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Abstract

This article investigates the natural problem of performing the multifractal analysis of
heterogeneous sums of Dirac masses

ν =
∑
n≥0

wn δxn ,

where (xn)n≥0 is a sequence of points in [0, 1]d and (wn)n≥0 is a positive sequence of
weights such that

∑
n≥0 wn <∞. We consider the case where the points xn are roughly

uniformly distributed in [0, 1]d, and the weights wn depend on a random self-similar
measure µ, a parameter ρ ∈ (0, 1], and a sequence of positive radii (λn)n≥1 converging
to 0 in the following way

wn = λd(1−ρ)
n µ

(
B(xn, λρn)

)
| log λn|−2.

The measure ν has a rich multiscale structure. The computation of its multifractal spec-
trum is related to heterogeneous ubiquity properties of the system {(xn, λn)}n with
respect to µ.

1. Introduction and motivations

A large literature is dedicated to the multifractal analysis of continuous singular mea-
sures possessing scaling invariance properties (see [13, 30, 32, 29, 7] and references
therein), while a few papers investigate the multifractal nature of another very natural
class of singular measures: the infinite sums of Dirac masses.

In this paper we perform the multifractal analysis of a large class of infinite sums of
Dirac masses. These Dirac masses are located at roughly uniformly distributed points
in a compact subset of Rd, and they are weighted using a statistically self-similar mul-
tifractal measure. The study of these measures is closely related to the new results on
heterogeneous ubiquity established in [11].

We start by describing a class of ”homogeneous” sums of Dirac masses whose multi-
fractal analysis is performed in [16].
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Let Ω be a compact subset of Rd such that dim Ω > 0 (dim stands for the Hausdorff
dimension) and ‖.‖ a norm on Rd. Let (xn)n∈N be a sequence in ΩN and (λn)n∈N a
non-increasing sequence of positive real numbers converging to 0. For x ∈ Ω, the approx-
imation degree of x by the family (xn)n relative to (λn)n is

deg(x) =∞ if x ∈ {xn} and deg(x) = lim sup
n→∞

log ‖x− xn‖
log λn

if x 6∈ {xn},

see [16]. The level sets of the function deg(·) are then defined by Fξ = {x : deg(x) = ξ} for
ξ ∈ (0,+∞]. A natural assumption is infx∈Ω deg(x) > 0, which can be easily normalized
to have deg(x) ≥ 1 for all x ∈ Ω. This amounts to saying that Ω =

⋃
ξ≥1 Fξ, which arises

under the assumption

lim sup
n→∞

B(xn, λn) =
⋂
N≥0

⋃
n≥N

B(xn, λn) = Ω, (1·1)

For α ≥ dim Ω, consider the measure ν defined by

ν =
∑
n≥0

wn δxn with wn =

{
| log λn|−2λαn if α = dim Ω

λαn otherwise
, (1·2)

where δx stands for the Dirac mass located at x ∈ Rd.
Suppose that the system {(xn, λn)}n∈N is ”sparse” in the sense of [16], i.e.

∃C ′ > 0, ∀x ∈ Ω, ∀ j ∈ N, #{n : 2−j ≤ λn < 2−j+1, xn ∈ B(x, 2−j)}≤C ′. (1·3)

Suppose also that Ω can be endowed with a monofractal finite Borel measure m, i.e.
there exist r0 > 0 and a constant C > 0 such that ∀x ∈ Ω and ∀ 0 < r ≤ r0, we have
C−1rdim Ω ≤ m(B(x, r)) ≤ Crdim Ω.

Then the measure ν is finite and its Hausdorff multifractal spectrum is found in [16].
Recall that this spectrum is defined as follows. If µ is a positive Borel measure on Ω then
the lower Hölder exponent of µ at x is

hµ(x) = lim inf
r→0+

logµ(B(x, r))
log r

, (1·4)

and the level sets of the lower Hölder exponent function are defined as

Eµh = {x ∈ Ω : hµ(x) = h} (h ≥ 0).

The Hausdorff multifractal spectrum of µ is the mapping dµ : h ≥ 0 7→ dim Ehµ .
For the measure ν defined above on Ω, if both (1·1) and (1·3) hold true, then it is

proved in [16] that the lower Hölder exponent of ν is directly deduced from deg(x)
by the relation hν(x) = α(deg(x))−1 (in fact, only in the case α = dim Ω is treated,
nevertheless the case α > dim Ω is similar). Then the Hausdorff dimension of the sets
Ehν is closely related to the Hausdorff dimension of the sets Fξ. The main point is that
the Hausdorff dimensions of Fξ can be computed in the context where Ω can be endowed
by a monofractal measure m, using results on ubiquitous systems [14]. The following
theorem is obtained in [16] (Corollary 5):

Theorem 1·1.

(i) For every x ∈ Ω, hν(x) = α(deg(x))−1. Equivalently, for every ξ ∈ [1,∞],
Eνα/ξ = Fξ.
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(ii) For every h ∈ [0, α], dν(h) = (dim Ω)h/α.

A similar result holds for Lévy subordinator [12, 20]. Indeed, the derivative of such a
subordinator takes the same form as (1·2) when restricted to any non-trivial compact
subinterval of R+. Comparable multifractal properties are also obtained for sums of Dirac
masses located on dyadic points of [0, 1] in [2, 8], and for functions with countable and
dense set of jump points like the Riemann function and general Lévy processes [19, 20].

We observe that for each n, the weight wn of the Dirac mass at xn does not depend
on the location (in space) of xn, but on λn only. Consequently, using (1·1) and (1·3), the
weights wn are roughly homogeneously distributed. This plays a central role in Theo-
rem 1·1. This also raises the much more general problem of performing the multifractal
analysis of sums of Dirac masses heterogeneously weighted

ν =
∑
n∈N

w(xn, λn) δxn ,

as well as finding the counterpart of the ubiquity properties used in the analysis above
to this heterogeneous case.

In this paper, we resolve this problem when the heterogeneity in the weight’s distribu-
tion is governed by a (possibly) multifractal measure. The set Ω is [0, 1]d. We consider a
positive and finite Borel measure µ such that supp(µ) = Ω and a parameter ρ ∈ (0, 1].
A property slightly weaker than (1·3) is assumed:

Definition 1·2. For every j ≥ 0, define

Tj =
{
n : 2−(j+1) < λn ≤ 2−j

}
. (1·5)

The system {(xn, λn)}n∈N is said to be weakly redundant when there exists a sequence
of integers (Nj)j≥0 such that

(i) limj→∞
log2Nj

j = 0.
(ii) for every j ≥ 1, Tj can be decomposed into Nj pairwise disjoint subsets (denoted

Tj,1, . . . , Tj,Nj ) such that for each 1 ≤ i ≤ Nj, the family
{
B(xn, λn) : n ∈ Tj,i

}
is composed of disjoint balls. (By convention, Nj = 1 if Tj = ∅.)

When the system {(xn, λn)}n∈N is weakly redundant, we shall study the multifractal
nature of the finite Borel measure νρ (0 < ρ ≤ 1) defined as

νρ =
∑
n∈N

an λ
d(1−ρ)
n µ

(
B(xn, λρn)

)
δxn , (1·6)

where an = | log λn|−2c−1
n and cn = Nj if n ∈ Tj . The term an is a natural normalization

factor that satisfies | log an| = o(| log λn|) and makes the measure νρ finite.
It is easily observed that up to a multiplicative constant, if µ equals the d-dimensional

Lebesgue measure `, then for every ρ ∈ (0, 1] the measure νρ coincides with the measure
considered in [16], i.e. the measure (1·2) when Ω = [0, 1]d and α = d. Formula (1·6) is
thus a natural “heterogeneous” extension of the previous ”homogeneously distributed”
measures. We shall emphasize the important role played by the dilation parameter ρ :
the multifractal behavior of νρ when ρ < 1 strongly differs from the behavior of ν1. We
also mention that a preliminary result is obtained in [8] in the special case when ρ = 1,
d = 1, and the system {(xn, λn)}n is equal to {(kb−j , 2−j)}j≥0,k∈{0,...,2j−1}. There, the
hierarchical structure of the dyadic numbers considerably simplifies the discussion with
respect to the much more general situation considered in this paper.
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In order to get a foretaste of our main result Theorem 2·9, we first state one of its
corollaries. Let µ0 be a binomial measure with weights p0 > 0, p1 > 0, p0 + p1 = 1. This
simple measure µ0 fulfills the assumptions of Theorem 2·9.

