , (kn+1)b−jn)), one gets log ν(B(x,2b−jnξ))

log 2b−jnξ
≤

− log j2n
log 2b−jnξ

+ jn(α+η)
jnξ−log 2 . The right term tends to α+η

ξ when jn → +∞, hence ∀ε > 0,
hν(x) ≤ α+η

ξ ≤ h+ 2ε.

The following proposition is important to prove Proposition 3 and also to find
the upper bound in the next section.

Proposition 4. Let h > 0 and x ∈ Eνh. Assume C1 holds for µ. Then x ∈ Fh.

Proof. Let ε > 0, and x ∈ Eνh . We want to show that there exists a couple (α, ξ)
such that α

ξ ≤ h+ ε and L(α, ξ, ε) holds at x. Let αx > 0 the unique exponent
such that x ∈ Eµαx (remember that by Proposition 2, αx = 0 ⇒ hν(x) = 0).
1. ξx = 1: by Proposition 2, one has h = αx. One can take ξ = 1, α =
h + ε. Indeed, if x ∈ Ehµ , there exists an infinite number of intervals I ∈
{I−j (x), Ij(x), I+

j (x)} such that b−j(h+ε) ≤ µ(I) ≤ b−j(h−ε). Such intervals I
satisfy (25).
2. ξx > 1 and h = αx: the arguments of item 1. apply with ξ = 1 and α = αx+ε.
3. ξx > 1 and h < αx: we assume that ε is small enough so that h+ ε < αx − ε.
Remark that if b-adic numbers that satisfy (25) exist, then k = kj,x or k =
kj,x + 1.

By definition of ξx, there exists a scale J such that j ≥ J implies ∀k, |kb−j −
x| ≥ b−j(ξx+

ε
3 ), and since x ∈ Eµαx , one can similarly impose J large enough so

that for every j ≥ J , max(µ(I−j (x)), µ(Ij(x)), µ(I+
j (x))) ≤ b−j(αx−

ε
3 ).

Since x ∈ Eνh , there exists an infinite number of integers jn ≥ J such that
ν(B(x, b−jn)) ≥ b−jn(h+ ε

3 ). Consider one of these jn. Since h+ ε
3 < αx− ε

3 , (24)
yields for jn large enough and for some constant C depending on x, h and αx

C−1b−jn(h+ ε
3 ) ≤ ν({kjn,xb−jn}) + ν({(kjn,x + 1)b−jn}) (27)

Remark that one of kjn,x and kjn,x+1 must be a multiple of b. Indeed, other-
wise we would have by (23) ν({kjn,xb−jn})+ν({(kjn,x+1)b−jn}) ≤ 2

jn
µ(Ijn(x)) ≤

2
jn
b−jn(αx− ε

3 ). Thus if ε is small enough so that αx−ε > h+ε, this is impossible.

- If kjn,x is a multiple of b: then (kjn,x + 1)b−jn is irreducible, and by (23)

ν({(kjn,x + 1)b−jn}) ≤ Cj−1
n µ(I+

jn
(x)) ≤ Cj−1

n b−jn(αx− ε
3 )

Thus (27) can be rewritten for jn large enough ν({kjn,xb−jn}) ≥ C−1b−jn(h+ ε
3 ),

up to a modification of the value of the constant C.
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Let us write kjn,xb
−jn = Knb

−Jn , where Kn is not a multiple of b. By con-
struction |Knb

−Jn − x| = b−Jnξn where ξn ≥ 1. Moreover, by (23),

CJ−1
n µ(IJn,Kn) ≥ ν({kjn,xb−jn}) ≥ C−1b−jn(h+ ε

3 ) = C−1b−Jnξn(h+ ε
3 )

Thus for jn large enough, µ(IJn,Kn) = b−Jnαn where αn ≤ ξn(h+ 2 ε3 ).
Eventually, for the b-adic number Knb

−Jn and its corresponding interval
IJn,Kn , (25) is satisfied with the couple (αn, ξn). Remark that ξn ∈ [1, ξx + ε

3 ]
(because Jn ≥ J) , and that αn

ξn
≤ h+ 2 ε3 < h+ ε.

