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Abstract. Mandelbrot multiplicative cascades provide a construction of a

dynamical system on a set of probability measures defined by inequalities on
moments. To be more specific, beyond the first iteration, the trajectories

take values in the set of fixed points of smoothing transformations (i.e., some

generalized stable laws).
Studying this system leads to a central limit theorem and to its functional

version. The limit Gaussian process can also be obtained as limit of an ‘additive

cascade’ of independent normal variables.

1. A dynamical system

Consider the set A = {0, . . . , b − 1}, where b ≥ 2. Set A ∗ =
⋃
n≥0 A n, where,

by convention, A 0 is the singleton {ε} whose the only element is the empty word ε.
If w ∈ A ∗, we denote by |w| the integer such that w ∈ A |w|. If n ≥ 1 and
w = w1 · · ·wn ∈ A n then for 1 ≤ k ≤ n the word w1 · · ·wk is denoted by w|k. By
convention, w|0 = ε.

Given v and w in A n, v∧w is defined to be the longest prefix common to both v
and w, i.e., v|n0 , where n0 = sup{0 ≤ k ≤ n : v|k = w|k}.

Let A ω stand for the set of infinite sequences w = w1w2 · · · of elements of A .
Also, for x ∈ A ω and n ≥ 0, let x|n stand for the projection of x on A n.

If w ∈ A ∗, we consider the cylinder [w] consisting of infinite words in A ω whose
w is a prefix.

We index the closed b-adic subintervals of [0, 1] by A ∗: for w ∈ A ∗, we set

Iw =

 ∑
1≤k≤|w|

wkb
−k,

∑
1≤k≤|w|

wkb
−k + b−|w|

 .
If f : [0, 1] 7→ R is bounded, for every sub-interval I = [α, β] of [0, 1], we denote

by ∆(f, I) the increment f(β)− f(α) of f over the interval I.

Let P the set of Borel probability measures on R+. If µ ∈ P and p > 0, we
denote by mp(µ) the moment of order p of µ, i.e.,

mp(µ) =
∫

R+

xp µ(dx).
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Then let P1 be the set of elements of P whose first moment equals 1:

P1 = {µ ∈ P : m1(µ) = 1}.

The smoothing transformation Sµ associated with µ ∈ P is the mapping from P
to itself so defined: If ν ∈ P, one considers 2b independent random variables,
Y (0), Y (1), . . . , Y (b− 1), whose common probability distribution is ν, and W (0),
W (1), . . . , W (b − 1) whose common probability distribution is µ; then Sµν is the
probability distribution of b−1

∑
0≤j<b

W (j)Y (j).

This transformation and its fixed points have been considered in several con-
texts, in particular by B. Mandelbrot who introduced it to construct a model for
turbulence and intermittence (see [9, 10, 6, 11, 7, 4, 5]).

In this latter case, the measure µ is in P1 so that Sµ maps P1 into itself. It is
known that the condition

∫
x log(x)µ(dx) < log b is then necessary and sufficient

for the weak convergence of the sequence Snµδ1 (where δ1 stands for the Dirac mass
at point 1) towards a probability measure ν, which therefore is a fixed point of Sµ
(see [9, 10, 6, 7, 4]). In other words, if

∫
x log(x)µ(dx) < log b and if

(
W (w)

)
w∈A ∗

is a family of independent random variables whose probability distribution is µ,
then the non-negative martingale

Yn = b−n
∑
w∈A n

W (w|1)W (w|2) · · ·W (w|n) (1)

is uniformly integrable and converges to a random variable Y whose probability
distribution ν belongs to P1 and satisfies Sµν = ν. This means that there exists b
copies W (0), . . . ,W (b − 1) of W and b copies Y (0), . . . , Y (b − 1) of Y such that
these 2b random variables are independent and

Y = b−1
b−1∑
k=0

W (k)Y (k). (2)

In this case, we denote the measure ν by Tµ. It is natural to try and iterate T.
But, in general this is not possible because ν = Tµ may not inherit the property∫
x log(x) ν(dx) < log b. So, we have to find a domain stable under the action of T.

This will be done by imposing conditions on moments.
Indeed, it is easily seen that the sequence (Yn)n≥1 defined by (1) remains bounded

in L2 norm if and only if E(W 2) = m2(µ) < b, and that in this case Formula (2)
yields

EY 2 =
b− 1

b− EW 2
(3)

(since the random variables W (j) and Y (j) are independent and of expectation 1,
squaring both sides of Formula (2) yields b2 EY 2 = bEW 2 EY 2 + b(b − 1)). It
follows that if b ≥ 3 and 1 ≤ EW 2 < b − 1, we have EY 2 ≤ EW 2 (the equality
holding only if W = 1). Therefore, since the condition EW 2 < b is stronger than
E(W logW ) < log b when EW = 1 (since the function t 7→ log EW t is convex),
T is a transformation on the subset of P1 defined by

Pb =
{
µ ∈ P1 : 1 < m2(µ) < b− 1

}
.