Theorem 1·3. Let Ω = [0, 1]. Let {(xn, λn)}n be a weakly redundant system satisfying

Ω ⊂ lim sup
n→+∞

B(xn, λn/2). (1·7)

Consider the measure ν1 ( 1·6) constructed using the system {(xn, λn)}n and µ0.
Let τ(q) = − log2(pq0 + pq1) for q ∈ R and τ∗(h) = infq∈R(hq − τ(q)) for h ≥ 0.
(i) If 0 ≤ h ≤ τ ′(1), then dν1(h) = h.

(ii) Let h ≥ τ ′(1). If τ∗(h) > 0, then dν1(h) = dµ0(h) = τ∗(h), and if τ∗(h) < 0 then
Eν1h = ∅.

We remark that (1·7) requires that Ω is covered by the balls of radii λn/2 instead of λn
in (1·1). This slight modification is purely technical: it is due to the replacement of the
Lebesgue measure by µ0 in (1·6) with respect to the situation described by Theorem 1·1.

This rather simple case of a binomial measure illustrates a phenomenon that occurs
throughout the paper. The local regularity of νρ at each point x is ruled simultaneously
by the behavior of the measure µ around x and by the approximation degree deg(x) (this
differs from what happens for the measure ν considered in (1·2), for which the regularity
at x depends only on deg(x)). This combination has a repercussion on the shape of dν1 .
More specifically, the linear part in the multifractal spectrum is due to a subtle combina-
tion studied in [11] between ubiquity properties like (1·1) and the monodimensionality
and self-similarity properties of the measure µ0.

Before making other comments, we state precisely our main result Theorem 2·9. This
requires some definitions and technical conditions explained in Sections 2·1 to 2·3. These
conditions are satisfied by large classes of measures µ possessing some statistical self-
similarity and by many systems {(xn, λn)}n – see Section 5 for more details –.

Subsequently we state Theorem 2·9 in Section 2·4 and we prove it in Sections 3 and
4. Theorem 2·9 extends Theorem 1·1, and asserts that the multifractal spectrum dνρ is
composed of a linear part and a concave part, under suitable assumptions on µ and on
the system {(xn, λn)}n. Consequently, the same phenomenon as the one described above
for ν1 by Theorem 1·3 happens for more general classes of measures νρ.

2. Statement of the main result

In the sequel, d ≥ 1 is fixed and Ω = [0, 1]d. We consider a positive Borel measure µ
with supp(µ) = Ω, a sequence (xn)n ∈ ΩN, a non-increasing sequence (λn)n of positive
real numbers converging to zero and a parameter 0 < ρ ≤ 1.

It is convenient to endow Rd with the supremum norm ‖ · ‖∞ and with the associated
distance (x, y) ∈ Rd × Rd 7→ ‖x− y‖∞ = max1≤i≤d(|xi − yi|).

2·1. Some notations and definitions

Let c be an integer ≥ 2. For every j ≥ 0, for every k = (k1, . . . , kd) ∈ {0, 1, . . . , cj−1}d,
Icj,k denotes the c-adic box [k1c

−j , (k1 + 1)c−j) × . . . × [kdc−j , (kd + 1)c−j). For every
x ∈ [0, 1)d, Icj (x) stands for the unique c-adic box of scale j that contains x, and kcj,x is the
unique (multi-)integer such that Icj (x) = Icj,kcj,x

. If k = (k1, . . . , kd) and k′ = (k′1, . . . , k
′
d)

both belong to Nd, ‖k− k′‖∞ = maxi |ki − k′i|.
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Throughout the paper, if E ∈ Rd, |E| denotes the diameter of the set E, and if x ∈ R,
[x] stands for the integer part of x.

Let m be a positive Borel measure on Rd such that supp(m) = Ω. Let ψ : R+ → R+

be a non-decreasing continuous function such that ψ(0) = 0. For every α > 0 and every
subset B of Ω, the property Qm,αψ (B) is said to hold if

|B|α+ψ(|B|)) ≤ m
(
B
)
≤ |B|α−ψ(|B|). (2·1)

Heuristically, Qm,αψ (B) holds when m(B) ∼ |B|α. For γ > 0, α > 0, ξ ≥ 1 and 0 < ρ ≤ 1,
we define for every n ∈ N the balls

Bγn = B(xn, λγn) (2·2)

and Bn,ξ(m, ρ, α, ψ) =

{
Bξn if Qm,αψ (Bρn) holds

∅ otherwise.
(2·3)

Essentially Bn,ξ(m, ρ, α, ψ) is non-empty and equal to a contracted ball Bξn as soon as a
condition (2·1) on the larger ball Bρn holds.

For every x ∈ Ω and k ∈ {−1, 0, 1}d the lower and upper Hölder exponents of a positive
Borel measure m at neighborhood k of x are respectively defined by

αk
m(x) = lim inf

j→+∞

logcm(Ij,kcj,x+k(x))

j
and αk

m(x) = lim sup
j→+∞

logcm(Ij,kcj,x+k(x))

j
.

When αk
m(x) = αk

m(x), their common value is denoted by αk
m(x) and called the Hölder

exponent at neighborhood k of x. Let

Ẽmα =
{
x ∈ Ω : ∀ k ∈ {−1, 0, 1}d, αk

m(x) = α
}
. (2·4)

For x ∈ Ω, we also need the notion of upper Hölder exponent (the counterpart of the
exponent hm defined in (1·4))

hm(x) = lim sup
r→0+

logm(B(x, r))
log |B(x, r)|

= lim sup
j→+∞

logm(B(x, c−j))
log |B(x, c−j)|

.

The reader can easily check that

hm(x) = min
k∈{−1,0,1}d

αk
m(x) and hm(x) ≤ min

k∈{−1,0,1}d
αk
m(x).

The scaling function, or Lq-spectrum, associated with a measure m is needed to invoke
the multifractal formalism developed in [13]. For every integer c ≥ 2, this function is
defined by

τm,c : q 7→ lim inf
j→∞

−1
j

logc
( ∑

k∈{0,...,cj−1}d
m(Icj,k)q

)
. (2·5)

Since supp(m) = Ω = [0, 1]d, τm,c does not depend on the integer c ≥ 2, and is conse-
quently denoted by τm. It is a concave and non-decreasing mapping.
The Legendre transform of τm at α ∈ R+, denoted by τ∗m, is defined by

τ∗m : α 7→ inf
q∈R

(
αq − τm(q)

)
∈ R ∪ {−∞}. (2·6)
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2·2. Irreducible elements of {xn : n ≥ 0}
Definition 2·1. Let S = {xn : n ≥ 0} and y ∈ S. Let also ny = min{n : y = xn}.

The point xny is called the irreducible form of y. If p ≥ 0 is such that nxp = p, xp is said
to be irreducible.

Notice that since (λn)n≥1 is non-increasing, λny ≥ λn for all n such that xn = y. This
notion of irreducibility coincides with the usual notion of irreducibility when, in dimension
1, {(xn, λn)}n is a sequence taking values in the set of rational pairs {(p/q, 1/q2) : q ≥
1, 0 ≤ p ≤ q}.

¿From now on, for x ∈ Ω, we simply write ξx instead of deg(x). The proof of the
following proposition is immediate and left to the reader.

Proposition 2·2. For every x ∈ Ω which satisfies ξx < ∞, (remember that we have
set ξx = deg(x))

ξx = lim
n→∞

sup
y∈S, ny≥n

log ‖x− y‖∞
log λny

.

Notice that if the xn are pairwise distinct they are all irreducible.

2·3. Properties satisfied by the measure µ and the system {(xn, λn)}n
Definition 2·3. Property P1(µ): There exists a constant M such that

∀x ∈ Ω, ∀r > 0, µ
(
B(x, r)

)
≥ rM .

The role of property P2(µ, ρ, {(xn, λn)}, h) is to enable us to get a lower bound for
the Hausdorff dimension of sets of the form lim supn→∞Bn,ξn(µ, ρ, h, ψ), where h > 0
is a positive exponent, (ξn)n≥0 ∈ [1,∞)N, and where ψ : R+ → R+ is a non-decreasing
continuous function such that ψ(0) = 0.

Definition 2·4. Property P2(µ, ρ, {(xn, λn)}, h) and heterogeneous ubiquity:
There exists a non-decreasing continuous function ψ : R+ → R+ such that ψ(0) = 0
and for every ξ ≥ 1, there are a non-decreasing sequence (ξn)n≥0 converging to ξ and a
positive Borel measure mρ,ξ with the following properties: Let

T = lim sup
n→∞

Bn,ξn(µ, ρ, h, ψ) and d(τ∗µ(h), ρ, ξ) = min
(d(1− ρ) + ρτ∗µ(h)

ξ
, τ∗µ(h)

)
(2·7)

(the balls Bn,ξn(µ, ρ, h, ψ) are defined in ( 2·3)). The set T is of positive mρ,ξ-measure (i.e.
mρ,ξ(T ) > 0), and for every Borel set E satisfying dimE < d(τ∗µ(h), ρ, ξ), mρ,ξ(E) = 0.

