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Abstract

Multifractal formalisms hold for certain classes of atomless measures µ obtained as limits of multiplicative pro-
cesses. This naturally leads to ask whether non trivial discontinuous measures obey such formalisms. This is the
case for a new kind of measures, whose construction combines additive and multiplicative chaos. This class is

defined by νγ,σ =
∑
j≥1

b−jγ

j2

bj−1∑
k=0

µ([kb−j , (k + 1)b−j))σδkb−j (supp(µ) = [0, 1], b integer ≥ 2, γ ≥ 0, σ ≥ 1). Under

suitable assumptions on the initial measure µ, νγ,σ obeys some multifractal formalisms. Its Hausdorff multifractal
spectrum h 7→ dνγ,σ (h) is composed of a linear part for h smaller than a critical value hγ,σ, and then of a concave
part when h ≥ hγ,σ. The same properties hold for the Hausdorff spectrum of some function series fγ,σ constructed
according to a scheme similar to the one of νγ,σ. These phenomena are the consequences of new results relating
ubiquitous systems to the distribution of the mass of µ.
Résumé

Les formalismes multifractals sont vérifiés par certaines classes de mesures diffuses µ limites de processus multipli-
catifs. Cela pose naturellement la question de savoir s’ils le sont encore pour des mesures non diffuses non triviales.
C’est effectivement le cas pour des mesures d’un type nouveau, qui mêlent chaos additifs et multiplicatifs. Cette

classe de mesures est définie par νγ,σ =
∑
j≥1

b−jγ

j2

bj−1∑
k=0

µ([kb−j , (k + 1)b−j))σδkb−j (supp(µ) = [0, 1], b entier ≥ 2,

γ ≥ 0, σ ≥ 1). Sous certaines hypothèses sur µ, plusieurs formalismes multifractals sont en effet satisfaits par
νγ,σ. De plus, son spectre multifractal de Hausdorff h 7→ dνγ,σ (h) se compose alors d’une partie linéaire pour h
plus petit qu’une valeur critique hγ,σ, puis d’une partie concave pour h ≥ hγ,σ. Cette propriété est partagée par le
spectre de Hausdorff de séries de fonctions fγ,σ construites de façon analogue à νγ,σ. L’analyse des singularités de
ces objets fait appel à de nouveaux résultats combinant la notion d’ubiquité avec les propriétés d’auto-similarité
de la mesure µ.
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Version française abrégée

Soit µ une mesure borélienne positive sur [0, 1]. Soit b un entier ≥ 2, γ ≥ 0 et σ ≥ 1. Considérons la me-
sure constituée d’atomes νγ,σ =

∑
j≥1 j

−2
∑bj−1
k=0 b−jγµ([kb−j , (k + 1)b−j))σδkb−j . Nous nous intéressons

au spectre de Hausdorff de νγ,σ, c’est-à-dire à la fonction dνγ,σ qui à un exposant h ≥ 0 associe la
dimension de Hausdorff dimE

νγ,σ
h de l’ensemble Eνγ,σh = {x : lim infr→0+

log νγ,σ(B(x,r))
log r = h}.

À une mesure de Borel positive ν sur [0, 1], nous associons sa fonction d’échelle τν(q) définie relativement
à la grille b-adique comme dans [6], et la transformée de Legendre τ∗ν (h) = infq∈R(qh− τν(q)). On dit que
le formalisme multifractal est valide pour ν en h si dimEνh = τ∗ν (h).

On a alors le théorème suivant, qui dépend de deux conditions sur µ : C1 demande que le support
de µ soit [0, 1] et que supx∈[0,1],r∈(0,1)

log µ(B(x,r))
log r < ∞. Etant donné un exposant h ≥ 0, C2(h) est

vérifiée lorsque la famille {(kb−j , 2b−j)}j≥1,k=0,..,bj forme un système hétérogène d’ubiquité par rapport
à
(
µ, h, τ∗µ(h)

)
au sens de [4].

