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ABSTRACT. Until now ([19],[16],[14],[29],[28],[1],[3]), one determines the multifrac-
tal spectrum of a statistically self-similar positive measure of the type introduced,
in particular by Mandelbrot in [26], [27], only in the following way: let u be such a
measure, for example on the boundary of a c-ary tree equipped with the standard
ultrametric distance; for a > 0, denote by E the set of the points where p possesses
a local Holder exponent equal to «, and dim E, the Hausdorfl dimension of E;
then, there exists a deterministic open interval I C Rj_ and a function f: I — Rj_
such that for all & in I, with probability one, dim E, = f(a). This statement is not
completely satisfactory. Indeed, the main result in this paper is: with probability
one, for all @ € I, dim E, = f(«). This holds also for a new type of statistically
self-similar measures deduced from a result recently obtained by Liu [23]. We also
study another problem left open in the previous works on the subject: if a = inf(])
or a = sup(/), one does not know whether E, is empty or not. Under suitable
assumptions, we show that Eq # 0 and calculate dim E.

1. INTRODUCTION.

The random multiplicative and statistically self-similar non negative measures
introduced by Mandelbrot in [26] (1974) and their variants are limits of martingales
obtained by multiplying in cascades i.i.d. non-negative random variables. These
measures are constructed on the boundary of a c-ary tree equipped with a statis-
tically self-similar distance ([18], [19], [16], [14], [29], [1], [3]) or on a geometrical
projection in R™ of such a tree, like c-adic sub-cubes of [0, 1[™ ([26], [27], [20], [10],
[28]), random intervals ([32], [4], [3]), or random self-similar Cantor sets ([14], [29],
[1]). A fundamental point is that given u such a measure, its properties depend es-
sentially on the following equation (E) satisfied by the Laplace transform ®y of the
probability distribution of Y = ||ul|: for all ¢ > 0, @y (t) = IE(H;;; Oy (tW;)) (E)
where c is an integer > 2 and (Wy,...,W._1) € R} a random vector satisfying

c—1 c—1 .
EQQ7—oW;) = 1 and P(3_;—y Lyw;>0p > 1) > 0. The first important result
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about p is the following: P(p # 0) > 0, i.e. @y is non trivial if and only if
IE(Y"5—, W; log W) < 0 (Kahane [20], Durrett and Liggett [11]).

In the 80’s, Durrett and Liggett [11] and Guivarc’h [15] studied the existence
of non trivial solutions for (F) in the space of Laplace transforms of probability
distributions. When E(Z;;(l) W; log W;) = 0, the critical situation where the
Mandelbrot process degenerates, Durrett and Liggett proved (when the ijs are

not all equal to 0 or 1) the existence of a non trivial but non explicit solution @ of
(E). Recently in [23], Liu constructed under some additional conditions an explicit
modification of the Mandelbrot martingale, which converges to a non negative ran-
dom variable Y such that by = ®. It is remarkable that this construction provides
a new type of random multiplicative and statistically self-similar non negative mea-
sures fi. We extend to fi the second important result about p due to Peyriere [31],
[20]: there exists D > 0, (resp. D = 0), such that with probability one, p (resp. f)
is carried by the set E'p of the points of its support where the local Holder exponent
equals D; moreover the Hausdorff dimension of Ep is D.

From the begining of the 90’s, many authors (Holley and Waymire [16], Kahane
[19], Falconer [14], Olsen [29], Arbeiter and Patzshke [1], Molchan [28], Barral [3]),
have taken an interest in the multifractal analysis of p: given o > 0, what is
the Hausdorff dimension of the set E, of the points of the support of y where
possesses a local Holder exponent equal to o 7 The answer is frequently formulated
as follows: there exists I, a deterministic open subinterval of R}, and 7 a convex
function on R, such that:

i) for every a € I, with probability 1, dim F, = infoer ag + 7(q) = 7*(a) > 0;

i1) with probability 1, if « & [inf(I),sup(I)] then E, = 0.

The various works leading to this result differ of course by the choice of the space
on which the measure is constructed, and by the variations in the construction
([4], [29]). But the most important difference is in the hypotheses on the W;’s.
The weakest hypothesis are those of [19] (where Kahane determines only the lower
bound of dim E,), [28] and then [3], three independent papers.

However, if the statement i) is precise for a given a € I with probability one, it is
not satisfying because it does not give with probability 1 the Hausdorff dimension
of E, for all & € I. One reason for that is the following: given o € I, to compute
dim F, it is crutial to construct an auxiliary measure u, with probability 1; but
this construction does not insure the existence of the measures p, with probability
1 for all @« € I. In [3], we proposed a solution to get round this difficulty by
constructing a continuous modification of the process a — ||uq||, but we did not
conclude.