In particular, dimT ≥ d(τ∗µ(h), ρ, ξ).

Heuristically, T is a subset of Ω which contains points which are approximated at rate
ξ ≥ 1 by some points xn (relatively to λn), those points xn being selected according to
the µ-measure of the ball Bρn = B(xn, λρn).

Property P2(µ, ρ, {(xn, λn)}, h) is shown to be satisfied for large classes of systems
and statistically self-similar measures in [11] (see also Section 5). It is also shown in [11]
that if {(xn, λn)}n is weakly redundant, then dimT ≤ d(τ∗µ(h), ρ, ξ).

We remark that, under the weak redundancy assumption, a saturation phenomenon
occurs when ρ < 1, in the following sense. As long as ξ ≤ ξc = d(1−ρ)+ρτ∗µ(h)

τ∗µ(h) , the
dimension of T is dim T = τ∗µ(h), while when ξ ≥ ξc, the dimension of T starts to decrease
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and dim T = d(1−ρ)+ρτ∗µ(h)

ξ . This fact plays a fundamental role in the computation of the
multifractal spectrum of νρ when ρ < 1 in Theorem 2·9.

Definition 2·5. Property P3(µ, h): There exists a positive Borel measure µh with
supp(µ) = Ω, µh(Ẽµh ) > 0, and µh(E) = 0 for every Borel set E such that dim E < τ∗µ(h)
(the level set Ẽµh is defined by ( 2·4)).

Property P3(µ, h) implies the validity of the multifractal formalism for µ at h in the
sense that in this case dimEhµ = τ∗µ(h). In fact the inequality dimEhµ ≤ τ∗µ(h) always
holds true by Proposition 4·4.

2·4. Statement of the main result

Let µ be a Borel measure on Rd such that supp(µ) = Ω and a weakly redundant
system {(xn, λn)}n. Let ρ ∈ (0, 1] be the dilation parameter introduced in the beginning
of Section 1 in order to defined the measure νρ in (1·6).
Two final properties are needed.

Definition 2·6. Property P4: The system {(xn, λn)}n satisfies

Ω \ {xn : n ≥ 0} ⊂ lim sup
n→∞

B(xn, λn/2). (2·8)

As in ( 1·1), ( 2·8) ensures that deg(x) = ξx ≥ 1 for all x ∈ Ω \ {xn : n ≥ 0}.

Remark 2·7. It is important to notice that by construction ( 2·8) also holds if the
family {(xn, λn)}n is restricted to the pairs such that xn is irreducible.

Definition 2·8. Property P5(µ): Let qc(µ) be the (critical) real number defined by

qc(µ) = inf{q : τµ(q) = 0}.

Due to the definition of τµ ( 2·5), qc(µ) always belongs to (0, 1]. We assume that

qc(µ) = 1.

P5(µ) is satisfied for example as soon as µ is an atomless measure such that τ∗µ is
negative in a neighborhood of 0+. This implies that the lower Hölder exponents of µ
range in an interval isolated from 0. This situation occurs for many classes of measures
obtained by using a multiplicative scheme (see again Section 5 for examples). We then
define

hc(µ) = τ ′µ(qc(µ)−) = τ ′µ(1−).

We emphasize that in the next result, P1(µ) allows us to obtain an upper bound for
the multifractal spectrum dνρ of νρ, and that P2(µ, ρ, {(xn, λn)}, h) and P3(µ, h) are
necessary to be able to get a lower bound for dνρ .

Theorem 2·9. Let µ be a positive Borel measure on Ω = [0, 1]d, and let {(xn, λn)}n
be a weakly redundant system in Ω. Let ρ ∈ (0, 1], and νρ be the measure obtained in
( 1·6). Assume that P1(µ), P4 and P5(µ) together hold.
Case ρ = 1.

(i) If hc(µ) > 0, then dν1(h) ≤ h for every h ∈ [0, hc(µ)].
Moreover, if P2(µ, 1, {(xn, λn)}, hc(µ)) holds, then dν1(h) = h for every h ∈
[0, hc(µ)].
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Fig. 1. Top left: Typical Hausdorff spectrum dµ of a random self-similar measure µ. Top right:
Hausdorff spectrum dν1 of the corresponding sum of Dirac masses ν1 with ρ = 1. Bottom:
Hausdorff spectrum dµ of the binomial measure µ with p0 = 1/10 and p1 = 9/10 (dashed
graph), and Hausdorff spectrum dν1/3 of its associated sum of Dirac masses with ρ = 1/3 (plain

graph). The multifractal spectrum of ν1/3 is highly asymmetric.

(ii) If h ≥ hc(µ), then dν1(h) ≤ τ∗µ(h) if τ∗µ(h) ≥ 0, and Eν1h = ∅ if τ∗µ(h) < 0.
Moreover, if P3(µ, h) holds then dν1(h) = τ∗µ(h).

Case ρ < 1.
(i) If hc(µ) > 0, then dνρ(h) ≤ h for every h ∈ [0, hc(µ)].

Moreover, if P2(µ, ρ, {(xn, λn)}, hc(µ)) holds, then dνρ(h) = h for every h ∈
[0, hc(µ)].

(ii) Consider the exponent

hρ(µ) = d(1− ρ) + ρτ ′µ(0+) (2·9)

and the mapping

α ≥ 0 7→ ζ(α) =
d(1− ρ) + ρτ∗µ(α)
d(1− ρ) + ρα

. (2·10)

If h ∈ (hc(µ), hρ(µ)) (this interval is non-empty if and only if τ ′µ(0+) > d, or
equivalently hc(µ) < d), there exists a unique α = α(h) ∈ (hc(µ), τ ′µ(0+)) such
that τ∗µ(α) = h · ζ(α). Then dνρ(h) ≤ τ∗µ

(
α(h)

)
.

Moreover, if P2(µ, ρ, {(xn, λn)}, α(h)) holds then dνρ(h) = τ∗µ
(
α(h)

)
.

(iii) If h ≥ hρ(µ), let β(h) be the exponent

β(h) =
h− d(1− ρ)

ρ
. (2·11)

Then dνρ(h) ≤ τ∗µ(β(h)), and Eνρh = ∅ if τ∗µ(β(h)) < 0.
Moreover, if P3(µ, β(h)) holds, then dνρ(h) = τ∗µ(β(h)).
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Consequently, as claimed in the simpler context of Theorem 1·3, under some assump-
tions on µ and {(xn, λn)}, when hc(µ) > 0, the multifractal spectrum of νρ is composed of
two parts: a linear part (starting at (0, 0)) when h is smaller than the critical value hc(µ),
and then a concave part when h ≥ hc(µ). This is a mixture between the linear shape
obtained in the homogeneous case (1·2) in Theorem 1·1 and the classical strictly concave
spectrum of random self-similar measures obeying a multifractal formalism [13, 30].

The heterogeneous ubiquity is responsible for the linear part of the spectrum, and when
ρ < 1, it is also responsible for the value of the spectrum on the interval (hc(µ), hρ(µ)).
We are able to prove that h 7→ τ∗µ(α(h)) is concave on the interval (hc(µ), hρ(µ)) only
when d = 1.

Section 5 provides examples illustrating Theorem 2·9, including the case hc(µ) = 0.
The proof of Theorem 2·9 begins in Section 3, where the sets Eνρh are characterized in
terms of the measure µ in Theorem 3·2. The proof ends in Section 4, where Theorem 3·2
is used to find an upper bound and a lower bound for dim E

νρ
h .

It is natural to ask whether some multifractal formalism is satisfied by νρ or not. This
question is discussed in Section 6.

3. Local regularity of νρ and level sets of hνρ
Let µ be a positive Borel measure on Ω = [0, 1]d with supp(µ) = Ω and c an integer
≥ 2. A weakly redundant system {(xn, λn)}n is also fixed. Using the weak redundancy
assumption on {(xn, λn)}n, if y ∈ S, then (remember Definition 2·1 for the value of ny)

λ
d(1−ρ)
ny µ(B(y, λρny ))
cny | log λny |2

≤ νρ({y}) ≤ 4
λ
d(1−ρ)
ny µ(B(y, λρny ))
| log λny |

. (3·1)

Definition 3·1. Let α ≥ 0, ξ ≥ 1 be two real numbers. Let ε > 0. For every point
x ∈ Ω, the property P(ρ, α, ξ, ε) is said to hold at x if there exist η < ε and an infinite
number of irreducible points y ∈ S such that

λρ(α+η)
ny ≤ µ

(
B(y, λρny )

)
≤ λρ(α−η)

ny and ‖x− y‖∞ ≤ λξ−ηny . (3·2)

For h ≥ 0, let

Fh,ρ =

{
x ∈ Ω :

{
∀ε > 0, ∃α ≥ 0, ξ ≥ 1 such that

d(1−ρ)+ρα
ξ ≤ h+ ε and P(ρ, α, ξ, ε) holds at x

}
(3·3)

Gh,ρ = Fh,ρ
⋃
{x ∈ Ω : hµ(x) ≤ max (β(h), h)} . (3·4)

It is immediate that for any 0 ≤ h ≤ h′, Fh,ρ ⊂ Fh′,ρ and Gh,ρ ⊂ Gh′,ρ

The following result exhibits, for every h > 0, two sets Ah and Bh such that Ah ⊂
E
νρ
h ⊂ Bh. The sets Ah and Bh are used to find respectively a lower bound and an upper

bound for dim E
νρ
h .