Théorème 0.1 Supposons que C1 soit vérifiée par µ. Soit qγ,σ = inf{q ∈ R : τµ(σq) + γq = 0} et
hγ,σ = στ ′µ(σq−γ,σ) + γ. On a qγ,σ ∈ (0, 1] et 0 ≤ hγ,σ ≤ q−1

γ,σ.

(i) Si hγ,σ > 0, alors pour tout h ∈ [0, hγ,σ], dνγ,σ (h) ≤ qγ,σh. De plus, si C2
(hγ,σ−γ

σ

)
est vérifiée,

alors pour tout h ∈ [0, hγ,σ], dνγ,σ (h) = qγ,σh, et le formalisme multifractal est valide en h.

(ii) Si h ≥ hγ,σ, alors dνγ,σ (h) ≤ τ∗µ
(
h−γ
σ

)
. De plus, si C2

(hγ,σ−γ
σ

)
est vérifiée, dνγ,σ (h) = τ∗µ

(
h−γ
σ

)
, et

le formalisme multifractal est valide en h.

Lorsqu’elle est vérifiée, C2
(
h
)

permet de calculer la dimension de Hausdorff d’ensembles limsup
Sµ(α, δ, ε̃) étroitement liés à la fois à la distribution de la masse de µ et à la famille des points b-adiques
{(kb−j , 2b−j)}j≥1,k=0,..,bj . En effet, on a :
Théorème 0.2 Soit h > 0. Étant donnés δ ≥ 1 et une suite positive ε̃ = {εj}j, on définit l’ensemble

Sµ(h, δ, ε̃) =
⋂
N≥1

⋃
n≥N :b−j(h+εj)≤µ

(
[kb−j ,(k+1)b−j)

)
≤b−j(h−εj)

[kb−j − b−jδ, kb−j + b−jδ].

Supposons que C2
(
h
)

soit vérifiée par µ. Il existe une suite positive ε̃ convergeant vers 0 telle que pour
chaque δ ≥ 1, il existe une mesure de Borel positive mδ sur [0, 1] telle que mδ(Sµ(h, δ, ε̃)) > 0, et pour tout
borélien E ⊂ [0, 1] tel que dimE < τ∗µ(h)/δ, mδ(E) = 0. En particulier, on a dim Sµ(h, δ, ε̃) ≥ τ∗µ(h)/δ.

La connaissance de la dimension de Hausdorff de ces ensembles Sµ(h, δ, ε̃) permet le calcul de dνγ,σ .

1. Introduction

Among the measures whose multifractal analysis can be performed, two families can be distinguished
by the shape of their Hausdorff spectrum. On one side, measures built on an additive scheme, such as the
Lebesgue-Stieljes measure associated with Lévy subordinators [10] for instance, classically exhibit linear
increasing spectrum. On the other side, atomless measures with a construction involving a multiplicative
scheme usually have a strictly concave spectrum, including a decreasing part when h is larger than a
typical exponent ht. Multinomial measures, Mandelbrot multiplicative cascades and their extensions, are
classical examples of such measures, with the well-known

⋂
-shaped spectrum.

We consider a distinct construction scheme which mixes both additive and multiplicative structures.
Definition 1.1 If µ is a positive Borel measure on [0, 1] and b is an integer greater than 2, let νγ,σ be
the measure defined with the help of two parameters γ ≥ 0 and σ ≥ 1 by
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νγ,σ =
∑
j≥1

j−2
∑

k=0,...,bj−1

b−jγµ([kb−j , (k + 1)b−j))σδkb−j . (1)

The multifractal behavior of these measures combines the two typical multifractal behaviors described
above. A part of their multifractal spectrum is closely related to the non-emptiness of a new kind of
limsup-sets Sµ(α, δ,M) defined by (4). The computation of the Hausdorff dimension of these sets requires
new ubiquity results (see Section 4 and [4]) which extend to the multifractal frame the classical ubiquity
results only valid for a monofractal measure µ [7,11].