- If kjn,x + 1 is a multiple of b: the same arguments as above also apply here.
Since C1 is satisfied, by Definition 5 there exists B such that for every j and k,
µ(Ij,k) ≥ b−Bj . One can thus extract an infinite subsequence of b-adic numbers
Knb

−Jn that verify (25) with (αn, ξn) ranging in the square S = [αx − ε
3 , B] ×

[1, ξx + ε
3 ] and satisfying αn

ξn
≤ h+ 2 ε3 .

One can extract from (αn, ξn)n a subsequence (αφ(n), ξφ(n)) converging to
some value (α0, ξ0), that also satisfies α0

ξ0
≤ h+ 2 ε3 . Now choose η small enough

such that α0+η
max(1,ξ0−η) ≤ h+ε, define ξ′0 = max(1, ξ0−η) and consider the square

Sη = [α0−η, α0+η]× [ξ′0, ξ0+η]. There exists a scale N such that n ≥ N implies
(αφ(n), ξφ(n)) ∈ Sη. By construction, for every n ≥ N , one has b−Jφ(n)(α0−η) ≥
µ(IJφ(n),Kφ(n)) ≥ b−Jφ(n)(α0+η) and |Kφ(n)b

−Jφ(n) − x| = b−Jφ(n)ξφ(n) ≤ b−Jφ(n)ξ
′
0 .

Hence L(α0, ξ
′
0, ε) holds at x.

Proof. (of Proposition 3) Last Proposition shows that Eνh ⊂ Fh (one also has
Eνh ⊂

⋂
h′>h Fh′). Moreover, applying Lemma 4 to h′ < h yields Eνh ∩ Fh′ = ∅.

Hence Eνh ⊂ Fh\
⋃
h′<h Fh′ .

Conversely, let x ∈ Fh\
⋃
h′<h Fh′ . x ∈ Fh implies by Lemma 4 hν(x) ≤ h,

but if hν(x) < h, x ∈
⋃
h′<h Fh′ by Proposition 4. Hence hν(x) = h, and x ∈ Eνh .

Let us finish this section by saying that in the Definition 7 of L(α, ξ, ε) one can
impose the choice of only irreducible b-adic numbers. Then the characterizations
we proved, and the next results, remain the same.

4.3. Upper bound for the multifractal spectrum. Let us first mention that item 1.
of Proposition 1 combined with Proposition 2 yields that, as soon as τ∗µ(h) < 0
and h ≥ τ ′µ(0

+), Eνh = ∅. We focus now on the exponents h such that τ∗µ(h) ≥ 0.

Proposition 5. If h ≥ τ ′µ(0
+), dim(Eνh) ≤ τ∗µ(h).

Proof. Let h > τ ′µ(0
+), and x ∈ Eνh . Let α be the unique exponent such that

x ∈ Eµα. By Proposition 2, h = hν(x) ≤ α, hence x ∈
⋃
α′≥hE

µ
α′ . Finally, by

Proposition 1, dimEνh ≤ dim
⋃
α′≥hE

µ
α′ ≤ τ∗µ(h).

To prove the upper bound when h ≤ τ ′µ(0
+), one uses the next technical lemma.

Lemma 5. Assume C1 holds for µ. Let f : R 7→ R be a positive strictly increas-
ing continuous function such that lim+∞ f(x) = +∞. Let us define

Gh(f) =
{
x :

∀ε > 0, ∃α ≥ 0, ξ ≥ 1 such that
f(α)
ξ ≤ h+ ε and L(α, ξ, ε) holds at x

}
.
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Then dimGh(f) ≤ h supα:f(α)≥h
supα′≤α τ

∗
µ(α′)

f(α) .