If µ ∈ Pb, due to (2), we can associate with each n ≥ 0 a random vari-
able Wn+1 as well as 2b independent random variables Wn(0), . . . ,Wn(b − 1) and
Wn+1(0), . . . ,Wn+1(b− 1) such that

Wn+1 =
1
b

b−1∑
k=0

Wn(k)Wn+1(k), (4)
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Tnµ is the probability distribution of Wn(k) for every k such that 0 ≤ k ≤ b−1, and
Tn+1µ is the probability distribution of Wn+1 and Wn+1(k) for every 0 ≤ k ≤ b−1.
We advise the reader that if one writes Formula (4) with n − 1 instead of n, the
variables Wn(k) which then appear are different from the previous ones.

In Mandelbrot [9, 10], the random variable Y represents the increment between 0
and 1 of the non-decreasing continuous function h on [0, 1] obtained as the almost
sure uniform limit of the sequence of non-decreasing continuous functions φn defined
by

φn(u) =
∫ u

0

n∏
k=1

W (t̃|k) dt, (5)

where t̃ stands for the sequence of digits in the base b expansion of t (of course the
ambiguity for countably many t’s is harmless). In other words, for w ∈ A ∗, we
have

∆(φ, Iw) = b−|w|Y (w)
∏

1≤j≤|w|

W (w|j), (6)

where Y (w) has the same distribution as Y and is independent of the variables
W (w|j).

Let us denote by F (µ) the probability distribution of the limit φ, considered as
a random continuous function.

We are going to study the dynamical system (Pb,T). This will lead to a de-
scription of the asymptotic behavior of

(
Tnµ, F (Tn−1µ)

)
n≥1

as n goes to ∞.

We need some more definitions. For b ≥ 3, set

w2(b) = min
(
b− 1, b

b4 − 4b2 + 12b− 8
b4 + 8b2 − 12b+ 4

)
and, for t such that 1 < t < w2(b),

w3(b, t) =
b2

2
+

1
2

√
b(b4 − 4b2 + 12b− 8)− t

(
b4 + 8b2 − 12b+ 4

)
b− t

.

One always has w3(b, t) < b2 − 1.
Also set

Db =
{
µ ∈ P : m1(µ) = 1, 1 < m2(µ) < w2(b), and m3(µ) < w3

(
b,m2(µ)

)}
.

Theorem 1 (Central limit theorem). Suppose b ≥ 3. Let µ ∈Pb, and, for n ≥ 0,

define σn =
(∫

(x− 1)2 Tnµ(dx)
)1/2

. Then

(1) The limit of (b− 1)n/2σn exists and is positive; so limn→∞ Tnµ = δ1.

(2) If µ ∈ Db, then, sup
n≥0

∫ (
|x− 1|
σn

)3

Tnµ(dx) <∞.

(3) Suppose that there exists p > 2 such that sup
n≥0

∫ (
|x− 1|
σn

)p
Tnµ(dx) <∞.

Then, if Wn is a variable whose distribution is Tnµ,
Wn − 1
σn

converges in

distribution towards N (0, 1).

Theorem 2 (Functional CLT). Suppose b ≥ 3. Let µ ∈Pb. Then
(1) The probability distributions F (Tnµ) weakly converges towards δId.
(2) Suppose that there exists p > 2 such that

sup
n≥1

∫ (
|x− 1|
σn

)p
Tnµ(dx) <∞.
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(In particular, this holds if µ lies in the domain of attraction Db.) Then, if
hn is a random function distributed according to F (Tn−1µ), the distribution

of
hn − Id
σn

weakly converges towards the distribution of the unique contin-

uous Gaussian process (Xt)t∈[0,1], such that X(0) = 0 and, for all j ≥ 1,
the covariance matrix Mj of the vector

(
∆(X, Iw)

)
w∈A j is given by

Mj(w,w′) =

{
b−2j

(
1 + (b− 1)|w|

)
if w = w′,

b−2j(b− 1)|w ∧ w′| otherwise.

In Section 4, we will give an alternate construction of this Gaussian process X: It
will be obtained as the almost sure limit of an additive cascade of normal variables.

Remark 1. It would be interesting to know whether the new limit process and
central limit theorems provided in this paper could be useful for modeling in any
area.

2. Proof of Theorem 1

Throughout this section and the next one, we assume b ≥ 3.

Proposition 3. If µ ∈Pb and σ2
n =

∫
(x− 1)2Tnµ(dx), the sequence (b− 1)n/2σn

converges to σ0

√
b− 2

b− 2− σ2
0

.

