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Abstract

Let µ be a positive locally finite Borel measure on R. A natural way to construct multifractal wavelet series Fµ(x) =P
j≥0,k∈Z dj,kψj,k(x) is to set |dj,k| = 2−j(s0−1/p0)µ([k2−j , (k+1)2−j))1/p0 , where s0, p0 ≥ 0, s0−1/p0 > 0. Under

suitable conditions, the function Fµ inherits the multifractal properties of µ. The transposition of multifractal
properties works with most classes of statistically self-similar multifractal measures.

Several perturbations of the wavelet coefficients and their impact on the multifractal nature of Fµ are studied. As
an application, the multifractal spectrum of the celebrated W-cascades introduced by Arnéodo et al is obtained.
Résumé

Étant donnée une mesure borélienne positive µ définie sur R, il est naturel de lui associer une série d’ondelettes
Fµ(x) =

P
j≥0,k∈Z dj,kψj,k(x) en prescrivant ses coefficients d’ondelettes de la façon suivante : On pose |dj,k| =

2−j(s0−1/p0)µ([k2−j , (k + 1)2−j))1/p0 , où s0, p0 ≥ 0, s0 − 1/p0 > 0. Nous montrons comment les éventuelles
propriétés multifractales de la mesure µ peuvent se transmettre à la série d’ondelettes Fµ.

Nous étudions la stabilité de cette construction après perturbation des coefficients d’ondelettes. Ce travail
permet de calculer le spectre multifractal des cascades aléatoires d’ondelettes d’Arnéodo et al.

1. Introduction

In this note and in [2], we propose a natural construction of functions Fµ based on a measure µ and
on a wavelet basis {ψj,k}(j,k)∈Z2 . We focus for the exposition on the one-dimensional case, extensions to
higher dimensions are immediate. Let ψ be a wavelet in the Schwartz class, as constructed for instance
in [10]. The set of functions {ψj,k = ψ(2j · −k)}, where (j, k) ∈ Z2, forms an orthogonal basis of L2(R).
Thus, any function f ∈ L2(R) can be written (note that we choose an L∞ normalization for the wavelet
basis and the wavelet coefficients)
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f =
∑
j∈Z

∑
k∈Z

dj,kψj,k, where dj,k is the wavelet coefficient of f : dj,k := 2j

∫
R

f(t)ψj,k(t)dt. (1)

Given a positive Borel measure µ on R, s0, p0 ≥ 0, s0 − 1/p0 > 0, the wavelet series Fµ is defined as

Fµ(x) =
∑
j≥0

∑
k∈Z

±2−j(s0−1/p0)µ
(
[k2−j , (k + 1)2−j)

)1/p0
ψj,k(x), (2)

For our purpose, we assume without loss of generality that the support of µ is included in [0, 1].
The notions of multifractal spectra and multifractal formalisms used in the following statement are

defined in Section 2. The multifractal spectrum yields, thanks to their Hausdorff dimension, a geometrical
information on the singularity sets of a function or a measure. We establish that the control of the
Hausdorff multifractal spectrum dµ of µ yields a control on the Hausdorff multifractal spectrum dFµ of Fµ:
Theorem 1.1 Let µ be a positive Borel measure whose support is included in [0, 1]. Let s0, p0 ≥ 0,
s0 − 1/p0 > 0, and consider the wavelet series Fµ (2) associated with µ.

If µ obeys the multifractal formalism for measures at singularity α ≥ 0, then Fµ obeys the multifractal
formalism for functions at h = s0 − 1/p0 + α/p0, and one has dFµ

(h) = dµ (α).
Theorem 1.1 is a satisfactory bridge between multifractal analysis of measures and multifractal analysis
of functions. The wavelet series model Fµ possesses the remarkable property that its multifractal nature
is still controlled after some natural multiplicative perturbations of its wavelet coefficients (see Section 3).
This makes it possible to solve the problem of computing the Hausdorff multifractal spectra of the random
cascades in wavelet dyadic trees (see [1] and Section 3). Indeed, these cascades, often used as models for
instance in fluids mechanics and in traffic analysis, can be considered as perturbated versions of Fµ when
µ is a canonical cascade measure ([9]), and their spectrum becomes accessible via this approach.

2. Definitions. Proof of the transposition of the multifractal properties from µ toward Fµ

2.1. A multifractal formalism for functions

Let I ⊂ R be a non-trivial open interval, a function f ∈ L∞loc(I), and x0 ∈ I. The function f belongs
to Ch

x0
if there exists a polynomial P of degree smaller than [h] such that there exists C > 0 such that

|f(x)−P (x−x0)| ≤ C|x−x0|h for all x ∈ R close enough to x0. The pointwise Hölder exponent of f at x0 is
then hf (x0) = sup{h : f ∈ Ch

x0
}. The level sets of the function hf are denoted Ef

h = {x ∈ I : hf (x) = h},
h ≥ 0. Then the Hausdorff multifractal spectrum of f is defined as the mapping df : h 7→ dimEf

h , where
dimE stands for the Hausdorff dimension of a set E.