2. Multifractal spectrum of the new class of measures νγ,σ

The local regularity of a measure µ at a point x is hereafter described by the Hölder exponent hµ(x) =
lim infr→0+

log µ(B(x,r))
log r . The multifractal analysis of µ consists in computing the Hausdorff dimensions of

the level sets of this Hölder exponent Eµh = {x : hµ(x) = h}, h ≥ 0. Then one tries to find the multifractal
spectrum of µ, h 7→ dµ(h) = dim(Eµh ), where dim(E) stands for the Hausdorff dimension of the set E.

In order to fully state our result, the notion of multifractal formalism for measures is required. A
multifractal formalism is a formula which relates, via a Legendre transform, the multifractal spectrum
dµ to a scaling function associated with µ [6,15]. Here, we adopt the following definition for the scaling
function [6]: ∀ q ∈ R, τµ(q) = lim infj→+∞− 1

j logb
∑

0≤k≤bjµ
(
[kb−j , (k + 1)b−j)

)q, with the convention
0q = 0, ∀ q. The multifractal formalism is said to hold for µ at exponent h when the multifractal spectrum
of µ at h is equal to the Legendre transform τ∗µ of τµ at h, i.e. when dµ(h) = τ∗µ(h) = infq∈R(qh− τµ(q)).

Our result invokes two technical conditions. C1 simply requires that the support of the measure µ is
[0, 1] and that one has the control supx∈[0,1],r∈(0,1)

log µ(B(x,r))
log r <∞. C2(h) is said to hold for the measure

µ and the exponent h when the family of points {(kb−j , 2b−j)}j≥1,k=0,..,bj−1 forms an heterogeneous
ubiquitous system with respect to

(
µ, h, τ∗µ(h)

)
(see Section 4).

Theorem 2.1 Let µ be a positive Borel measure supported by [0, 1], and assume that C1 holds for µ. Let
γ ≥ 0 and σ ≥ 1, and consider the measure νγ,σ defined in (1). Let qγ,σ = inf{q ∈ R : τµ(σq) + γq = 0},
and hγ,σ = στ ′µ(σq−γ,σ) + γ. One has qγ,σ ∈ (0, 1] and 0 ≤ hγ,σ ≤ q−1

γ,σ.
(i) If hγ,σ > 0, for every h ∈ [0, hγ,σ], dνγ,σ (h) ≤ qγ,σh. If moreover C2

(hγ,σ−γ
σ

)
holds, then for every

h ∈ [0, hγ,σ] dνγ,σ (h) = qγ,σh, and the multifractal formalism holds at h.
(ii) If h ≥ hγ,σ, then dνγ,σ (h) ≤ τ∗µ

(
h−γ
σ

)
. If moreover C2

(hγ,σ−γ
σ

)
holds, dνγ,σ (h) = τ∗µ

(
h−γ
σ

)
, and the

multifractal formalism holds at h.
Theorem 2.1 applies to several classes of atomless statistically self-similar measures µ (see [2,5]), as

well as to the measure ν0,1 itself: In this case the process can be iterated, the spectrum being unchanged.

It is shown in [2] that multifractal formalisms that focus on level sets such as {x : limr→0
log νγ,σ(B(x,r))

log r =
h} (defined using a limit instead of a lim inf) do not hold for these measures νγ,σ at h when 0 < h < hγ,σ.
Theorem 2.1 thus pleads for the choice of the sets Eνγ,σh defined using the Hölder exponent hνγ,σ (x).

Also, the measures νγ,σ provide new examples of measures that may have a scaling function τνγ,σ whose
derivative does not exist at some point (here qγ,σ), while satisfying a multifractal formalism. Such a non
differentiability is called a phase transition in the thermodynamical terminology.
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Fig.1: Typical multifractal spectrum of a measure µ built on an (Left) additive or (Middle) multiplicative scheme, and

(Right) of νγ,σ (Theorem 2.1) and fγ,σ (Theorem 3.1) with γ = 0 and σ = 1; of fwav (Theorem 3.2) with arbitrary γ, σ.