Proof. Equations (4) and (3) yield EW 2
n+1 =

b− 1
b− EW 2

n

, from which we get the

formula

σ2
n+1 = EW 2

n+1 − 1 =
σ2
n

b− 1− σ2
n

, (7)

which can be written as
σ2
n+1

b− 2− σ2
n+1

=
(b− 1)−1σ2

n

b− 2− σ2
n

.

This yields
σ2
n

b− 2− σ2
n

=
σ2

0

b− 2− σ2
0

(b− 1)−n. (8)

�

Proposition 4. If µ ∈ Db, then both sequences
(
m2(Tnµ)

)
n≥1

and
(
m3(Tnµ)

)
n≥1

are non-increasing and converge to 1 as n goes to ∞.

Proof. For n ≥ 0, we set un = m2(Tnµ) and vn = m3(Tnµ) and deduce from (4)
that, for all n ≥ 0, we have

un+1 =
b− 1
b− un

(9)

vn+1 =
(b− 1)

(
3unun+1 + b− 2

)
b2 − vn

(10)

if un < b and vn < b2

(Formula (9) is a restatement of (3), and taking cubes in Formula (4) yields
b3 EW 3

n+1 = bEW 3
n EW 3

n+1 + 3b(b − 1) EW 2
n EW 2

n+1 + b(b − 1)(b − 2) hence For-
mula (10)). Since 1 ≤ u0 < b − 1, as we already saw it, Equation (9) implies that
un decreases, except in the trivial case µ = δ1. Moreover un converges towards 1,
the stable fixed point of t 7→ (b− 1)/(b− t).
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The conditions m2(µ) ≤ w2(b) and m3(µ) < w3

(
b,m2(µ)

)
are optimal to ensure

that v1 ≤ v0, and also they impose v0 < b2 − 1. We conclude by recursion: if
vn+1 ≤ vn < b2, then we have

vn+2 ≤
(b− 1)

(
3un+1un+2 + b− 2

)
b2 − vn

≤
(b− 1)

(
3unun+1 + b− 2

)
b2 − vn

= vn+1.

Thus (vn)n≥0 is non-increasing and 1 ≤ vn < b2 − 1, so we deduce from (10) and
the fact that un converges to 1 that vn converges to the smallest fixed point of the
mapping x 7→ (b2 − 1)/(b2 − x), namely 1. �

Proposition 5. There exists C > 0 such that, for µ ∈ Db and n ≥ 1, we have(
b2 − EW 3

n

)
E |Z3

n+1| ≤ (b− 1)3/2 E |Z3
n|+ C

(
(E |Z3

n|)2/3 + (E |Z3
n|)1/3 + 1

)
,

where Zn =
Wn − 1
σn

.

Proof. We use the following simplified notations: W = Wn, Y = Wn+1, σY and σW
stand for the standard deviations of Y and W , ZY = σ−1

Y |Y −1|, ZW = σ−1
W |W−1|,

and r = σW /σY .

Then Equation (2) becomes b |Y − 1| ≤
b−1∑
i=0

W (i) |Y (i) − 1| +
b−1∑
i=0

|W (i) − 1|,

i.e.,

b ZY ≤
b−1∑
i=0

W (i)ZY (i) + r

b−1∑
i=0

ZW (i), (11)

which yields (
b2 − E(W 3)

)
E(Z3

Y ) ≤ r3E(Z3
W ) +

3∑
i=0

(
3
i

)
ri Ti,

where

T0 = 3(b− 1) EW 2 EZ2
Y EZY + (b− 1)(b− 2)(EZY )3,

T1 = E (W 2ZW ) EZ2
Y + 2(b− 1) E(WZW )(EZY )2

+ (b− 1) EZW EW 2 EZ2
Y + (b− 1)(b− 2) EZW (EZY )2,

T2 = EZY E (WZ2
W ) + 2(b− 1) E(WZW ) EZY EZW

+ (b− 1) EZY EZ2
W + (b− 1)(b− 2) EZY (EZW )2,

T3 = 3(b− 1) EZW EZ2
W + (b− 1)(b− 2)(EZW )3.

As, for X ∈ {W,Y } we have EZX ≤ (EZ2
X)1/2 = 1, and EX2 < b− 1, we get the

simpler bound (
b2 − EW 3

)
EZ3

Y ≤ r3 EZ3
W +

3∑
i=0

(
3
i

)
ri T ′i ,

where

T ′0 = (b− 1)(4b− 5),
T ′1 = E (W 2ZW ) + 2(b− 1) E (WZW ) + (b− 1)(2b− 3),
T ′2 = E (WZ2

W ) + 2(b− 1) E (WZW ) + (b− 1)2,

T ′3 = b2 − 1.