Proof. Let ε > 0, and for every i ∈ N, let ξi = 1 + i ε2h , and α̃i be such that
f(α̃i) = ξi(h + 2ε). Remark that ξi and α̃i have been chosen so that for ε > 0
small enough, for every ξ ∈ [ξi, ξi+1], one has

f(α̃i) = ξi(h+ 2ε) ≥ ξ(h+ ε). (28)

Thus let ε > 0 such that (28) holds, let αi = α̃i + ε and let us define the sets
Tαi,ξi by

Tαi,ξi =
⋂
J≥0

⋃
j≥J

⋃
k:µ(Ij,k)≥b−jαi

[kb−j − 2 b−jξi , kb−j + 2 b−jξi ]. (29)

Any point of Tαi,ξi is infinitely many often close at rate ξi to a b-adic number
kb−j that verifies µ(Ij,k) ≥ b−jαi . By definition of Gh(f), every x ∈ Gh(f)
belongs to Tαi,ξi with i the unique integer such that ξ ∈ [ξi, ξi+1). One thus gets
the inclusion Gh(f) ⊂

⋃
i∈N Tαi,ξi .

It is time to use Lemma 1 to obtain an upper bound for the dimension of a
set Tα,ξ. Indeed, let α > 0, ξ ≥ 1 and ε′ < ε. By Lemma 1 applied to η = ε′/2
and ε = ε′, one gets that for j large enough (one also uses that dgµ(α) is always
smaller than τ∗µ(α), see Proposition 1)

log
(
#

{
k : µ(Ij,k) ≥ b−jα

})
log bj

≤ sup
α′≤α+ε′/2

dgµ(α
′) + ε′ ≤ sup

α′≤α+ε′/2

τ∗µ(α′) + ε′.

We denote τ∗µ(α′)+ ε′ by τα,ε′ . Let us get the upper bound for the Hausdorff di-
mension of Tα,ξ. Let d > τα,ε′

ξ . This set Tα,ξ is covered by
⋃
j≥J

⋃
k:µ(Ij,k)≥b−jα [kb−j−

b−jξ, kb−j + b−jξ], and∑
j≥J

∑
k:µ(Ij,k)≥b−jα

|[kb−j − b−jξ, kb−j + b−jξ]|d ≤ C
∑
j≥J

bjτα,ε′ b−jdξ≤ Cb−J(τα,ε′−dξ),

where C is a constant that does not depend on d or J . This double sum goes
to zero when J → +∞, and the d-dimensional Hausdorff measure of Tα,ξ is
finite for every d >

τα,ε′

ξ . Thus the Hausdorff dimension of Tα,ξ is less than
τα,ε′

ξ . This remains true for any ε′ > 0, so, using the continuity of τ∗µ , one gets

dimTα,ξ ≤
infε′ τα,ε′

ξ = supα′≤α τ
∗
µ(α′)

ξ . The inclusion Gh(f) ⊂
⋃
i∈N Tαi,ξi implies

dimGh(f) ≤ sup
i∈N

(dimTαi,ξi) ≤ sup
i∈N

supα′≤αi τ
∗
µ(α′)

ξi

≤ (h+ 2ε) sup
i∈N

supα′≤αi τ
∗
µ(α′)

f(αi)
≤ (h+ 2ε) sup

α:f(α)≥h

supα′≤α τ∗µ(α′)
f(α)

,

where the range of α’s is f(α) ≥ h since f(αi) is by definition always greater
than h. Letting ε go to zero yields the conclusion.

Proposition 6. Assume C1. If h ∈ (0, τ ′µ(0
+)), dim(Eνh) ≤ h supu≥h

τ∗µ(u)

u .
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Proof. Let h > 0, and x ∈ Eνh . Since x ∈ Eνh , by Proposition 4 x ∈ Fh (indeed,
Fh corresponds in view of Lemma 5 to Gh(f) with the function f being the

identity f(x) = x). Hence by Lemma 5, dimEνh ≤ h supα≥h
supα′≤α τ

∗
µ(α′)

α .

Let us now simplify this formula. Remember (3) and simply write qc for qc(µ)
and hc for hc(µ). Since τ∗µ is concave, the function α 7→ τ∗µ(α)

α is concave, and

reaches its maximum at hc, with qc = τ∗µ(hc)

hc
. Hence ∀α, τ

∗
µ(α)

α ≤ τ∗µ(hc)

hc
. Also,

when α ≥ τ ′µ(0
+), supα′≤α τ

∗
µ(α′)

α ≤ τ∗µ(τ ′µ(0+))

α ≤ τ∗µ(τ ′µ(0+))

τ ′µ(0+) ≤ τ∗µ(hc)

hc
= qc.