In this paper, by showing that with probability one this modification is analytic,
we obtain the stronger result: with probability 1, dim E, = 7*(«) for all o € I.
Our result on multifractal analysis also holds for the measure . Moreover, under
suitable conditions, we succeed to show that if o € {inf(/),sup(Z)} then, with
probability 1, E,, # 0, and we obtain dim E,, = 7* (o).

The paper is organized as follows. We end this part by proving our main result in
a simple case. The rest of the paper is devoted to the general case, and the second
result annouced in the abstract. In the second part, we give the construction of
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Mandelbrot’s and Liu’s martingales; these martingales converge with probability
one to non negative random variables. Theorem 2.2. recalls results on moments
of positive orders of these variables; Theorem 2.3. completes the already known
results on moments of negative orders and gives a bound for such finite moments.
In the third part, we define on the boundary of a c-ary tree 0T the two types
of statististically self-similar measures deduced from the Mandelbrot and Liu con-
structions; we compare the supports of two such measures, and we notice that when
one of these measures is continuous, it is possible to use it to define a statististically
self-similar ultrametric distance on its support. In the fourth part, we are given
three of these measures constructed simultaneously, @1, po and pg, such that their
supports 0T; (i = 1,2,3) satisfy 0Ty, C 0T» C 0T3, and pg is continuous. Then
0Tj3 is equipped with the ultrametric distance d3 defined with p3 in part 3., and
we show at pi-almost every point of a subset of positive pui-measure of 073, the
existence of a local Holder exponent for ue. In the fifth part, we are given uo and
us, (0T3,d3), and we establish the results annonced in the previous paragraph for
po on (0T3,d3). In the sixth part, we extend our results to geometrical realizations
of the measures on 0T, by projecting them on statististically self-similar subsets of
R™.

1.1. Definitions and notations.
Let ¢ be an integer > 2 and C be the set {0,...,c— 1}.

For all n € N, let T,, stand for the set C™ of words of length n on the alphabet C.
For n = 0, Ty consists only in the empty word denoted by €. Let T = UneN
Let a € T. The length of a is denoted by |a|. Moreover, if a # € then it is spelt
ai...a)q and for 1 < k < [a| one denotes by a; the word a; ... ag; ap =€ Tis
equipped with its natural structure of semi-group: if ¢ and b are in 7', the word
ab is equal to a (resp. b) if b (resp. a) is equal to €, and elsewhere it is equal to
ay... a|a|b1 .. b|b|

If (V(a))aer is a sequence of elements of C°, one defines for a in T

H Vak+1 (a|k

0<k<]al

Let OT be the set of infinite words written with C. An element = of 0T is spelt
T1Zo ... and for all n € N, T|, denotes 1 ...z, if n > 1; Tjp = €.

If (x,y) € OT? and = # ¥y, z A y denotes T|, where n = max{p > 0; z, = y|p};
TANT =1

Forn € Nand a € T, I, = {x € OT; x|, = a} is the cylinder generated by a, and
for z € OT, I,(x) and I A, denote respectively I, and {z}.
We denote by 7 the o-algebra generated in 0T by the I,’s, a € T.

If p is a positive measure on 9T, one calls support of p and denote by supp (u)
the set of the points of 0T, all neightbourhoods of which carry a piece of u.

If J is a finite set, we denote by #.J the number of its elements.
If (po,...,pc—1) is in RS and satisfy Z;;(l) p; = 1 then 0T (po, . .., pc—1) denotes
the set of the elements z of 9T such that for all j € C, lim,,_,o, ZILSESM Te=j} _ D;-

n
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If I is a subset of R”, we denote by Int([) its interior, C1(I) its closure, and if
n =1, CIT(I) the set CI(I) \ {inf(I)}.
Let f : R - RU {oco} be a function. One calls Legendre transform of f and
denotes by f* the concave function: a € R — f*(a) = in}%aq + f(q).
q€

The following geometrical remarks will be usefull in 5. :
1) For o and ¢qo in R, aq + f(gq) is the ordinate of the intersection of the line

qg+— —a(q —qo) + f(¢) and the line {g = 0}.

2) If f is convex on R;, non increasing on R_, and f(0) < oo then: if 0 <

a < —f'(0%) then f*(o) = infyer, aq+ f(q); if & € [—f'(07),—f'(07)] then

fr(a) = f(0);if @ > —f'(07) then f*(a) = infoer_ g+ f(q)-

3) Assume that f is C! on R, strictly convex, f(0) > 0, f(1) = 0 and define a;,s =

limg 0o —f'(q) (resp. agup = limg oo —f'(q)) and J = {g € R; f*(—f'(q)) > 0}.