Since EW 3 < b2 − 1, the Hölder inequality yields

E (W 2ZW ) ≤ (EW 3)2/3(EZ3
W )1/3 ≤ (b2 − 1)2/3(EZ3

W )1/3
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and
E (WZ2

W ) ≤ (EW 3)1/3(EZ3
W )2/3 ≤ (b2 − 1)1/3(EZ3

W )2/3.

Furthermore, E (WZW ) ≤
(
EW 2 EZ2

W

)1/2 ≤ √b− 1.
We know from (7) that r <

√
b− 1. Therefore, there exists a constant C > 0

independent of µ such that(
b2 − EW 3

)
EZ3

Y ≤ (b− 1)3/2 EZ3
W + C

(
(EZ3

W )2/3 + (EZ3
W )1/3 + 1

)
.

�

Corollary 6. If µ ∈ Db then sup
n≥1

∫
σ−3
n |x− 1|3 Tnµ(dx) <∞.

Proof. Since b2−EW 3
n converges towards b2−1, and b2−1 > (b−1)3/2, the bound

in the last proposition yields that Zn is bounded in L3. �

This accounts for the first two assertions of Theorem 1. Proving its last assertion

requires a careful iteration of Formula (4). Recall that we set Zn =
Wn − 1
σn

.

Equation (4) yields

Zn+1 =
1
b

b−1∑
k=0

[
σn Zn(k)Zn+1(k) +

σn
σn+1

Zn(k) + Zn+1(k)
]
. (12)

If we set

Rn =
1
b

b−1∑
j=0

Zn(j)Zn−1(j)σn−1 +
1
b

(
σn−1

σn
−
√
b− 1

) b−1∑
j=0

Zn−1(j), (13)

then Equation (12) rewrites as

Zn+1 = Rn+1 +
√
b− 1
b

b−1∑
k=0

Zn(k) +
1
b

b−1∑
k=0

Zn+1(k). (14)

We are going to use repeatedly Formula (14). Let ε stand for empty word on
any alphabet. Fix n > 1, define Rn(ε, ε) = Rn as well as Zn(ε, ε) = Zn, and write
using (14)

Zn = Zn(ε, ε) = Rn(ε, ε) +
√
b− 1
b

∑
j∈A

Zn−1(j, 0) +
1
b

∑
j∈A

Zn(j, 1). (15)

Since we are interested in distributions only, we can take copies of these variables
so that we can write

Zn(j, 1) = Rn(j, 1) +
√
b− 1
b

∑
k∈A

Zn−1(jk, 10) +
1
b

∑
k∈A

Zn(jk, 11)

Zn−1(j, 0) = Rn−1(j, 0) +
√
b− 1
b

∑
k∈A

Zn−2(jk, 00) +
1
b

∑
k∈A

Zn−1(jk, 01).

Notice that since by definition in Formula (15) the random variables of the form
Zn−1(j, w) and Zn(j, w), (j, w) ∈ A × {0, 1}, are mutually independent, and the
same holds for the random variables Rn(j, w) and Rn−1(j, w), (j, w) ∈ A ×{0, 1}, as
well as for the random variables Zn−2(jk, w), Zn−1(jk, w) and Zn(jk, w), (jk, w) ∈
A 2 × {0, 1}2.
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Then Formula (15) rewrites as

Zn(ε, ε) = Rn(ε, ε) + b−1
∑
j∈A

(√
b− 1Rn−1(j, 0) +Rn(j, 1)

)
+

b−2
∑
w∈A 2

(
(b− 1)Zn−2(w, 00) +

√
b− 1

(
Zn−1(w, 01) + Zn−1(w, 10)

)
+ Zn(w, 11)

)
and so on. At last we get Zn = T1,n + T2,n, with

T1,n =
n−1∑
k=0

b−k
∑

m∈{0,1}k

w∈A k

(b− 1)(k−ς(m))/2Rn−k+ς(m)(w,m) (16)

T2,n = b−n
∑

m∈{0,1}n
w∈A n

(b− 1)(n−ς(m))/2Zς(m)(w,m), (17)

where ς(m) stands for the sum of the components of m. Moreover, all variables in
Equation (17) are independent, and in Equation (16), the variables corresponding
to the same k are independent.

For reader’s convenience, we also provide a more constructive approach to ob-
tain the previous decomposition of Zn. At first, we notice that the meaning of
Equation (14) is the following: given independent variables Zn(k) and Zn+1(k) (for
0 ≤ k < b) equidistributed with Zn and Zn+1, if we define Rn by Equation (13),
then the right hand side of Equation (14) is equidistributed with Zn+1.