Theorem 3·2. Assume that P1(µ) holds, and let h > 0.
Then Ah ⊂ E

νρ
h ⊂ Bh, where

(i) If h < hρ(µ), thenAh =
(
Ẽµmax(h,β(h)) ∩ {x ∈ Ω : ξx = 1}

) ⋃ (
Fh,ρ \

⋃
h′<hGh′,ρ

)
,

Bh = Gh,ρ\
⋃
h′<h Fh′,ρ.
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(ii) If h ≥ hρ(µ), then {
Ah = Ẽµβ(h) ∩ {x ∈ Ω : ξx = 1},
Bh =

⋃
h′≥β(h)E

µ

h′ .

Theorem 3·2 is a consequence of Propositions 3·3, 3·5 and 3·6.

Proposition 3·3. Let x ∈ Ω \ S = Ω \ {xn : n ≥ 0}. If ξx < +∞, then

min
(
d(1− ρ) + ρhµ(x)

ξx
, hµ(x)

)
≤ hνρ(x) ≤ d(1− ρ) + ρhµ(x)

ξx
. (3·5)

Moreover, if P1(µ) holds and ξx = +∞, then hνρ(x) = 0.

Proof. We denote α = hµ(x), β = hµ(x). Let ε > 0, and assume that ξx < +∞.

We start with the upper bound for hνρ(x).
Assume first that ξx > 1.
By definition of ξx and by P4, there exists an infinite number of irreducible points

xp ∈ S such that ‖x− xp‖∞ ≤ λξx−εnxp
/2. Let xp be such a point. By (3·1),

νρ

(
B
(
x, λξx−εnxp

/2
))
≥ νρ ({xp}) ≥ | log λnxp |

−2c−1
nxp

λd(1−ρ)
nxp

µ
(
B
(
xp, λ

ρ
nxp

))
.

By definition of β = hµ(x), there exists a scale J1 such that

0 < r < 2−J1 implies µ (B (x, r)) ≥ rβ+ε.

By construction, B(x, λρnxp/2) ⊂ B(xp, λρnxp ). Consequently, when nxp is large enough,
µ
(
B(xp, λρnxp )

)
≥ µ

(
B(x, λρnxp/2)

)
≥ (λρnxp/2)β+ε. Hence

νρ

(
B
(
x, λξx−εnxp

/2
))
≥ 2−(β+ε)c−1

nxp
| log λnxp |

−2λd(1−ρ)+ρ(β+ε))
nxp

. (3·6)

Because of the weak redundancy of {(xn, λn)}n, log cnxp = o(| log λnxp |). We thus deduce

from (3·6) that hνρ(x) ≤ d(1−ρ)+ρ(β+ε)
ξx−ε . This remains true for every ε > 0. Hence hνρ(x) ≤

d(1−ρ)+ρhµ(x)
ξx

.
If ξx = 1, ‖x − xp‖∞ ≤ λξx−εnxp

/2 above is replaced by ‖x − xp‖∞ ≤ λnxp/2, and the

previous lines show that hνρ(x) ≤ d(1−ρ)+ρhµ(x). These lines also imply that if P1(µ)
holds and ξx = +∞, then hνρ(x) = 0.

Now we focus on the lower bound for hνρ(x). This part is more delicate to obtain. By
definition of α = hµ(x), there exists J2 such that

0 < r < 2−J2 implies µ (B (x, r)) ≤ rα−ε. (3·7)

By Proposition 2·2, there exists a scale J3 such that for every y ∈ S such that λny ≤
2−J3 , ‖x − y‖∞ ≥ λξx+ε

ny . We can also take J4 ≥ J3 such that if y ∈ S and λny ≤ 2−J4

then ∀ y′ ∈ S such that λny′ ≥ 2−J3 , y′ /∈ B
(
x, λny

)
.

In the rest of the proof, we often use the weak redundancy property (Definition 1·2)
and the decomposition of the set Tj into pairwise disjoint subsets Tj =

⋃Nj
i=1 Tj,i, for

some sequence (Nj)j≥0 such that logNj = o(j).

Let j0 ≥ 3ξx
max(J2,J4)

ρ . We now want to get an upper bound for νρ(B(x, 2−j0)). This



The multifractal nature of heterogeneous sums of Dirac masses 11

real number νρ
(
B
(
x, 2−j0

))
can be written as the sum

∑
j≥0 uj(x), where

uj(x) = N−1
j

∑
n∈Tj

1B(x,2−j0 ) (xn)
µ(B(xn, λρn))

λ
−d(1−ρ)
n | log λn|2

.

We split
∑
j≥0 uj(x) into three terms studied below.

• Estimate of
∑

0≤j<j0 uj(x): Suppose that this sum is not equal to 0, and let

n0 = min
{
n : xn ∈

⋃
j<j0
{xp : p ∈ Tj and xp ∈ B(x, 2−j0)}

}
. Obviously, n0 = nxn0

, i.e.

xn0 is its own irreducible form. This implies that λξx+ε
n0

≤ ‖x−xn0‖∞ ≤ 2−j0 < λn0 . More
generally, using that j0 ≥ 3ξx

max(J2,J4)
ρ , for every y ∈

⋃
j0/(ξx+ε)≤j<j0{xn ∈ B(x, 2−j0) :

n ∈ Tj} ,

λξx+ε
ny ≤ ‖x− y‖∞ ≤ 2−j0 < λny . (3·8)

The previous remark yields ∑
0≤j<j0

uj(x) =
∑

j0/(ξx+ε)≤j<j0

uj(x). (3·9)

Let j0/(ξx + ε) ≤ j < j0 and 1 ≤ i ≤ Nj . Using the weak redundancy property Tj =⋃Nj
i=1 Tj,i, there is at most one integer element n of Tj,i such that xn ∈ B(x, 2−j). Hence

there are at most Nj non-zero terms in uj(x).
For every j0/(ξx + ε) ≤ j < j0 and n ∈ Tj such that xn ∈ B(x, 2−j), we have

B(xn, λρn) ⊂ B(x, 2 · 2−j0ρ/(ξx+ε)). Thus each non-zero term in uj(x) is bounded by
N−1
j 2−d(1−ρ)jµ

(
B(x, 2 · 2−j0ρ/(ξx+ε))

)
. Consequently, using (3·7),∑

j0/(ξx+ε)≤j<j0

uj(x) ≤ µ
(
B(x, 2 · 2−j0ρ/(ξx+ε)

) ∑
j0/(ξx+ε)≤j<j0

2−d(1−ρ)j

≤ µ
(
B(x, 2 · 2−j0ρ/(ξx+ε)

)
j02−d(1−ρ)j0/(ξx+ε)

≤ 2α−εj02−j0
d(1−ρ)+ρ(α−ε))

ξx+ε .

• Estimate of
∑
j0≤j<j0/ρ uj(x): Let j be an integer belonging to [j0, j0/ρ]. Fix

1 ≤ i ≤ Nj . Applying again the weak redundancy property and the fact that the (disjoint)
balls B(xn, λn), n ∈ Tj,i, have radii ranging between 2−(j+1) and 2−j , there exists a
universal constant C such that the number of elements n of Tj,i such that xn ∈ B(x, 2−j0)
is bounded by C2d(j−j0). Moreover, for each such n, µ(B(xn, λρn)) ≤ µ(B(x, 2 · 2−jρ)).
Using (3·7) again, this yields∑

j0≤j<j0/ρ

uj(x) ≤
∑

j0≤j<j0/ρ

C 2d(j−j0)2−d(1−ρ)j2α−ε2−jρ(α−ε)

≤ C ′2−dj0
∑

j0≤j<j0/ρ

2jρ(d−(α−ε)).

If α > d and ε is small enough, the last sum is bounded by C2−dj02j0ρ(d−(α−ε)) ≤
C2−j0(d(1−ρ)+ρ(α−ε)).
If α ≤ d, the sum is bounded by C2−j0(α−ε).