Fig.1: Spectre multifractal typique d’une mesure µ construite sur un schéma (gauche) additif ou (centre) multiplicatif, et

(droite) de νγ,σ (Théorème 2.1) ou fγ,σ (Théorème 3.1) avec γ = 0, σ = 1; de fwav (Théorème 3.2) avec γ, σ quelconques.

3. Multifractal spectrum of function series fγ,σ naturally associated with νγ,σ

The multifractal analysis of functions constitutes a companion domain of the multifractal analysis of
measures. Given a bounded function f on [0, 1], x0 ∈ (0, 1) and h ≥ 0, f ∈ Ch(x0) if there exist a constant
C and a polynomial P of degree ≤ h such that

∣∣f(x) − P (x − x0)
∣∣ ≤ C|x − x0|h for x close enough to

x0. The pointwise Hölder exponent of f at x0 [9] is then defined as hf (x0) = sup{h : f ∈ Ch(x0). The
multifractal analysis of f consists in computing its Hausdorff spectrum df : h 7→ dim{x : hf (x) = h}.

Inspired by the construction of the measures νγ,σ, it is natural to build functions with a structure
comparable with the one of νγ,σ. Let π be a positive Borel measure supported by [0, 1], φ a bounded
function on R, γ ≥ 0 and σ ≥ 1. In two situations, we study the function series defined by

f(x) =
+∞∑
j=1

fj(x) where fj(x) =
b−jγ

j2

∑
k=0,...,bj−1

π([kb−j , (k + 1)b−j))σφ(bjx− k). (2)

The first choice of φ creates a discontinuity at each b-adic number, the second one uses a wavelet.
Theorem 3.1 Under the assumptions of Theorem 2.1, and if φ(x) = (x− 1)11(x−1)∈[0,1) and π = µ, the
corresponding function series (2), here denoted by fγ,σ, satisfy:

(i) If hγ,σ > 0 and C2
(hγ,σ−γ

σ

)
holds, for any h ∈

[
0, hγ,σ−γσ

]
, dfγ,σ (h) = qγ,σh.

(ii) If h ≥ hγ,σ and C2
(
h−γ
σ

)
holds, then dfγ,σ (h) = dµ

(
h−γ
σ

)
= τ∗µ

(
h−γ
σ

)
.

Theorem 3.2 b = 2. Under the assumptions of Theorem 2.1, if φ is a C∞ wavelet as constructed for
instance in [14] and if π = ν0,1, the corresponding function series (2), denoted here fwav, satisfy:

(i) If h0,1 > 0 and C2(h0,1) holds, for any h ∈ [γ, γ + σh0,1], one has dfwav (h) = q0,1
h−γ
σ .

(ii) If h ≥ γ + σh0,1 and C2
(
h−γ
σ

)
holds, then dfwav (h) = dµ

(
h−γ
σ

)
= τ∗µ

(
h−γ
σ

)
.

Theorem 3.1 is established in [3], and Theorem 3.2 is a consequence of a work achieved in [1].
The interest in function series with bounded variations and having a dense set of discontinuities goes

back to the note of C. Jordan [12], where the space BV was introduced.

4. Ubiquity revisited via multifractality

Along the proof of Theorem 2.1, the non-emptiness of limsup-sets defined as Sµ(α, δ,M) in (4) is crucial.
The study of this kind of sets is comparable with classical problems of ubiquity [7], but here the sets
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Sµ(α, δ,M) are conditioned by a property PM which depends on a (statistically self-similar) measure µ.
We thus need a refinement of the ubiquity results in order to be able to combine the approximation rate
by some family of points with the multifractal properties of a measure µ. This is achieved by Theorem 4.2.