Let n be fixed larger than 2. One starts with a collection{
Zl(w,m)

}
0≤l≤n,w∈A n, {0,1}n

of independent random variables such that the Zl(·, ·) have the same distribution
as Zl.

One defines by recursion

Rl(w,m) =
1
b

b−1∑
j=0

Zl−1(wj,m0)Zl(wj,m1)σl−1+
1
b

(
σl−1

σl
−
√
b− 1

) b−1∑
j=0

Zl−1(wj,m0)

and

Zl(w,m) = Rl(w,m) +
√
b− 1
b

b−1∑
j=0

Zl−1(wj,m0) +
1
b

b−1∑
j=0

Zl(wj,m1),

for 0 ≤ l ≤ n, (w,m) ∈ A j × {0, 1}j with j ≥ n− l.

Due to (14), all these new variables Zl(·.·) are equidistributed with Zl, and we
get Zn(ε, ε) = T1,n + T2,n.

Proposition 7. We have lim
n→∞

ET 2
1,n = 0, so T1,n converges in distribution to 0.

Proof. Set r2
n = ER2

n. We have

b r2
n = σ2

n−1 +
(
σn−1

σn
−
√
b− 1

)2

,

which together with Formulae (7) and (8) implies that there exists C > 0 such that
r2
n ≤ C(b − 1)−n for all n ≥ 1. By using the independence properties of random
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variables in (16) as well as the triangle inequality, we obtain

(
ET 2

1,n

)1/2 ≤
∑

0≤k<n

b−k

 ∑
0≤j≤k

(
k

j

)
bk(b− 1)j r2

n−j

1/2

≤ C
∑

0≤k<n

b−k

 ∑
0≤j≤k

(
k

j

)
bk(b− 1)j (b− 1)j−n

1/2

≤ C
∑

0≤k<n

b−k/2
(
(b− 1)2 + 1

)k/2(b− 1)−n/2

= C (b− 1)−n/2
∑

0≤k<n

(
(b− 1)2 + 1

b

)k/2
= O

((
1− b− 2

b(b− 1)

)n/2)
.

�

Proposition 8. If there exists p > 2 such that

sup
n≥1

∫ (
|x− 1|
σn

)p
Tnµ(dx) <∞,

(i.e., (|Zn|)n≥1 is bounded in Lp), then T2,n converges in distribution to N (0, 1).

Proof. If Y is a positive random variable, a, p and ε are positive numbers with p > 2,
we have

E
(
a2Y 2 1{aY >ε}

)
≤ a2 (EY p)2/p (P(aY > ε)

)1−2/p

≤ a2 (EY p)2/p (
ε−pap EY p

)1−2/p = apε2−p EY p.
So, we have∑

m∈{0,1}n
w∈A n

b−2n(b−1)(n−ς(m)) E
(
Zς(m)(w,m)21{

b−n(b−1)(n−ς(m))/2|Zς(m)(w,m)|>ε
})

≤
n∑
k=0

(
n

k

)
bn−np(b−1)p(n−k)/2ε2−p E |Zk|p ≤ ε2−p

(
(b− 1)p/2 + 1

bp−1

)n
sup
k≥0

E |Zk|p,

and this last expression converges towards 0 as n goes to ∞. But, as we have

ET 2
2,n =

∑
m∈{0,1}n
w∈A n

b−2n(b− 1)n−ς(m) =
n∑
k=0

(
n

k

)
b−n(b− 1)n−k = 1,

the Lindeberg theorem yields the conclusion. �

3. Proof of Theorem 2

We begin by the following observation: for any real function f on [0, 1], one has

ω(f, δ) ≤ 2(b− 1)
∑

j≥− log δ
log b

sup
w∈A j

∆(f, Iw), (18)

where, ω(f, δ) stands for the modulus of continuity of a function f on [0, 1]:

ω(f, δ) = sup
t,s∈[0,1]
|t−s|≤δ

|f(t)− f(s)|.
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Proposition 9. Suppose that µ ∈ Pb. If hn is a random continuous function

distributed according to F (Tn−1µ), set Zn =
hn − Id
σn

. The probability distributions

of the random continuous functions Zn, n ≥ 1, form a tight sequence.

Proof. By Theorem 7.3 of [3], since (hn − Id)(0) = 0 almost surely for all n ≥ 1, it
is enough to show that for each positive ε

lim
δ→0

lim sup
n→∞

P
(
ω(Zn, δ) ≥ 2(b− 1) ε

)
= 0, (19)

We first establish the following lemma.

Lemma 10. Let γ and H be two positive numbers such that 2H + γ − 1 < 0. Also
let n0 ≥ 1 be such that supn≥n0−1 EW 2

n ≤ bγ . For j ≥ 1, n ≥ n0 and t > 0 we have

P
(

sup
w∈A j

∆
(
Zn, Iw

)
≥ t b−jH

)
≤ (b− 1) t−2(j + 1)3bj(2H+γ−1).