• Estimate of
∑
j>j0/ρ

uj(x): The following result is needed.

Lemma 3·4. There exists a universal constant C having the following property.
For every y ∈ [0, 1]d, for every j0 ≥ 0 and for every j > j0/ρ, let {B(yp, rp)}p be
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any family of pairwise disjoint balls of radii rp ranging from 2−(j+1) to 2−j such that
yp ∈ B(y, 2−j0) ∩ [0, 1]d.

There exists an integer N ≤ C2d(1−ρ)j such that the family {B(yp, rρp)}p can be parti-
tioned into N subfamilies of pairwise disjoint balls.

Proof. We use the dyadic cubes I2
j,k of Section 2·1. Let j ≥ j0/ρ and jρ = [jρ].

If k ∈ {0, 1}d, let Ak =
{
p : ∃ k′ ∈ {0, . . . 2jρ−1 − 1}d, yp ∈ I2

jρ,2k′+k

}
. Then let Bk ={

B(yp, rρp) : p ∈ Ak

}
. By construction, the 2d sets Bk are pairwise disjoint and their

union is equal to {B(yp, rρp)}p. Now, it remains to show that for each k ∈ {0, 1}d, if
Bk 6= ∅, this set can be partitioned into at most C2d(1−ρ)j subfamilies of pairwise disjoint
balls, for some universal constant C.

On the one hand, in every cube of the form I2
jρ,2k′+k, k′ ∈ {0, . . . 2jρ−1−1}d, there are

at most C2d(1−ρ)j balls B(yp, rp), where C is a constant depending only on d. Indeed,
the volume of any of the disjoint balls B(yp, rp), p ∈ Ak, is greater than 2−d(j+1), and
the volume of the cube I2

jρ,2k′+k is 2−djρ .
On the other hand, if two points yp1 ∈ I2

jρ,2k′1+k and yp2 ∈ I2
jρ,2k′2+k with k′1,k

′
2 ∈

{0, . . . , 2jρ−1−1}d and k′1 6= k′2, then B(yp1 , r
ρ
p1)∩B(yp2 , r

ρ
p2) = ∅. This makes it possible

to split Bk suitably.

Let j > j0/ρ. This time, if 1 ≤ i ≤ Nj , for every n ∈ Tj,i, the ball B(xn, λρn) has a
diameter smaller than 2 · 2−j0 . Thus if the corresponding point xn belongs to B(x, 2−j0),
then B(xn, λρn) is contained in B̃ = B(x, 3 · 2−j0).

Lemma 3·4 can be applied with y = x and to {B(yp, rp)} = {B(xn, λρn) : n ∈
Tj,i and xn ∈ B(x, 2−j0)}. This family can be split into Nj,i,ρ ≤ P2jd(1−ρ) families of
disjoint balls Bj,i,k, and

⋃
B∈Bj,i,k B ⊂ B̃. Hence

uj(x) = N−1
j

∑
n∈Tj

1B(x,2−j0 ) (xn)
µ(B(xn, λρn))

λ
−d(1−ρ)
n | log λn|2

≤ 2−jd(1−ρ)

j2 log2(2)
N−1
j

Nj∑
i=1

Nj,i,ρ∑
k=1

∑
B∈Bi,j,k

µ(B) ≤ Cj−2µ(B̃),

for another constant C. Consequently∑
j>j0/ρ

uj(x) ≤ Cj−1
0 µ(B̃) ≤ P2−j0(α−ε).

As a consequence, if ε is small enough, for j0 large enough, we get:
- If α ≤ d, νρ(B(x, 2−j0)) ≤ C

(
2−j0

d(1−ρ)+ρ(α−ε)
ξx+ε + 2−j0(α−ε) + 2−j0(α−ε)).

- If α > d, νρ(B(x, 2−j0)) ≤ C
(
2−j0

d(1−ρ)+ρ(α−ε)
ξx+ε + 2−j0(d(1−ρ)+ρ(α−ε)) + 2−j0(α−ε)).

In all these cases (and remarking that d(1−ρ) +ρα is always greater than d(1−ρ)+ρα
ξx

),
letting ε tend to zero gives Proposition 3·3.

Proposition 3·5. If x ∈ Fh,ρ for some h ≥ 0, then hνρ(x) ≤ h.

Proof. Let ε > 0, α ≥ 0 and ξ ≥ 1 such that d(1−ρ)+ρα
ξ ≤ h+ ε and P(ρ, α, ξ, ε) holds

at x. Let y ∈ S be such that (3·2) holds. Then νρ
(
B
(
x, 2λξ−ηny

))
≥ νρ({y}), and the proof

ends as in the proof of the upper bound for hνρ(x) in Proposition 3·3.

Proposition 3·6. If P1(µ) holds, then E
νρ
h ⊂ Gh,ρ for every 0 < h ≤ hρ(µ).
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Proof. Let x ∈ Eνρh . Denote αx = hµ(x), hρ = max
(
β(h), h

)
, and let ε > 0. Assume

that αx > hρ. We want to show that x ∈ Fh,ρ.
By definition of Eνρh , there exists a sequence of integers (jp)p≥0 such that

νρ
(
B
(
x, 2−jp

))
≥ 2−jp(h+ε/2). (3·10)

We fix the integers J2 and J4 as in the proof of Proposition 3·3. Using results obtained
in the proof of Proposition 3·3, if jp is large enough, then

νρ
(
B
(
x, 2−jp

))
≤ C(2−jp(d(1−ρ)+ρ(αx−ε)) + 2−jp(αx−ε)) +

∑
jp/(ξx+ε)≤j<jp

uj(x). (3·11)

Since αx > hρ, ε can be chosen small enough so that min(d(1− ρ) + ρ(αx− ε), αx− ε) >
h+ 2ε. Using (3·10) and (3·11), we get for jp large enough

2−jp(h+ε) ≤
∑

jp/(ξx+ε)≤j<jp

N−1
j

∑
n∈Tj

1B(x,2−jp ) (xn)
µ(B(xn, λρn))

λ
−d(1−ρ)
n | log λn|2

.

Let np be minimal in the subset of
⋃
jp/(ξx+ε)≤j<jp Tj consisting of the integers k such

that

µ(B(xk, λ
ρ
k))

λ
−d(1−ρ)
k | log λk|2

= max
n∈

S
jp/(ξx+ε)≤j<jp Tj

1B(x,2−jp ) (xn)
µ(B(xn, λρn))

λ
−d(1−ρ)
n | log λn|2

.

If xn = xn′ with n′ > n, then µ(B(xn,λ
ρ
n))

λ
−d(1−ρ)
n | log λn|2

≥ µ(B(xn′ ,λ
ρ

n′ ))

λ
−d(1−ρ)
n′ | log λn′ |2

. This fact and our

choice of the integer J4 together imply that the point xnp is irreducible. Combining
Proposition 3·3 and the definition of np, we get

2−jp(h+ε) ≤
µ(B(xnp , λ

ρ
np))

λ
−d(1−ρ)
np | log λnp |2

. (3·12)

Write
∣∣x− xnp ∣∣ = λ

ξp
np ≤ λnp with ξp ≥ 1, and µ

(
B(xnp , λ

ρ
np)
)

= λ
ραp
np for some αp ≥ 0.

Using (3·12) and (3·8), this exponent αp satisfies

2−jp(h+ε) ≤ λd(1−ρ)+ραp
np ≤ 2−jp

d(1−ρ)+ραp
ξp ,

which implies 1−ρ+ραp
ξp

≤ h+ ε.

Performing this analysis for every p large enough gives us an infinite sequence of
irreducible points xnp that satisfy

∣∣x− xnp ∣∣ = λ
ξp
np and µ

(
B(xnp , λ

ρ
np)
)

= λ
ραp
np with

(ξp, αp) ∈ [1, ξx + 1] × [0,M ]. Indeed, by construction ξp ≤ ξx + 1 for p large enough,
and M is the upper bound implied by the verification of condition P1(µ). Thus, up to
a subsequence, (ξp, αp) converges to (ξ, α) ∈ [1, ξx + 1]× [0,M ].

Since 1−ρ+ραp
ξp

≤ h+ ε for every p, the pair (ξ, α) also satisfies this inequality, and by
construction x satisfies P(ρ, α, ξ, ε). Finally x ∈ Fh,ρ.