For any couple (j, k) ∈ N∗ × Z, set Ij,k = [k2−j , (k + 1)2−j). Then, if x ∈ R, ∀j ≥ 1, there exists a
unique integer kj,x such that x ∈ Ij,kj,x

. Let us consider (as [7] does) for every j ≥ 0 k ∈ Z and x0 ∈ R the
wavelet leaders of f defined by Lj,k = supj′≥j, k′2−j′∈Ij,k

|dj′,k′ |, as well as Lj(x0) = sup|k−kj,x0 |≤1 Lj,k.
The wavelet leaders decay rate provides a pointwise Hölder exponent characterization.
Proposition 2.1 [7] Let f be a function belonging to Cε(R), for some ε > 0, decomposed into (1). Then,

∀ x0 ∈ R, hf (x0) = lim inf
j→+∞

logLj(x0)
log 2−j

.

Recall that the Legendre transform of a concave function ϕ defined on an open interval I ⊂ R is the
mapping ϕ∗ : h ∈ R 7→ ϕ∗(h) = infq∈I(qh− ϕ(q)) ∈ R ∪ {−∞}.

The scaling function ξf associated with f is defined in [7] by the formula (with the convention 0p = 0
∀ p ∈ R) ξf : p ∈ R 7→ ξf (p) = lim inf

j→+∞
−j−1log2

∑
k∈Z

|Lj,k|p ∈ R ∪ {−∞,+∞}. The following result yields
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an upper bound of df in terms of ξ∗f .
Theorem 2.1 [7] Let f and ψ as above. The scaling function ξf does not depend on ψ, and for any
h ≥ 0, df (h) ≤ (ξf )∗(h).

Definition 2.2 The function f is said to obey the multifractal formalism at h ≥ 0 if df (h) = ξ∗f (h).

2.2. A slight modification of the box multifractal formalism for measures

Definition 2.3 Let µ be a positive Borel measure on [0, 1], and x0 ∈ (0, 1).

- The lower and upper Hölder exponent of µ at x0 are αµ(x0) = lim infj→+∞
log µ(Ij,kj,x0

)

log 2−j and αµ(x0) =

lim supj→+∞
log µ(Ij,kj,x0

)

log 2−j . When αµ(x0) = αµ(x0), their common value is denoted αµ(x0). Then, the left

and right lower Hölder exponents of µ at x0 are defined by α−µ (x0) = lim infj→+∞
log µ(Ij,kj,x0

−1)

log 2−j and

α+
µ (x0) = lim infj→+∞

log µ(Ij,kj,x0
+1)

log 2−j .
- For every α ≥ 0, let us introduce Eµ

α =
{
x ∈ (0, 1) ∩ supp(µ) : αµ(x) = α, α−µ (x) ≥ α, α+

µ (x) ≥ α
}
.

- The mapping dµ : α ≥ 0 7→ dim(Eµ
α) is called the multifractal spectrum of µ.

Let µ be a positive Borel measure on [0, 1]. As for functions, a scaling function τµ can be associated
with µ as the mapping τµ : q ∈ R 7→ lim infj→+∞−j−1 log2

∑
0≤k≤2jµ(Ij,k)q. It follows from [4] that

dim(Eµ
α) ≤ τ∗µ(α).

Definition 2.4 The measure µ is said to obey the multifractal formalism at α ≥ 0 if dim(Eµ
α) = τ∗µ(α).

The difference between this multifractal formalism and the one of [4] is located in the restrictive
definition of the level sets Eµ

α. We choose this definition for Eµ
α to ensure some stability properties after

perturbations of wavelet coefficients (see Section 3). Large classes of statistically self-similar measures
fulfill this formalism (see [3]), and thus Theorem 1.1 applies to the corresponding wavelet series Fµ.

2.3. Sketch of the proof of Theorem 1.1

The proof we propose is based on Proposition 2.1 and Theorem 2.1. An alternative proof can be found
in [11]. Let α ≥ 0 and h = s0 − 1/p0 + α/p0. For the wavelet series Fµ, one remarks that for every
couple (j, k), Lj,k = dj,k. Hence, as a consequence of Proposition 2.1, one sees that Eµ

α ⊂ E
Fµ

h . Since µ is
supposed to verify the multifractal formalism at α, one gets that τ∗µ(α) = dµ(α) ≤ dFµ(h). For the upper
bound, notice that for the wavelet series Fµ, one has ξFµ

(p) = s0 − 1/p0 + τµ(p/p0). Thus, Theorem 2.1
implies that dFµ

(h) ≤ ξ∗Fµ
(h) = (s0 − 1/p0 + τµ(p/p0))∗(h) = dµ(α).

3. Wavelet coefficients perturbation and application to the W-cascades of Arnéodo et al

The perturbation we consider consists in multiplying the wavelet coefficients by the terms of a real
sequence (π(j, k))j≥0,0≤k<2j . Consider the wavelet series Fµ (2) and define, whenever it exists,

F pert
µ (x) =

∑
j≥0, 0≤k<2j

dj,k(F pert
µ )ψj,k(x) with dj,k(F pert

µ ) = dj,k ·π(j, k) = ±2−j(s0−1/p0)µ(Ij,k)1/p0π(j, k).