Proof. Let j ≥ 1, w ∈ A j and n ≥ n0. Formula (6) shows that the increment
∆n(w) = ∆(Zn, Iw) takes the form

∆n(w) = b−jσ−1
n

[
Wn(w)

j∏
k=1

Wn−1(w|k)− 1

]

= b−jZn(w)
j∏

k=1

Wn−1(w|k)

+ b−j
j∑
l=1

σn−1

σn
Zn−1(w|l)

l−1∏
k=1

Wn−1(w|k).

(20)

Consequently,

P
(
|∆n(w)| ≥ t b−jH

)
≤ P

(
b−jZn(w)

j∏
k=1

Wn−1(w|k) ≥ t b−jH

j + 1

)

+
j∑
l=1

P

(
b−j

σn−1

σn
Zn−1(w|l)

l−1∏
k=1

Wn−1(w|k) ≥ t b−jH

j + 1

)
.

By using the Markov inequality, the equality EZ2
k = 1, and the fact that EW 2

n−1 ≥
1, we obtain that each probability in the previous sum is less than

(b− 1) t−2(j + 1)2b−2(1−H)j
(
EW 2

n−1

)j
,

so that the sum of these probabilities is bounded by (b−1) t−2(j+ 1)3bj(γ−2(1−H)).
Consequently,

P
(
∃ w ∈ A j , |∆n(w)| ≥ t b−jH

)
≤ (b− 1) t−2(j + 1)3bj(γ−2(1−H)+1)

= (b− 1) t−2(j + 1)3bj(2H+γ−1).

�

Now, we can continue the proof of Proposition 9. Fix H, γ, and n0 as in
Lemma 10, set jδ = − logb δ, and assume that n ≥ n0. Due to (18) and Lemma 10,
we have{

ω(Zn, δ) ≥ 2(b− 1) ε
}
⊂

∑
j≥jδ

sup
w∈A j

∆(Zn, Iw) > ε


⊂

⋃
j≥jδ

{
sup
w∈A j

∆(Z, Iw) > (1− b−H) bjδH ε b−jH
}
,
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so

P
(
ω(Zn, δ) ≥ 2(b− 1) ε

)
≤ (b− 1) b−2jδH

(1− b−H)2ε2

∑
j≥jδ

(j + 1)3b(2H+γ−1) j .

Consequently,
lim
δ→0

sup
n≥n0

P
(
ω(Zn, δ) > 2(b− 1) ε

)
= 0.

�

Proposition 11. Suppose that µ ∈ Db. For every n ≥ 1 let hn be a random contin-
uous function whose probability distribution is F (Tnµ). Fix j ≥ 1. The probability
distribution of the vector

(
∆(hn−Id

σn
, Iw)

)
w∈A j

converges, as n goes to ∞, to that

of a Gaussian vector whose covariance matrix Mj is given by

Mj(w,w′) =

{
b−2j(1 + (b− 1)|w|) if w = w′,

b−2j(b− 1)|w ∧ w′| otherwise
.

Proof. We use the same notations as in the proof of Lemma 10. Let j ≥ 1 and
w ∈ A j . In the right hand side of (20), the random variables Zn(w) and Zn−1(w|l),
1 ≤ l ≤ j, are independent and their probability distribution converge weakly to
N (0, 1), while the common probability distribution of the Wn−1(w|l), 1 ≤ l ≤ j,
converges to δ1, and σn−1

σn
converges to

√
b− 1.

This implies that there exist
(
N (v)

)
v∈

Sj
k=1 A k and

(
Ñ (w)

)
w∈A j two families of

N (0, 1) random variables so that all the random variables involved in these families
are independent, and

lim
n→∞

(
∆n(w)

)
w∈A j

dist= b−j

(
Ñ (w) +

√
b− 1

j∑
k=1

N (w|k)

)
w∈A j

. (21)

The fact that the vector in the right hand side of (21) is Gaussian is an immediate
consequence of the independence between the normal laws involved in its definition.
The computation of the covariance matrix is left to the reader. �

4. The limit process as the limit of an additive cascade

Recall that, if v ∈ A ∗, [v] stands for the cylinder in A ω consisting of sequences
beginning by v. Let A + stand for the set of non-empty words on the alphabet A .

We are going to show that there exists a finitely additive random measure M on
A ω satisfying almost surely for all w ∈ A +

M([w]) = b−j

(
ζ(w) +

√
b− 1

j∑
k=1

ξ(w|k)

)
,where j = |w| (22)

instead of (21), where the variables
(
ξ(w)

)
w∈A + are independent with common dis-

tributionN (0, 1) and the variable ζ(w) isN (0, 1) and independent of
(
ξ(w|j)

)
1≤j≤|w|.