4. Computation of the spectrum of νρ: Proof of Theorem 2·9
As above, the system {(xn, λn)}n is always supposed to be weakly redundant.
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4·1. Preliminary results

4·1·1. Some Large Deviation estimates

Definition 4·1. The function τµ,ρ is defined by

τµ,ρ(q) = lim inf
j→+∞

−1
j

log2

∑
n∈Tj

µ
(
B(xn, λρn)

)q
. (4·1)

It is established in [11] that if the system {(xn, λn)}n is weakly redundant, then

∀ q ∈ R, τµ,ρ(q) ≥ d(1− ρ) + ρτµ(q). (4·2)

The following result is a consequence of some Tchernoff inequalities and (4·2).

Lemma 4·2. For every 0 ≤ β ≤ α and for every ε > 0, there exists a scale J such that
j ≥ J implies

log2 #
{
n ∈ Tj : λ−ραn ≤ µ

(
B(xn, λρn)

)
≤ λ−ρβn

}
j

≤ d(1− ρ) + ρ sup
β≤α′≤α

τ∗µ(α′) + ε.

Tchernoff inequalities also yield the following lemma, in which c is any integer ≥ 2.

Lemma 4·3. Let 0 ≤ β ≤ α, M > 1 and ε > 0. There exists a scale J such that

j ≥ J ⇒

j
−1 logc

(
#
{

k : M−1c−jα ≤ µ(Icj,k)
})
≤ τ∗µ(α) + ε if α ≤ τ ′µ(0+),

j−1 logc
(

#
{

k : µ(Icj,k) ≤Mc−jβ
})
≤ τ∗µ(β) + ε if β ≥ τ ′µ(0+).

4·1·2. Upper bound for the Hausdorff dimension of union of level sets

The following proposition is a consequence of [13], [30], [25] and [5]. The results
concerning the set Ẽµα defined in Section 2·1 are valid in any basis c ≥ 2.

Proposition 4·4. Let α ≥ 0.
(i) If τ∗µ(α) < 0, then Ẽµα = Eµα = ∅.

(ii) d̃µ(α) ≤ τ∗µ(α).
(iii) If α ∈ [0, τ ′µ(0+)], then dim

⋃
α′≤αE

µ
α′ ≤ τ∗µ(α).

(iv) If α ≥ τ ′µ(0+), then dim
⋃
α′≥αE

µ

α′ ≤ τ∗µ(α).

4·1·3. Upper bound for the Hausdorff dimension of some limsup sets

We introduce, for 0 ≤ β ≤ α and ξ ≥ 1, the sets

Sµ(ρ, α, β, ξ) =
⋂
N≥0

⋃
n≥N :λραn ≤µ

(
B(xn,λ

ρ
n)
)
≤λρβn

B(xn, λξn).

These sets are useful to find an upper bound for the spectrum of νρ.

Lemma 4·5. Let {(xn, λn)}n be a weakly redundant system. For every ρ ∈ (0, 1], 0 ≤
β ≤ α and ξ ≥ 1,

dimSµ(ρ, α, β, ξ) ≤ min
(

sup
β≤α′≤α

τ∗µ(α′),
d(1− ρ) + ρ supβ≤α′≤α τ∗µ(α′)

ξ

)
. (4·3)

Proof. We first show that dimSρ,α,β,ξ ≤ supβ≤α′≤α τ∗µ(α′).

If β ≤ τ ′µ(0+) ≤ α, there is nothing to prove since supβ≤α′≤α τ∗µ(α′) = d.

Let j ≥ 0 and n ∈ Tj such that µ
(
B(xn, λρn)

)
∈ [λραn , λρβn ]. Let jρ = [(j + 1)ρ] + 1. By
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construction, there exists a dyadic cube Iρ of generation jρ such that Iρ ∩B(xn, λρn) 6= ∅
and µ(Iρ) ≥ 2−jρα/4d. The cube Iρ can be written I2

jρ,kρ
(defined in Section 2·1) for

some multi-integer kρ ∈ {0, . . . , 2jρ − 1}d. Also, there exists k′ρ ∈ {−8, .., 0, .., 8}d such
that I2

jρ,kρ+k′ρ
⊂ B(xn, λρn), and thus µ

(
I2
jρ,kρ+k′ρ

)
≤ 2−jρβ . Moreover, B(xn, λρn) ⊂⋃

k∈{−8,...,0,...,8}d I
2
jρ,kρ+k. It follows that

Sµ(ρ, α, β, ξ) ⊂ lim sup
j→∞

⋃
k∈{0,...,2j−1}d: 2−jα

4 ≤µ(I2j,k)

⋃
k′∈{−8,...,0,...,8}d

I2
j,k+k′ (4·4)

Sµ(ρ, α, β, ξ) ⊂ lim sup
j→∞

⋃
k∈{0,...,2j−1}d:µ(I2j,k)≤2−jβ

⋃
k′∈{−16,...,0,...,16}d

I2
j,k+k′ . (4·5)

Suppose that α ≤ τ ′µ(0+). Then supβ≤α′≤α τ∗µ(α′) = supα′≤α τ∗µ(α′) = τ∗µ(α).
Let ε > 0. By Lemma 4·3, for j large enough,

log #
{
k : 2−jα

4 ≤ µ(I2
j,k)
}

log 2j
≤ dε,

where dε = τ∗µ(α) + ε. Let γ > dε. For every j ≥ 1, let

sj :=
∑

k∈{0,...,2j−1}d: 2−jα
4 ≤µ(I2j,k))≤4·2−jβ

∑
k′∈{−8,...,0,...,8}d

|I2
j,k+k′ |γ .

We remark that sj ≤ 17d2jdε2−jγ , thus
∑
j≥1 sj <∞. Combining this with (4·4) yields

the vanishing of the γ-dimensional Hausdorff measure of Sµ(ρ, α, β, ξ). Hence for every
ε > 0, dimSµ(ρ, α, β, ξ) ≤ dε. Letting ε tend to zero yields dim Sµ(ρ, α, β, ξ) ≤ τ∗µ(α).

The case τ ′µ(0+) < β ≤ α is treated similarly by using (4·5).

The upper bound dim Sµ(ρ, α, β, ξ) ≤
(
d(1 − ρ) + ρ supβ≤α′≤α τ∗µ(α′)

)
/ξ is a simple

consequence of the definition of Sµ(ρ, α, β, ξ) and Lemma 4·2.

4·2. Upper bound for the multifractal spectrum of νρ
We first take care of the decreasing part of dνρ .

Proposition 4·6. Assume that P1(µ) holds. If h ≥ hρ(µ), then dimE
νρ
h ≤ τ∗µ(β(h)).

Proof. This is a consequence of Theorem 3·2(ii) and Proposition 4·4(iv).

The increasing part is more delicate.

Proposition 4·7. Assume that P1(µ) holds. Let 0 < h < hρ(µ). If h < d, then

dimE
νρ
h ≤ max

(
τ∗µ(h), sup

α≥h
min

(
τ∗µ(α), h ζ(α)

))
,

(recall that ζ(α) is defined by ( 2·10)) and if h ≥ d, then

dimE
νρ
h ≤ max

(
τ∗µ(β(h)), sup

α≥β(h)

min
(
τ∗µ(α), h ζ(α)

))
.

Proof. By Theorem 3·2(i), Eνρh ⊂ Fh,ρ
⋃
{x ∈ Ω : hµ(x) ≤ max (β(h), h)}.

The case h ∈ [d, hρ(µ)): Here max
(
h, β(h)

)
= β(h).

By Proposition 4·4, dim {x ∈ Ω : hµ(x) ≤ β(h)} ≤ τ∗µ(β(h)). It remains to find an upper
bound for the Hausdorff dimension of Fh,ρ.

Fix 0 < ε ≤ 1. For every i ∈ N, let ξi = 1 + iε and let αi = ξi
(h+ε)−d(1−ρ)

ρ .
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Let x ∈ Fh,ρ. There exists a pair (α, ξ) and η < ε such that (3·2) holds. Let ix be the
unique integer so that ξ ∈ [ξix , ξix+1). By construction,

α ≤ ξ(h+ ε)− d(1− ρ)
ρ

≤ αix +
ε(h+ ε)

ρ
.

So α + ε ≤ αix + Mhε, where Mh = 1 + (h + 1)/ρ. Since (3·2) holds, this implies that
x ∈ Sµ(ρ, αix +Mhε, 0, ξi).

As a consequence, Fh,ρ ⊂
⋃
i∈N Sµ(ρ, α̃i, 0, ξi), where α̃i = αi + Mhε. This implies by

Lemma 4·5 that

dimFh,ρ ≤ sup
i∈N

dimSµ(ρ, α̃i, 0, ξi)

≤ sup
i∈N

min
(

sup
α′≤eαi τ

∗
µ(α′),

d(1− ρ) + ρ supα′≤eαi τ∗µ(α′)
ξi

)
.