3.1. Principles of the multiplicative perturbations

Let us consider the following properties for (π(j, k))j,k:
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(P1) : lim sup
j→∞

j−1 max
0≤k≤2j−1

log |π(j, k)| ≤ 0. (P2) : lim inf
j→∞

j−1 min
0≤k≤2j−1

log |π(j, k)| ≥ 0.

(P3) : T =
{
x : lim sup

j→+∞
j−1log |π(j, kj,x)| < 0

}
= ∅. (P4(d)) : 0 ≤ d < 1 and dim T ≤ d.

Proposition 3.1 [2] Let µ be a positive Borel measure on [0, 1].
If (π(j, k))j,k satisfies (P1) and (P2), then the two wavelet series Fµ and F pert

µ have the same exponents
at every point x0. Moreover ξF pert

µ
≡ ξFµ

.
If (π(j, k))j,k satisfies (P1) and (P3), then ∀α ≥ 0, dµ(α) ≤ dF pert

µ
(s0 − 1/p0 + α/p0) with equality if

α ≤ τ ′µ(0+) and µ obeys the multifractal formalism at α.
If (π(j, k))j,k satisfies (P1) and (P4(d)) for some d ∈ [0, 1), then ∀α ≥ 0 such that dµ(α) > d, dµ(α) ≤

dF pert
µ

(s0 − 1/p0 + α/p0), with equality if α ≤ τ ′µ(0+) and µ obeys the multifractal formalism at α.

3.2. Examples of perturbation of wavelet series

- Uniform control on π(j, k): (P1) (resp. (P2)) holds almost surely if the π(j, k) are identically
distributed with a random variable with finite moments of every positive (resp. negative) order.

- Gaussian π(j, k): Both (P1) and (P3) hold almost surely if the π(j, k) are independent centered
Gaussian random variables with variance σ(j, k) such that limj→∞ j−1max0≤k≤2j−1 | log σ(j, k)| = 0.
Then F pert

µ yields a Gaussian process with controlled Hausdorff multifractal spectrum (thanks to dµ) in
its increasing part. If, moreover, π(j, k) ∼ N (0, 1) and µ is quasi-Bernoulli ([4]) relatively to the basis 2,
then the conclusions of the first assertion of Proposition 3.1 hold.

- Lacunary π(j, k): Fix d ∈ [0, 1). (P1) and (P4(d)) hold almost surely if the π(j, k) are i.i.d random
variables equal to 0 with probability p = 2d−1 and 1 with probability 1 − p (if p < 1/2, then T = [0, 1),
see [5]). These lacunary wavelet series and those studied in [6] are of very different nature.

3.3. Applications to wavelet cascades on the dyadic tree of [1]

Let A = {0, 1}. For every w ∈ A∗ = ∪j≥0Aj (A0 := {∅}), let Iw be the b-adic subinterval of [0, 1],
semi-open to the right, naturally encoded by w.

On the one hand, in [1], a random variable W is chosen as follows: P(|W| > 0) = 1, −∞ < E(log |W|) <
0, and there exists η > 0 such that for every h ∈ [0, η], f(h) = infq∈R

(
hq + 1 + log2 E(|W|q)

)
< 0. Then,

a sequence (Ww)w∈A∗ of independent copies of W is chosen, and a random wavelet series F is defined by
its wavelet coefficients as follows: dj,k(F ) = Ww1Ww1w2 . . .Ww1w2...wj if j ≥ 0, 0 ≤ k < 2j and Iw = Ij,k.

On the other hand, for every n ≥ 1, let us consider the sequence of weights {Ww1...wj}w∈A∗ ={
|Ww1...wj

|/2E(|W|)
}

w∈A∗ , and the random measure µj on R with density with respect to the Lebesgue
measure given on every interval Iw, w = w1w2 . . . wj , by 2j Ww1Ww1w2 . . .Ww1w2...wj

and such that µj = 0
outside [0, 1]. With probability one, the sequence µj converges vaguely to a dyadic random multiplicative
cascade measure µ when j goes to infinity. The assumptions on W imply E(W logW ) < 0. Hence, with
probability one [8], supp(µ) = [0, 1]. Let us then introduce the series Fµ with parameters s0 = 2 and
p0 = 1 and its perturbation F pert

µ associated with the sequence π(j, k) = (µj(Ij,k)/µ(Ij,k))1/p0 . One has

|dj,k(F )| = 2(s0−1/p0)j
(
2E(|W|)

)j2−(s0−1/p0)jWw1 . . .Ww1...wj
= 2(2+log2 E(|W|))j |dj,k(F pert

µ )|.

This enables to establish the following result as a consequence of the first assertion of Proposition 3.1.
Theorem 3.1 [2] Suppose that W ≤ 1, P(W = 1) < 1/2 and all the moments of W are finite. Let
[hmin, hmax] = {h : f(h) ≥ 0}. With probability 1, one has dF (h) = f(h) for every h ∈ (hmin, hmax).
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