Two cases can thus be distinguished

- hc < h < τ ′µ(0
+): if h ≤ α ≤ τ ′µ(0

+), supα′≤α τ∗µ(α′) = τ∗µ(α), so supα′≤α τ
∗
µ(α′)

α =
τ∗µ(α)

α . If α ≥ τ ′µ(0
+), supα′≤α τ

∗
µ(α′)

α ≤ τ∗µ(τ ′µ(0+))

τ ′µ(0+) . Hence one gets dimEνh ≤

h supτ ′µ(0+)≥α≥h
τ∗µ(α)

α = h supα≥h
τ∗µ(α)

α .

- 0 < h ≤ hc: if α ≥ hc, the same arguments as above still work. If h ≤ α < hc,
supα′≤α τ

∗
µ(α′)

α ≤ τ∗µ(α)

α ≤ τ∗µ(hc)

hc
= qc. Thus dimEνh ≤ hqc = h supα≥h

τ∗µ(α)

α .

Let now verify that the upper bound h supu≥h
τ∗µ(u)

u coincides with the one

announced in Theorem 1. When h ≤ hc, supu≥h
τ∗µ(u)

u = qc, and the upper bound

becomes dimEνh ≤ qch. When h ≥ hc, supu≥h
τ∗µ(u)

u = τ∗µ(h)

h ( the mapping

α 7→ τ∗µ(α)

α is non-increasing when α ≥ hc), hence dimEνh ≤ h
τ∗µ(h)

h = τ∗µ(h).

A simple adaptation of the last proof yields the following corollary

Corollary 2. Let h ∈ [0, τ ′µ(0
+)], and Fh be the set (26). Then dimFh ≤ qch.

4.4. Lower bound of the multifractal spectrum. For every j, k and ξ, one denotes
I
(ξ)
j,k = [kb−j , kb−j + b−jξ]. Here again, qc(µ) and hc(µ) are simply denoted by qc

and hc.

Proposition 7. Let µ be a measure satisfying C2(hc). Then ∀ξ ≥ 1, dimEνhc/ξ ≥
τ∗µ(hc)/ξ.

Proof. Let ξ > 1, h = hc/ξ and d = τ∗µ(hc)/ξ. We apply Theorem 2. There
exist a non-negative sequence ε̃ converging to 0, a non-negative continuous func-
tion ψ on R+ such that ψ(0) = 0, and a positive Borel measure mξ such that
mξ(Sξ,eε,ψ(hc)) > 0 and for every Borel set E with dimE < d, mξ(E) = 0. Recall
also that Eνh = Fh\

⋃
h′<h Fh′ = Fh\

⋃
i≥[h−1]+1 Fh− 1

i
, the second equality due

to the monotonicity of the sets {Fh′}. Using Corollary 2, for every i ≥ [h−1]+1,
dimFh− 1

i
< qch. This implies, by Theorem 2, that mξ(

⋃
i≥[h−1]+1 Fh− 1

i
) = 0.

Also one verifies that Sξ,eε,ψ(hc) ⊂ Fh, since every point of Sξ,eε,ψ(hc) satisfies
L(hc, ξ − ε2, ε) for every ε > 0 small enough. This implies that mξ(Eνh) ≥
mξ(Sξ,eε,ψ(hc)) > 0, and thus that dimEνh ≥ d.

If ξ = 1, since C2(hc) implies C3(hc), see the proof of Proposition 8.

Proposition 8. Let µ be a positive Borel measure supported by [0, 1], and let us
assume that C3(h) holds for some h ≥ hc. Then dν(h) = dimEνh ≥ τ∗µ(h).
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Proof. Consider Ẽµh , the measure mh provided by C3(h) and ε > 0.
Let ξ > 1. Let us estimate the dimension of Ẽµh,ξ = {x ∈ Ẽµh : ξx = ξ}. The

same lines of computations as in Lemma 5 show that, for every J ,⋃
ξ′>ξ

Ẽµh,ξ′ ⊂
⋃
j≥J

⋃
k∈{0,...,bj−1}:

b−j(h+ε)≤µ(Ij,k)≤b−j(h−ε)

[kb−j − b−j(ξ−ε), kb−j + b−j(ξ−ε)].