Since (h+ ε)ξi = d(1− ρ) + ραi, we get

dimFh,ρ≤ sup
i∈N

min
(

sup
α′≤eαi τ

∗
µ(α′), (h+ ε)

d(1− ρ) + ρ supα′≤eαi τ∗µ(α′)
d(1− ρ) + ραi

)
.

This upper bound remains true when ε→ 0. Then, using the continuity of the Legendre
transform τ∗µ on the interval where it is finite and remembering that αi ≥ β(h), we get

dimFh,ρ ≤ sup
α≥β(h)

min
(

sup
α′≤α

τ∗µ(α′), h
d(1− ρ) + ρ supα′≤α τ∗µ(α′)

d(1− ρ) + ρα

)
.

The result follows from the fact that τ∗µ is non-decreasing on [0, τ ′µ(0+)] and non-increasing
on [τ ′µ(0+),∞).

The case h < 1: Similar computations apply here, except that αi has to be taken larger
than or equal to h (instead of β(h)).

4·3. Simplification of Proposition 4·7.

We write αmin = inf{α : τ∗µ(α) ≥ 0}. Remember that by P5(µ), qc(µ) = 1 and
τ∗µ(hc(µ)) = hc(µ). Hence ζ(hc(µ)) = 1. We also point out the fact that hc(µ) = τ ′µ(0+)
if and only if τ ′µ(0+) = d (i.e. τµ is affine between 0 and 1), and the interval (hc(µ), hρ(µ))
is then empty.

Proposition 4·8.

(i) For every h ∈ [0, hc(µ)], the upper bound given by Proposition 4·7 equals h.
(ii) Suppose that τ ′µ(0+) > d. For every h ∈ (hc(µ), hρ(µ)), there exists a unique

α = α(h) ∈ (hc(µ), hρ(µ)] such that τ∗µ(α) = h ζ(α), and the upper bound of
Proposition 4·7 equals τ∗µ(α(h)).

(iii) Suppose that τ ′µ(0+) > d. Let

θ : h 7→

{
h if h ∈ [0, hc(µ)]

τ∗µ
(
α(h)

)
if h ∈ (hc(µ), hρ(µ)]

and θ : h 7→

{
τ∗µ(h) if h ≤ d
τ∗µ(β(h)) if h ∈ (d, hρ(µ)].

If ρ = 1 then θ = θ on (hc(µ), hρ(µ)).
If ρ < 1 then θ > θ on (hc(µ), hρ(µ)), and θ is concave increasing if d = 1.

Proof. Since τ∗µ(α) ≤ α for every α ≥ 0, we have ζ(α) ≤ ζ(hc(µ)) = 1.
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(i) Let h ∈ [0, hc(µ)]. The mapping α 7→ τ∗µ(α) is increasing on [αmin, hc(µ)], and
τ∗µ(hc(µ)) = hc(µ) ≥ h = h ζ(hc(µ)). Hence the upper bound of Proposition 4·7 is h.

(ii) Let h ∈ (hc(µ), hρ(µ)). On one side, the function f : α 7→ h ζ(α) is non-decreasing
on [0, hc(µ)] and decreasing on (hc(µ), τ ′µ(0+)], and f(hc(µ)) = h > hc(µ). On the other
side, the mapping α 7→ τ∗µ(α) is increasing on [0, τ ′µ(0+)] and τ∗µ(hc(µ)) = hc(µ). Since the
functions f and τ∗µ are continuous, there exists a unique exponent α(h) ∈ (hc(µ), τ ′µ(0+))
such that τ∗µ(α(h)) = h ζ(α(h)).

If ρ = 1, then ∀h ∈ (hc(µ), hρ(µ)), α(h) = h (and θ(h) = θ(h)).
Let ρ ∈ (0, 1). To see that θ(h) < θ(h) on (hc(µ), d], we show that h < α(h) on this

interval. This is equivalent to ζ(h) > τ∗µ(h)/h. This holds true because when h ≥ hc(µ)
the mapping h 7→ τ∗µ(h)/h is decreasing and the function ζ is increasing, and both
functions coincide at hc(µ).

To see that θ(h) < θ(h) on (d, hρ(µ)), we prove that β(h) < α(h) on this interval.
This is equivalent to d(1− ρ) + ρτ∗µ(β(h)) > τ∗µ(β(h)). This last inequality is true, since
β(h) < τ ′µ(0+), which implies τ∗µ(β(h)) < d.

Consequently, by definition of α(h), the upper bound of Proposition 4·7 equals θ(h) =
τ∗µ
(
α(h)

)
for all h ∈ (hc(µ), hρ(µ)).

(iii) It remains to show that the function θ is concave if d = 1. In fact it is easier to show
that its inverse function θ−1 is convex.

Assume that τ∗µ is twice differentiable on (hc(µ), hρ(µ)). The mapping (τ∗µ)−1 is well
defined since τ∗µ is continuous and strictly increasing when h ≤ τ ′µ(0+). By definition, if
u = θ(h) for some h ∈ [hc(µ), hρ(µ)], then

θ−1(u) = u
d(1− ρ) + ρ(τ∗µ)−1(u)

d(1− ρ) + ρu
.

A computation shows that on [hc(µ), hρ(µ)), the second derivative of θ−1 is larger than
a positive multiple of

d(1− ρ)
[(

(τ∗µ)−1
)′(u)− (τ∗µ)−1(u)

]
+ ρ
[
u
(
(τ∗µ)−1

)′(u)− (τ∗µ)−1(u)
]
.

This term is non-negative if d = 1. Indeed, on the interval θ
(
[hc(µ), hρ(µ))

)
, the function(

(τ∗µ)−1
)′(u) is non-decreasing,

(
(τ∗µ)−1

)′(u) ≥ 1, and (τ∗µ)−1(hc(µ)) = hc(µ). So θ−1

is convex. The function θ remains concave near the intermediate point hc(µ) since by
construction dνρ(h) ≤ h.

The case where τ∗µ is non-differentiable is obtained by approaching uniformly from
above τ∗µ on the interval [hc(µ), hρ(µ)] by increasing concave functions that are twice
differentiable with derivatives smaller than or equal to 1.

Remark: The upper bound given by Proposition 4·7 also applies when h ≥ hρ(µ), since
in this case

sup
α≥β(h)

min
(
τ∗µ(α), h ζ(α)

)
= τ∗µ(β(h)).

4·4. Lower bound for the spectrum of νρ
We consider the decreasing part.

Proposition 4·9. Let h ≥ hρ(µ). If τ∗µ(β(h)) > 0 and if P3
(
µ, β(h)) is satisfied, then

dνρ(h) ≥ τ∗µ(β(h)).
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Proof. Let mβ(h) be the measure given by P3(µ, β(h)). Using Theorem 3·2(ii), it is
enough to show that dim Ẽµβ(h) ∩ {x ∈ Ω : ξx = 1} ≥ τ∗µ(β(h)), or equivalently by

P3(µ, β(h)) that mβ(h)(Ẽ
µ
β(h) ∩ {x ∈ Ω : ξx > 1}) = 0.

Let ε > 0, η > 0 and x ∈ Ẽµβ(h) \ {xn : n ≥ 1}. If ξx > 1 + η, then there exist infinitely

many y ∈ {xn : n ≥ 1} such that ‖x − y‖∞ ≤ λ
ξx−η/2
ny ≤ λny . By definition of Ẽµβ(h),

this implies that for such a point y, if ny is large enough, then λβ(h)+ε
ny ≤ µ

(
B(y, λny )

)
≤

λ
β(h)−ε
ny .
Thus, if Kβ(h),1+η is the set

(
Ẽµβ(h) \{xn : n ≥ 1}

)
∩{x : ξx > 1+η}, then Kβ(h),1+η ⊂

Sµ(1, β(h) + ε, β(h)− ε, 1 + η/2). Lemma 4·5 yields that dimSµ(1, β(h) + ε, β(h)− ε, 1 +
η/2) ≤ supβ(h)−ε≤α′≤β(h)+ε τ

∗
µ(α′)/(1 + η/2). Since this is true for any ε > 0, the last

inequality yields that dim Kβ(h),1+η ≤ τ∗µ(β(h))/(1+η/2) and that mβ(h)(Kβ(h),1+η) = 0
(by P3(µ, β(h))).

Since
(
Ẽµβ(h)\{xn : n ≥ 1}

)
∩{x : ξx > 1} is equal to the countable union

⋃
i≥1Kβ(h),1+1/i

and {xn : n ≥ 1} is countable, mβ(h)(Ẽ
µ
β(h) ∩ {x : ξx > 1}) = 0.

The lower bound for the increasing part of the spectrum uses P2(µ, ρ, {(xn, λn)}, h).