Let d ≥ 1 and µ a positive Borel measure on [0, 1]d. The analysis of the local structure of µ may be
naturally done on a c-adic grid for some c ≥ 2. This is the case for instance for multinomial measures or
Mandelbrot cascades. We shall thus need the following notations. For every integer j ≥ 1 and for every
multi-integer k = (k1, . . . , kd) ∈ Nd, let us denote by Ij,k the c-adic box Πd

i=1[kic−j , (ki + 1)c−j). For
every point x ∈ [0, 1)d, ∀j ≥ 1, we denote kj,x the unique k ∈ Nd such that x ∈ Ij,kj,x .
Definition 4.1 Let µ be a positive Borel measure supported by [0, 1]d, and α, β two positive real numbers.
Let {xn}n∈N be a sequence in [0, 1]d, and let {λn}n∈N be a non-increasing sequence of positive real numbers
converging to 0. The family {(xn, λn)}n∈N is said to form an heterogeneous ubiquitous system with respect
to (µ, α, β) if the following conditions (1-4) are fulfilled (|I| stands for the diameter of the set I).

(1) There exist φ and ψ, two non-decreasing continuous functions defined on R+ such that (i) ϕ(0) =
ψ(0) = 0, r 7→ r−ϕ(r) and r 7→ r−ψ(r) are non-increasing near 0+, and limr→0+ r−ϕ(r) = +∞; (ii) ∀ε > 0,
r 7→ rε−ϕ(r) is non-decreasing near 0; (iii) (2), (3) and (4) hold.

(2) There exist a measure m with a support equal to [0, 1]d, which satisfies the following properties:
(i) m-almost every y ∈ [0, 1]d belongs to

⋂
N≥1

⋃
n≥N B(xn, λn2 ).

(ii) For m-almost every y ∈ [0, 1]d, there exists an integer j(y) such that

∀j ≥ j(y), ∀ k such that ‖k− kj,y‖∞ ≤ 1, m
(
Ij,k
)
≤ |Ij,k|β−ϕ(|Ij,k|) (3)

(iii) There exists a constant M (depending on c and µ ) such that for m-almost every y ∈ [0, 1]d, one can
find an integer j(y) such that ∀j ≥ j(y), ∀ k such that ‖k− kj,y‖∞ ≤ 1, PM (Ij,k) holds, where PM (I) is
said to hold for a set I and a constant M when 1

M |I|
α+ψ(|I|) ≤ µ

(
I
)
≤M |I|α−ψ(|I|).

(3) (Self-similarity of m) For every c-adic box I of [0, 1]d, let fI denote the canonical affine mapping
from I onto [0, 1]d. There exists a measure mI on I, equivalent to the restriction of m to I, such that the
measure mI ◦ f−1

I satisfies (3), and with the same exponent β.
Let us define the non-decreasing sequence {EIn}n≥1 of sets of [0, 1]d

EIn =

y ∈ I :

 ∀ j ≥ n+ logc
(
|I|−1

)
,

∀ k such that ‖k− kj,y‖∞ ≤ 1,
mI
(
Ij,k
)
≤
(
|Ij,k|
|I|

)β−ϕ( |Ij,k||I|

) .

By (3),
⋃
n≥1E

I
n is of full mI-measure. Define nI = inf

{
n ≥ 1 : mI(EIn) ≥ 1

2‖m
I‖
}
.

(4) (Speed of renewal of level sets and control of the mass ‖mI‖) There exists Jm such that for every
j ≥ Jm, for every c-adic box I = Ij,k, nI ≤ logc

(
|I|−1)ϕ(|I|) and |I|ϕ(|I|) ≤ ‖mI‖.

Theorem 4.2 Let us assume that {(xn, λn)}n∈N forms an heterogeneous ubiquitous system with respect
to (µ, α, β). For δ and M two real numbers greater than 1, let

Sµ(α, δ,M) =
⋂
N≥1

⋃
n≥N :PM (B(xn,λn)) holds

B(xn, λδn). (4)

There exists a constant M such that for every δ ≥ 1, one can find a positive measure mδ such that

mδ(Sµ(α, δ,M)) > 0, and for every x ∈ Sµ(α, δ,M), lim supr→0+
mδ

(
B(x,r)

