
A class of multifractal semi-stable processes including Lévy
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Abstract

We exhibit a class of statistically self-similar processes naturally associated with the so-called fixed points of
the smoothing transformation [13,7,8]. This class includes stable subordinators and Mandelbrot multiplicative
cascades. Both these processes are special exemples of Lévy processes in multifractal time, which are studied in
[5]. We describe their multifractal nature.
Résumé

Nous présentons une classe de processus auto-similaires en loi naturellement associés aux généralisations des lois
semi-stables considérées dans [13,7,8]. Cette classe contient en particulier les subordinateurs stables de Lévy ainsi
que les cascades multiplicatives de Mandelbrot ; ses éléments sont des cas particuliers des processus de Lévy en
temps multifractal étudiés dans [5]. Nous étudions leur nature multifractale.

1. Introduction

The best known fractal or multifractal stochastic processes are certainly Fractional Brownian Motions,
Lévy processes, and Mandelbrot multiplicative cascades. It is natural to perform a multifractal change of
time in such a stochastic process (Xt)t≥0. More precisely, given an atomless multifractal positive Radon
measure µ on R+ supported by an interval of the form [0, T ] (T ∈ (0,∞)), then the process X ◦µ([0, t]) is
considered. The simplest situation lies in taking X equal to a monofractal process, like a FBM (see [14]
for instance). In this case, the multifractal nature of X ◦ µ follows almost straightforward from the one
of µ. In the situation where X also has multifractal sample paths, the multifractal time change creates
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more interesting structures, both from the modeling and mathematical viewpoints (see for instance [16]
for preliminary results on this topic, especially concerning large deviation spectra). To our knowledge,
the study of the sample paths multifractal properties has not been achieved in a non-trivial case yet.

In this note, we focus on the case where X is a Lévy process and µ is a Mandelbrot measure on [0, 1].
This choice illustrates the more general result obtained in [5]. Furthermore, it yields a link between the
statistical self-similarity properties of stable Lévy processes and Mandelbrot measures.

2. Processes associated with generalized semi-stable laws

Let b be an integer ≥ 2 and W = (W0, . . . , Wb−1) a positive random vector. Then consider in the space
of Laplace transforms of probability distributions φ on R+ the equation

φ(u) = E

(

b−1
∏

i=0

φ(uWi)
)

, ∀ u ≥ 0. (1)

This equation, solved in [7,8], comes from the modeling of fully developed turbulence [13] and of interacting
particles systems. With (1) is naturally associated the structure function

ϕW : q ∈ R 7→ − logb E

(

b−1
∑

i=0

W
q
i

)

∈ R ∪ {−∞}. (2)

Under the assumption that ϕW (p) > −∞ for some p > 1, it is proved in [7] that (1) has non-trivial
solutions if and only if there exists β ∈ (0, 1] such that ϕW (β) = 0 and ϕ′

W (β) ≥ 0. As a consequence of
the concavity of the mapping ϕW , such a β is unique and β = inf{β′ ∈ [0, 1] : ϕW (β′) = 0}.

Two special solutions of Equation (1) are:
- when β = 1 and ϕW (1−) > 0, the probability distribution of ‖µW ‖, where µW is an independent
multiplicative cascade on [0, 1] generated by W (see [13,10]),
- when β ∈ (0, 1), the stable laws with Laplace exponent −tβ, and in this case Wi is constant and equal
to b−1/β (see [11]).

When β ∈ (0, 1), ϕW (β) = 0 and ϕW (β−) > 0, a non-trivial solution of (1) is Zβ‖µWβ
‖1/β [8], where Zβ

is a positive stable law of index β and µWβ
a Mandelbrot measure associated with Wβ = (W β

0 , . . . , W
β
b−1)

and independent of Xβ . Equivalently, if (Z
(β)
t )t≥0 is a stable Lévy subordinator of index β, which is

independent of µWβ
, then the law of Z

(β)
‖µWβ

‖ solves (1) (see [7]).

The statistical self-similarity property expected to be satisfied by a process naturally associated with
(1) will appear after the recall of the construction of µW . Let A be the alphabet {0, . . . , b − 1} and
A∗ =

⋃

n≥0 A
n (A0 contains the empty word ∅). Consider a sequence

(

(W0(w), . . . , Wb−1(w))
)

w∈A∗
of

independent copies of W . For n ≥ 1, let µW,n be the measure defined on [0, 1] by uniformly distributing
on every interval of the form

[
∑n

k=1 wkb−k, b−n +
∑n

k=1 wkb−k
]

(where w1w2 · · ·wn ∈ An) the mass
Ww1

(∅) · Ww2
(w1) · · ·Wwn

(w1w2 · · ·wn−1). Then, with probability one, (µW,n)n≥1 converges weakly on
[0, 1], as n → ∞, to a measure µW called the independent multiplicative cascade measure associated
with W . The self-similarity property of the process ZW,t = µ([0, t]) is then:

∀ n ≥ 1,
(

ZW,(k+1)b−n − ZW,kb−n

)

0≤k<b−n

d
≡

(

Z1(w)

n
∏

k=1

Wwk
(w1 · · ·wk−1)

)

w∈An
, (3)

where, on the right hand side, the set An is described in lexicographical order, the random vectors
(W0(w), . . . , Wb−1(w))’s are i.i.d. with W , and the random values Z1(w)’s are i.i.d. with ZW,1 and are

independent of the (W0(w), . . . , Wb−1(w))’s. Property (3) expresses the nth iteration of (1).
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Another fundamental process obeying (3) is the restriction to [0, 1] of any stable Lévy subordinator

Z(β) of index β ∈ (0, 1] (by convention Z
(1)
t = t). In this case, the components of W satisfy Wi ≡ b−1/β.