Applying Lemma 1 with η = ε gives #
{
k : b−j(h+ε) ≤ µ(Ij,k) ≤ b−j(h−ε)

}
≤

bj(supmax(β−ε,0)≤α′≤α+ε d
g
µ(α′)+ε). One then uses that ∀α′ ∈ [max(β − ε, 0), α + ε],

dgµ(α
′) ≤ τ∗µ(α′). Let us denote τh,ε = supmax(β−ε,0)≤α′≤α+ε τ

∗
µ(α′) + ε.

Using the covering, one deduces that dim
⋃
ξ′>ξ Ẽ

µ
h,ξ′ ≤

τh,ε
ξ−ε . This is true ∀ε >

0, hence using the continuity of τ∗µ on its support, dim
⋃
ξ′>ξ Ẽ

µ
h,ξ′ ≤ τ∗µ(h)/ξ.

Let Ẽµh,1 = Ẽµh\
⋃
i≥2

⋃
ξ′>1+i−1 Ẽ

µ
h,ξ′ . For i ≥ 2, dim

⋃
ξ′>1+i−1 Ẽ

µ
h,ξ′ < τ∗µ(h),

and thus mh(
⋃
ξ′>1+i−1 Ẽ

µ
h,ξ′) = 0. Hence mh(Ẽ

µ
h,1) = mh(Ẽh), which is > 0 by

C3(h). The points x belonging to Ẽµh,1 all verify ξx = 1. Thus by Proposition 2,
hν(x) = h. Hence Ẽµh,1 ⊂ Eνh . This yields mh(Eνh) > 0 and dimEνh ≥ τ∗µ(h).

4.5. How to get the general case?. Reading attentively the arguments developed
to study the measures ν = ν0,1 yields the proof of Theorem 1’. One can verify
that ∀x ∈ [0, 1], γ+σhµ(x)

ξ ≤ hνγ,σ (x) ≤ γ + σhµ(x), and then use the sets

Fh,γ,σ =
{
x :

∀ε > 0, ∃α ≥ 0, ξ ≥ 1 such that
γ+σα
ξ ≤ h+ ε and L(α, ξ, ε) holds at x

}
instead of the sets Fh and Lemma 5 applied with f(α) = γ + σα to get upper
and lower bounds for the multifractal spectrum of νγ,σ. This is left to the reader.

5. Additional properties

The reader can check that the upper multifractal spectrum defined by dν(h) =
dim{x : lim supr→0+

log ν(B(x,r))
log |B(x,r)| = h} is equal to the one of µ (when C3(h)

holds).
We set αmax = sup{α : τ∗µ(α) > 0}.

Proposition 9. Let µ be a positive Borel measure on [0, 1], and let γ ≥ 0 and
σ ≥ 1. Let qγ,σ and hγ,σ be defined as in Theorem 1’. Assume that C2(hγ,σ−γσ )
holds, and that C3(h−γσ ) holds for every exponent h ∈ [hγ,σ−γσ , αmax). The mea-
sure νγ,σ satisfies the multifractal formalism at every h such that τ∗νγ,σ (h) > 0.

Proof. We give the proof in the case of ν, i.e. when γ = 0 and σ = 1. Here again,
qc(µ) and hc(µ) are simply denoted by qc and hc. Let us compute τν .
- if q < 0 : For every (j, k), by (22) ν(Ij,k) ≥ j−2µ(Ij,k), which shows that∑bj−1
k=0 νq(Ij,k) ≤ j−2q

∑bj−1
k=0 µq(Ij,k). Hence τν(q) ≥ τµ(q). Moreover, when

C3(h) holds at h ∈ [τ ′µ(0
+), αmax), τ∗µ(h) = dν(h) ≤ τ∗ν (h). If this holds on
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a dense set of exponents h ∈ [τ ′µ(0
+), αmax), by inverse Legendre transform one

gets τν(q) ≤ τµ(q) for every q < 0 with τ ′µ(q
+) ≤ αmax. The equality follows.