)
rβ/δ−(4+d)ϕ(r) < ∞. In particular,

dim Sµ(α, δ,M) ≥ β/δ.
Theorem 4.2 is established in [4]. Heuristically, since PM (I) ensures that µ(I) ∼ |I|α up to a small

correction, Theorem 4.2 allows the computation of the Hausdorff dimension of sets of points x that are
infinitely often close at rate δ to points xn (i.e. such that ‖x−xn‖∞ ≤ λδn) that verify µ(B(xn, λn)) ∼ λαn.
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Theorem 4.2 is referred to as “measure-conditioned ubiquity” because it involves an ubiquity property
of a family of points that must satisfy some property. Here this property is related to the behavior of
µ
(
B(xn, λn)

)
. The “usual” ubiquity theorems [7,11] must be seen as Theorem 4.2 in the particular case

where the measure µ is the Lebesgue measure, that is the condition is empty since µ is strictly monofractal.

• Examples of families {(xn, λn)}: - The b-adic family
{

(kb−j , 2b−j)
}

k∈Nd, j∈N∗ (where b ∈ N\{0, 1}
can differ from c) and the family of rational numbers

{
(p/q, 2/q1+1/d)

}
p∈Nd, q∈N∗ satisfy (i) of assumption

(2) for any measure m, because lim supn→∞B(xn, λn/2) = [0, 1]d in these cases. If m is atomless, d = 1
and α ∈ R\Q, the family {({nα}, 2/n)}n∈N∗ satisfies (i) of (2) ({x} is the fractional part of x).

- Item (i) of (2) can also be satisfied almost surely for some random families of points. Let {xn} be
a sequence of points independently and uniformly distributed in [0, 1]d, and {λn}n be a non-increasing
sequence of positive numbers. If lim supn→+∞

(∑n
p=1 λp/2 − d log n

)
= +∞ then, with probability one,

lim supn→∞B(xn, λn/2) = [0, 1]d (see [13]).

• Examples of measures µ: Suppose that lim supn→∞B(xn, λn/2) = [0, 1]d. In [5], the properties
required by Definition 4.1 are shown to hold for several classes of statistically self-similar measures (multi-
nomial measures, Gibbs measures and their random counterparts) with α > 0 and β = τ∗µ(α) as soon as
τ∗µ(α) > 0. We mention that, in order to treat the Mandelbrot multiplicative cascades, a slight stronger
version of Theorem 4.2 is required, see [4,5].

5. Another application of Theorem 4.2: Conditioned Diophantine approximation

Consider for the family {(xn, λn)}n the pairs {p/q, 1/q2}p,q∈N2, p<q. For any x ∈ [0, 1], consider the
b-adic expansion of x =

∑∞
m=1 xmb

−m, where ∀m, xm ∈ {0, 1, . . . , b − 1}. Let φi,n(x) be the function
x 7→ φi,n(x) = #{m≤n:xm=i}

n . Given (ρ0, ρ1, . . . , ρb−1) ∈ (0, 1)b such that
∑b−1
i=0 ρi = 1, and δ > 1, let

E
ρ0,ρ1,...,ρb−1
δ =

x ∈ [0, 1] :
there is an infinite number of integers pn, qn such that |x− pn/qn| ≤ q−2δ

n

and ∀i ∈ {0, 1, . . . , b− 1}, lim
n→+∞

φi,[logb q
2
n]

(
pn/qn

)
= ρi

 .

Besicovitch and later Eggleston [8] found dimE
ρ0,ρ1,...,ρb−1
1 =

∑b−1
i=0 −ρi logb ρi. We address the problem

of the computation of the Hausdorff dimension of the sets Eρ0,ρ1,...,ρb−1
δ , which is the set of points which

are well-approximated by rational numbers that have given frequencies of digits. This problem is not
covered by the usual ubiquity results. Applying Theorem 4.2 with the multinomial measure µ associated
with the weights (ρ0, ρ1, . . . , ρb−1) and with the family {(xn, λn)}n∈N = {(p/q, 1/q2)}p,q∈N×N∗ yields
dimE

ρ0,ρ1,...,ρb−1
δ ≥ δ−1

∑b−1
i=0 −ρi logb ρi. The opposite inequality follows from standard arguments.
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