Indeed, if we set S(w) =
∑j
k=1 ξ(w|k), since M([w]) =

∑
`∈A M([w`]) we should

have

b
(
ζ(w) +

√
b− 1S(w)

)
=

∑
`∈A

(
ζ(w`) +

√
b− 1

j+1∑
k=1

ξ
(
(w`)|k

))
=

∑
`∈A

(
ζ(w`) +

√
b− 1 ξ(w`)

)
+ b
√
b− 1S(w).
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Iterating this last formula, gives

ζ(w) = b−n
∑
v∈A n

ζ(wv) +
√
b− 1

n∑
j=1

b−j
∑
v∈A j

ξ(wv).

The first term of the right hand side converges to 0 with probability 1 since its L2

norm is b−n/2. The second term is a martingale bounded in L2 norm. Therefore
its limit, a N (0, 1) variable, is a.s. equal to ζ(w).

Finally, we get a finitely additive Gaussian random measure defined on the cylin-
ders of A ω by

M([w]) = b−|w|
√
b− 1

 lim
n→∞

∑
v∈

Sn
k=1 A k

b−|v|ξ(wv) +
∑

1≤k≤|w|

ξ(w|k)

 . (23)

Then, the limit process of the previous sections can be seen as the primitive of
the projection of M on [0, 1].

Of course (23) makes sense even for b = 2.
It is easy to compute covariances:

E
(
M([v])M([w])

)
=

{
b−2|v|(1 + (b− 1)|v|) if w = v,

(b− 1) b−(|v|+|w|)|v ∧ w| otherwise.

It is then straighforward to check that, with probability 1, for all ε > 0 we have
supv∈A n |M([v])| = o(b−n(1−ε)). This can be refined, in particular thanks to the
multifractal analysis of the branching random walk S(w) =

∑
1≤j≤|w| ξ(w|j). In

term of the associated Gaussian process (Xt)t∈[0,1], it is natural to consider for all
α ∈ R the sets

Eα =
{
t ∈ [0, 1) : lim sup

n→∞

∆(X, In(t))
nb−n

= α
√
b− 1

}
,

Eα =
{
t ∈ [0, 1) : lim inf

n→∞

∆(X, In(t))
nb−n

= α
√
b− 1

}
,

and
Eα = Eα

⋂
Eα,

where In(t) stands for the semi-open to the right b-adic interval of generation n
containing t.

In the next statement, dim E stands for the Hausdorff dimension of the set E.

Theorem 12. With probability 1,
(1) the modulus of continuity of X is a O

(
δ log(1/δ)

)
,

(2) X does not belong to the Zygmund class,
(3) the set E0 contains a set of full Lebesgue measure at each point of which X

is not differentiable,

(4) dim Eα = dim Eα = dim Eα = 1− α2

2 log b
if |α| ≤

√
2 log b, and Eα = ∅ if

|α| >
√

2 log b. Furthermore, E−√2 log b and E√2 log b are nonempty.

Remark 2. We do not know whether there are points in E0 at which X is differen-
tiable. We do not either if the pointwise regularity of X is 1 everywhere.

Proof. For w ∈ A ∗, as above we set ζ(w) =
√
b− 1 limn→∞

∑
v∈

Sn
k=1 A k b−|v|ξ(wv).

We have
∑
n≥1 P

(
∃ w ∈ A n, |ζ(w)| > 2

√
2 log b

√
n
)
<∞, hence, with probabil-

ity 1, supw∈A n |ζ(w)| = O(
√
n).
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Also,
∑
n≥1 P

(
∃ w ∈ A n, |S(w)| > 2n

√
2 log b

)
< ∞ and, with probability 1,

supw∈A n |S(w)| = O(n). This yields the property regarding the modulus of conti-
nuity thanks to (18). This proves the first assertion.

To see that X is not in the Zygmund class, it is enough to find t ∈ (0, 1) such that

lim sup
h→0,h 6=0

∣∣∣∣f(t+ h) + f(t− h)− 2f(h)
h

∣∣∣∣ =∞. Take t = b−1 and h = b−n. Let t and t

stand for the infinite words 0(b−1)(b−1) . . . (b−1) · · · and 1(b−1)(b−1) . . . (b−1) · · · .
We have∣∣∣∣f(t+ h) + f(t− h)− 2f(h)

h
√
b− 1

∣∣∣∣ =

∣∣∣∣∣ζ(t|n)− ζ(t|n)
√
b− 1

+ S(t|n)− S(t|n)

∣∣∣∣∣ .
Since |ζ(t|n) − ζ(t|n)| = O(

√
n) and since the random walks S(t|n) and S(t|n)

are independent, the law of the iterated logarithm yields the desired behavior as
h = b−n goes to 0.