- if 0 < q < qc : Let J ≥ 2. One has
∑bJ−1
K=0 ν

q(IJ,K) =
∑
Kb−J irreducible ν

q(IJ,K)+∑
Kmultiple of b ν

q(IJ,K).WhenKb−J is irreducible, one uses (23) to get νq(IJ,K) ≤
Cq 1

Jq µ
q(IJ,K). When K is a multiple of b, let kb−j be its unique irreducible

representation (0 ≤ j ≤ J − 1). As already noticed before, in this case

ν(IJ,K) = ν({kb−j}) +
∑

j′≥J+1

1
j′2

∑
k′:Ij′,k′⊂IJ,K

µ(Ij′,k′)

≤ Cj−2µ(Ij,k) +
∑

j′≥J+1

Cj′
−2
µ(IJ,K) ≤ j−2µ(Ij,k) + CJ−1µ(IJ,K).

Since q < 1, one gets νq(IJ,K) ≤ Cq
(

1
j2µ(Ij,k)+ 1

J µ(IJ,K)
)q ≤ Cq

(
1
j2q µ

q(Ij,k)+
1
Jq µ

q(IJ,K)
)
. The term 1

j2q µ
q(Ij,k) is bounded by 1

j2q

∣∣ ∑
K′:IJ,K′⊂Ij,k µ(IJ,K′)

∣∣q ≤
1
jq

∑
K′:IJ,K′⊂Ij,k µ

q(IJ,K′). This results yields

∑
0≤K<bJ

νq(IJ,K) ≤ Cq

Jq

∑
0≤K<bJ

µq(IJ,K) + Cq
∑

K multiple of b, and kb−j
its irreducible representation

∑
K′:IJ,K′⊂Ij,k

µq(IJ,K′)
jq

.

Each irreducible b-adic number kb−j with 0 ≤ j ≤ J − 1 appears one time in
the above double sum. Conversely, for a given integer K ∈ {0, . . . , bJ − 1} and
for each scale j, there exists only one irreducible b-adic number kb−j such that
IJ,K ⊂ Ij,k. Hence, the double sum can be bounded by

∑J−1
j=1

1
jq

∑bJ−1
K=0 µ

q(IJ,K),

and eventually by J
∑bJ−1
K=0 µ

q(IJ,K). So
∑bJ−1
K=0 ν

q(IJ,K) ≤ CJ
∑bJ−1
K=0 µ

q(IJ,K),
where C is a constant independent of µ and J . This implies τν(q) ≥ τµ(q).

On the other hand, when C3(h) holds on a dense set of values of h ∈
[hc, τ ′µ(0

+)], at these exponents one has τ∗ν (h) ≥ dν(h) = τ∗µ(h), which yields
by inverse Legendre transform τν(q) ≤ τµ(q) for every q ∈ [0, qc].

- if q ≥ qc : Let us distinguish two cases.
If qc = 1, then Theorem 1 yields dν(h) = h for h ∈ [0, τ ′µ(1

−)]. Hence τ∗ν (h) ≥ h

for h ∈ [0, τ ′µ(1
−)], but one always has τ∗ν (h) ≤ h, hence τ∗ν (h) = h, which gives

by inverse Legendre transform τν(q) = 0 for q ≥ qc = 1, as well as qc(ν) = 1 and
hc(ν) = τ ′µ(1

−).
If qc < 1, notice that τν(1) = 0 and τν(qc) = τµ(qc) = 0 since τν = τµ near
q−c . Then the concavity and the monotonicity of τν force τν(q) = 0 for q ≥ qc.
Moreover, since τ∗ν (h) = qch for h ∈ [0, hc], one has qc(ν) = qc and hc(ν) = hc.

Theorem 1 and the above identification of τν show that under our assump-
tions, dν(h) = τ∗ν (h) for every h ∈ [0, αmax).

Finally, it can also be verified using [6] that under the assumptions of Proposi-
tion 9, the multifractal formalisms defined in [14], [13] and [45] are verified if one
uses the level sets Eµh . The formalisms do not hold if the sets Ẽµh are considered.



Multifractal additive and multiplicative chaos 25

References

1. Arbeiter, M., Patzschke, N., Random self-similar multifractals, Math. Nachr. 181, 5–
42 (1996)

2. Arnol’d, V.I., Geometrical Methods in the Theory of Ordinary Differential Equations,
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