Finally, if there exists β ∈ (0, 1] such that ϕW (β) = 0 and ϕW (β−) > 0, the general form of a
statistically self-similar process in the sense of (3) is naturally obtained by considering the process

Zt = Z
(β)
µWβ

([0,t]) (t ∈ [0, 1]), (4)

where µWβ
is an independent multiplicative cascade measure associated with Wβ , independently of Z(β).

3. Multifractal analysis of the stable Lévy subordinator in multifractal time

If Z : [0, 1] 7→ R+ is a non-decreasing function, we define its pointwise Hölder exponent at point t as the

quantity hZ(t) = lim inf
r→0,r 6=0

log |Z(t + r) − Z(t)|

log(r)
. Then, the level sets of hZ(·) are denoted EZ(h), h ≥ 0. If

ϕ : R → R ∪ {−∞}, its Legendre transform is ϕ∗ : h 7→ infq∈R hq − ϕ(q). The Hausdorff dimension of a
set E is denoted dim E.

The general result obtained in [5] (for a general Lévy process in multifractal time) yields the following
result unifying those obtained in [9] and [1] respectively for the multifractal natures of stable subordinators
and Mandelbrot cascades. In order to avoid technicalities, let us assume that ϕW > −∞ on R.

Theorem 3.1 Suppose that there exists β ∈ (0, 1] such that ϕW (β) = 0 and ϕ′
W (β) > 0. Let (Zt)t∈[0,1]

be the proces defined in (4). Let τ = 1{(−∞,β]}ϕW if β < 1 and τ = ϕW if β = 1. With probability one,
dim EZ(h) = τ∗(h) for all h such that τ∗(h) ≥ 0, and EZ(h) = ∅ for all h such that τ∗(h) < 0.
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Fig. 1: Upper figures: Case β = 1: Zt = µW ([0, t]), and τ(q) = ϕW (q) when ϕ∗

W
(ϕ′

W
(q)) ≥ 0.

Lower figures: General case β ∈ (0, 1). τ(q) = ϕ(q) when q ≤ β and ϕ∗

W
(ϕ′

W
(q)) ≥ 0, and otherwise τ(q) = 0 on [β,∞).

Comments on Theorem 3.1

The proof when β < 1: (the case β = 1 follows from [1]) One uses tools from [9], [2], [3] and [4].

The characterization of the level sets of hZ(·) uses results for the increments of Z(β) in [9] and adapts
the approach used in [2].

Let S be the Poisson point process such that Z(β)′ =
∑

(s,λ)∈S λ δs. Let Fβ : t 7→ µWβ
([0, t]). Also

denote by {(xn, λn)} the family
{(

F−1
β (s), 2.

∣

∣F−1
β

(

[s − λβ , s + λβ ]
)∣

∣

)}

(s,λ)∈S
.
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The linear part in the spectrum dZ : h 7→ dim EZ(h) reflects conditioned ubiquity properties associated
with the jump points xn of Z, relatively to the family λn and the measure µWβ

(see [3] for the notion of
heterogeneous ubiquity). Roughly speaking, for every h ∈ (0, τ ′(β)), up to a “small” set, the set EZ(h)

consists of those points t for which there exists an increasing sequence nj such that t ∈ [xnj
−λ

τ ′(β)/h
nj , xnj

+

λ
τ ′(β)/h
nj ] for all j and limj→∞

log µWβ
([xnj

−λnj
,xnj

+λnj
])

log λnj

= βτ ′(β). The Hausdorff dimension of such sets

is estimated thanks to the main result of [3].

The strictly concave part of dZ reflects the multifractal structure of µWβ
. Indeed, if h ≥ τ ′(β) one

proves that EZ(h) is equal to EFβ
(βh) again up to a “small” set.

The validity of the multifractal formalism: The derivative ν of Z obeys the standard multifractal

formalisms for measures associated with the level sets Eν(h) =
{

t : lim infr→0+
log µ([t−r,t+r])

log(r) = h
}

. In

particular, the scaling functions associated with ν (see [6,15,2]) all equal τ on the interval where τ ∗(τ ′) > 0.

Extension of Theorem 3.1: The multifractal analysis of a Lévy processes X with drift and Brownian
component is performed in [9] under some minor restriction on the Lévy measure. Under the same
assumptions as in [9], [5] provides general conditions on a positive continuous measure µ on [0, 1] under
which the multifractal analysis of the process X in multifractal time µ can be performed. The result
applies to large classes of statistically self-similar measures.

Equation (1) can also be expressed in terms of characteristic function instead of Laplace transform; it
has been partially studied in [12]. If ϕW (β) = 0 and ϕ′

W (β) > 0 for some β ∈ (1, 2), then the stochastic
process naturally associated with (1) is a symetric β-stable process in multifractal time µWβ

.
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