The fact that E0 contains a set of full Lebesgue measure on which X is nowhere
differentiable is a consequence of the Fubini theorem combined with the property
|ζ(t̃|n)| = O(

√
n) and the law of the iterated logarithm which almost surely holds

for the random walk (S(t̃|n))n≥1 for each t ∈ [0, 1].

Since, with probability 1, we have supw∈A n |ζ(w)| = O(
√
n), we only have to

take into account the term S(w) in the asymptotic behavior of
∆(X, Iw)
|w|b|w|

as |w|

goes to ∞. Thus, in the definition of the sets Eα, Eα and Eα,
∆(X, Iw)√
b− 1|w|b|w|

can

be replaced by
S(w)
|w|

. Then the result is mainly a consequence of the work [2] on

the multifractal analysis of Mandelbrot measures.
To get an upper bound for the Hausdorff dimensions, we set

β(q) = lim inf
n→∞

− 1
n

logb
∑
w∈A n

exp(qS(w))

for q ∈ R. Standard large deviation estimates show that dim Fα ≤ inf
q∈R

−αq
log b

− β(q)

for all α ∈ R and F ∈ {E,E,E} (the occurrence of a negative dimension meaning
that the corresponding set is empty). Also, using the fact that β(q) is the supremum
of those numbers t such that lim supn→∞ bnt

∑
w∈A n exp(qS(w)) <∞ yields

β(q) ≥ lim
n→∞

− 1
n

logb E
∑
w∈A n

exp(qS(w)) = −1− q2

2 log b
.

Since both sides of this inequality are concave functions, we actually have, with
probability 1, β(q) ≥ −1 − q2/2 log b for all q ∈ R. Consequently, the upper
bound for the dimension used with α = −β′(q) log b = q yields, with probability 1,
dim Fq ≤ 1− q2/2 for all q ∈ [−

√
2 log b,

√
2 log b] and Fq = ∅ if |q| >

√
2 log b.

For the lower bounds, we only have to consider the sets Eα.
If q ∈ [−

√
2 log b,

√
2 log b], let φq be the non-decreasing continuous function

associated with the family
(
Wq(w) = exp(qW (w) − q2/2)

)
w∈A + as φ was with(

W (w)
)
w∈A + in Section 1. We learn from [2] that, with probability 1, all the

functions φq, q ∈ (−
√

2 log b,
√

2 log b) are simultaneously defined; their derivatives
(in the sense of distributions) are positive measures denoted by µq. Then, compu-
tations very similar to those used to perform the multifractal analysis of µ1 in [2]
show that, with probability 1, for all q ∈ (−

√
2 log b,

√
2 log b) the dimension of µq

is 1− q2/2 log b and µq(Eq) > 0.
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For q ∈ {−
√

2 log b,
√

2 log b} it turns out (see [8, 2]) that the formula

µq(Iw) = lim
p→∞

−
∑
v∈A p

Π(wv) log Π(wv),

where

Π(wv) = b−|w|+p
|w|∏
k=1

Wq(w|k)
p∏
j=1

Wq(wv|j),

defines almost surely a positive measure carried by Eq. �

5. Other random Gaussian measures and processes

This time b ≥ 2,
(
ξ(w)

)
w∈A + is a sequence of independent N (0, 1) variables, and(

α(w)
)
w∈A + and

(
β(w)

)
w∈A + are sequences of numbers subject to the conditions

α(w) =
∑
`∈A

α(w`),∑
v∈A +

|α(wv)|p|β(wv)|p <∞ for some p ∈ (1, 2].

Then, for all w ∈ A +, the martingale
∑
v∈A n α(wv)β(wv) ξ(wv) is bounded Lp

norm (if p < 2 this uses an inequality from [1]) and the formula

M([w]) = lim
n→∞

∑
v∈

Sn
k=1 A k

α(wv)β(wv) ξ(wv) + α(w)
∑

1≤j≤|w|

β(w|j) ξ(w|j) (24)

almost surely defines a random measure which generalizes the one considered in
the previous sections. Here again, the primitive of the projection on [0, 1] of this
measure defines a continuous process, which is Gaussian if p = 2.

Remark 3. The hypotheses under which this last construction can be performed
can be relaxed: if the random variables ξ(w), w ∈ A +, are independent, centered,
and

∑
v∈A + |α(wv)|p|β(wv)|pE(|ξ(wv)|p) < ∞, Formula (24) still yields a random

measure.
The fine study of the associate process as well as some improvement of Theo-

rem 12 will be achieved in a further work.
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