Proposition 4·10. Assume that hc(µ) > 0 and that P2(µ, ρ, {(xn, λn)}, hc(µ)) holds.
Then, for every h ∈ [0, hc(µ)], dνρ(h) ≥ h.

Proof. Let h ∈ (0, hc(µ)] and let ξh = d(1−ρ)+ρhc(µ)
h .

Condition P2(µ, ρ, {(xn, λn)}, h) yields that for some convenient choice of ψ and
(ξn)n≥0 (converging to ξ), d(τ∗µ(hc(µ)), ρ, ξ) is a lower bound for the Hausdorff dimension
of the set T defined in (2·7). In this case, d(τ∗µ(hc(µ)), ρ, ξ) = h. In addition, there exists
a positive measure mρ,ξ such that mρ,ξ(T ) > 0 and mρ,ξ(E) = 0 for every set E such
that dimE < h. Moreover, by Theorem 3·2(i),

E
νρ
h ⊃ Fh,ρ\

( ⋃
h′<h

Gh′,ρ

)
= Fh,ρ\

⋃
i≥[h−1]+1

Gh−1/i,ρ.

We remark that T ⊂ Fh,ρ. Indeed, every point of T satisfies the property P
(
ρ, hc(µ), ξh, ε

)
for all ε > 0 small enough.

The conclusion follows as in Proposition 4·9: Combining the estimates obtained in the
proof of Proposition 4·7, we obtain dimFh−1/i,ρ < h for every i ≥ [h−1] + 1. Moreover,
part (iii) of Proposition 4·4 yields dim {x ∈ Ω : hµ(x) ≤ h− 1/i} ≤ τ∗µ(h− 1

i ) < h. Thus

mρ,ξ

(⋃
i≥[h−1]+1Gh−1/i,ρ

)
= 0, which yields that mρ,ξ(E

νρ
h ) ≥ mρ,ξ(T ) > 0. This finally

implies dim E
νρ
h ≥ h.

Notice that the points xn belong to Eνρ0 .

Proposition 4·11. Suppose that τ ′µ(0+) > d. Let h ∈ [hc(µ), hρ(µ)). Assume that
either (P2(µ, ρ, {(xn, λn)}, α(h)) holds) or (ρ = 1 and P3(µ, h) holds).

Then dνρ(h) ≥ τ∗µ(α(h)).

Proof. Recall Theorem 3·2(i). In the case where h = hc(µ) or ρ = 1, when P3(µ, h)
holds, the proof is the same as that of Proposition 4·9, since α(h) = h and (Ẽµh ∩ {x :
ξx = 1}) ⊂ Eh,ρ.

We suppose that ρ < 1 and that P2(µ, ρ, {(xn, λn)}, α(h)) holds. We proceed as in the
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proof of Proposition 4·10. Let ξh = d(1−ρ)+ρτ∗µ(α(h))

τ∗µ(α(h)) . As above, P2(µ, ρ, {(xn, λn)}, h) im-

plies that for some convenient choice of ψ and (ξn)n≥0 converging to ξ, d
(
τ∗µ
(
α(h)

)
, ρ, ξh

)
=

τ∗µ(α(h)) is a lower bound for the Hausdorff dimension of the limsup-set T (2·7). More-
over, there is a positive measure mρ,ξh such that mρ,ξh(T ) > 0 and for every set E with
dimE < τ∗µ(α(h)), mρ,ξh(E) = 0. Finally, T ⊂ Fh,ρ because every point of T satisfies
P
(
ρ, α(h), ξh, ε

)
for all ε > 0.

Since h 7→ τ∗µ
(
α(h)

)
is increasing on (hc(µ), hρ(µ)) and τ∗µ(h) < τ∗µ(α(h)) (Proposition

4·8) the arguments used in the proof of Proposition 4·10 yield dimE
νρ
h ≥ τ∗µ(α(h)).

5. Examples

In [11], several suitable systems and statistically self-similar measures illustrate the
notion of heterogeneous ubiquity. Some of them are recalled here.

5·1. Some suitable systems

• The family of the b-adic numbers:

Fix b an integer ≥ 2. The family {(xn, λn)}n = {(kb−j , b−j)}j≥0,k∈{0,...,bj−1}d obvi-
ously has all the appropriate properties.

• The family of the rational numbers:

The system
{(

p/q, 2/q1+1/d
)}

, where q ∈ N∗, p = (p1, p2, . . . , pd) ∈ {0, . . . , q − 1}d
such that at least one fraction pi/q is irreducible, is weakly redundant and satisfies P4.

• The family of the {{nα}, 1/n}n∈N:

Let α be an irrational number, such that its approximation degree by the family of ra-
tional numbers above in the one dimensional case equals 1. The family {({nα}, 1/n)}n≥1

is weakly redundant and satisfies P4 ({x} stands for the fractional part of x). Weak
redundancy does not hold if the approximation degree of α is > 1.

• Poisson point processes.

Let S be a Poisson point process with intensity `⊗π in the square [0, 1]× (0, 1], where
` denotes Lebesgue measure on [0, 1] and π is a positive locally finite Borel measure
on (0, 1] (see [24] for the construction of a Poisson point process). Write this set S as
{(yn, rn)}n. Let β = inf{γ :

∫
x≤1

xγ π(dx) <∞}. There exists a non-decreasing sequence
βn converging to β such that the system {(yn, rβnn )}n is weakly redundant and satisfies
P4 (see [11] for more details).

• Random family based on uniformly distributed points:

Let {xn}n be a sequence of points independently and uniformly distributed in [0, 1]d

and {λn}n a non-increasing sequence of positive numbers.
If lim supn→+∞(

∑n
p=1 λp/2−d log n) = +∞ and lim supj→∞ j−1log2 #Tj = 1 (Tj was

defined in (1·5)), then the system {(xn, λn)}n satisfies P4.

5·2. Random self-similar measures satisfying conditions P1-3 for suitable systems

We mention two important classes of such measures. The first one is obtained through
the thermodynamic formalism. The second one contains limits of [0, 1]d-martingales con-
sidered in the multiplicative chaos in the meaning of [21]. It is shown in [9, 10, 11] that
these measures µ obey conditions P1-3 for suitable systems {(xn, λn)}n (including those
of Section 5·1) when h ranges in the interval where τ∗µ(h) > 0.
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• (Random) Gibbs measures.

These measures are obtained as fixed points of adjoints of Ruelle-Perron Fröbenius
operators associated with a Hölder potential φ in the dynamical system ([0, 1)d, T ), where
T (x) = cx mod 1 with c ∈ N\{0, 1} – see [33]–. Random counterparts of these measures
are considered in [22, 17, 9].

• [0, 1]d-martingales.

The first examples are the independent multiplicative cascades, or Mandelbrot mar-
tingales introduced in [27] and then studied extensively in [27, 23, 18, 29, 28, 1, 15,
4, 5, 10]. They are a particular case of a wider class of [0, 1]d-martingales – see [7] –
which satisfy condition P2(µ, ρ, {(xn, λn)}, h). This class also includes compound Pois-
son cascades introduced in [6], as well as their extension in [3], and other examples (see
[7, 8, 10] for details).

Notice that we are able to prove that P2(µ, ρ, {(xn, λn)}, h) holds true for these mea-
sures only in the case ρ = 1 (see [10] for details).

• The substitute to independent multiplicative cascade in the critical case of degeneracy.

These measures are constructed in [4] (using results of [26]) in order to study the
end points of the multifractal spectrum of independent multiplicative cascades. A mod-
ification of the martingale used in the independent multiplicative cascades definition is
involved in their construction. In our context, the interesting property of these measures
is that they provide examples of measures µ such that qc(µ) = 1 but hc(µ) = 0 – see [10]
– which satisfies condition P2(µ, ρ, {(xn, λn)}, h) when ρ = 1.

6. Comments

When ρ = 1 and conditions P1-3 are satisfied for every h ∈ supp(dµ), the multifrac-
tal spectrum of ν1 (associated with a suitable weakly redundant system) becomes the
Legendre transform of the function τ̃ν1 defined by

τ̃ν1 : q 7→

{
τµ(q) if q ≤ qc(µ)

0 if q > qc(µ)
.

The same lines of computation as in [8] apply here (up to a small correction due to
the weak redundancy assumption). As a result, if ν1 is the measure associated with this
system and with a suitable measure µ, then τν1 = τ̃ν1 . This implies that the Hausdorff
multifractal spectrum of ν1 is the Legendre spectrum of its scaling function τν1 . Conse-
quently, ν1 fulfills the (box [13] or centered [30]) multifractal formalisms for measures.

The context is quite different when ρ < 1, and the computations are subtler. In further
work, we will see that if µ is non trivial, all the usual multifractal formalisms fail on the
right of hc(µ) in this case.
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