If Ry (resp. R_) C J then f*(tinf) = limgyoo f*(—f'(q)) (resp. if agyp < o0

then f*(asup) = limgs—oo f*(—f'(g))). Moreover, the graph of f and the line

Y = intq + [*(cinf) (resp. ¥y = asupq + f*(sup)) are asymptotics at oo (resp.

—00).

If Ry ¢ J (resp. R_ ¢ J) then f*(—f'(sup(J))) =0 (resp. f*(—f'(inf(J))) = 0).
Let (2,.A, P) stand for the probability space on which the random variables in

this paper are defined.

We adopt the following conventions: log 0 = —co and 0 X oo = 0. If A and B
are two random variables (r.v.), we write A ~ B to mean that they are identically
distributed.

1.2 The main result in the simplest case.

We give the proof of the main result announced in the introduction, in a case
which covers the one studied in [16] and a part of those studied in [14] and [1].

OT is equipped with the standard ultrametric distance d given by d(z,y) =
c~l#Ml Let W = (Wy,...,W._1) € R.° be a random vector such that for some
positive real numbers a and b, with probability one, for all j € C, a < W; < b.

Define 7(q) = log, IE(3_;- : o W) for ¢ € R and (W#) = E(3 ;5 : o W?) for z € C.

Suppose that 7(1) = 0 and 7/(1) < 0. Let (W (a))qser be independent copies of
W, and assume W (e) = W. Then, for all a € T, the sequence

=) Wi, (a) Wi, (aby) ... W, (aby ...bn_1)
beT),

is a positive martingale which (by [20] or [11]), converges with probability one to
a positive 1.v. Y (a) of expectation 1; the convergence also holds in L"* norm for
all h > 1 such that ]E(Z;;(l) th) < 1. Moreover, for all a € T, one has with
probability one

(Ea) Y(a) = Y5 Wj(a) Y(ay),

Y(a) ~ Y (e), and for all n > 1 the Y (a)’s, a € T},, are mutually independent and
they are independent of the W (b)’s, |b| <n — 1.
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By using equations (F,) one defines with probability one on (0T, 7) an unique
positive measure p by the relations:

for all a € T M(I H Wak+1 a|k) ( )
0<k<|a|

then define for all g € R,

7(q) = sup {t € R; limsupc™ ™ Z pi(l,) = oo}

n—o0 aET

and define J = {qg € R; 7*(—7'(q)) = =7 (¢)g+ 7(¢) > 0} and I = —7/(J). I and
J are intervals, I = {a > 0; 7*(a) > 0}. Our result is

i 108 #(In(2))

Theorem 1.1. Fora € Ry, define E, = {x € 0T} nsoo log |I,(z)|

= a}, where

| | denotes the diameter with respect to d.

With probability one :

i) for allqe J, 7(q) = 7(q)-

it) For alla € I, dim E, = 7*(a) = 7*(a).

i11) If 0 < a < inf(I) or a > sup(I), then E, = .

By [3]VL, it is enough to prove that with probability one, for all @ € I, dim E, >
7*(a). We need

Theorem 1.2. In a complex neighbourhood of J, with probability one, the sequence
of analytic functions

(YVon + 2 > (WH™" Z (Wa, (€))?(Wa,(a1))? ... (Wan(al...an_l))z)n21 con-

a€T),
verges, uniformly on the compact sets, towards an analytic function z — Y,. More-

over, with probability one, ¢ — Y, has no zero in J.

Corollary 1.1. With probability one, for all a € T, the sequence
(Yon(a) : g = (WO Fpeq, (W, ()1 (We, (ab1))? ... (Wa, (abs ... bn1))9),5,
converges on J towards a positive analytic function g — Yg(a).
So, with probability one, one defines for all ¢ € J an unique measure pg on OT
by the relations: for all a € T, py(Il,) = (W)~ (H03k<|a|(Wak+1(a|k))q) Y, (a).
Then, with probability one, for all ¢ € J, for pg,-almost every z,

log pg(In(z)) _ - log p(In(x))

= 7"(ag) and lim

B Tog L] ) L g (1, (2]

= aq, where ag = —7'(q).

Then, the proof of Theorem 1.1. follows immediately from Billingsley’s Theorem
([6], p 136-145) and the fact that with probability one, for all ¢ € J, E,, carries
the measure p,.

Proof of Theorem 1.2. i) It suffices to prove that for all ¢ € .J, the result is true in
a complex neighbourhood of gq.

Fix ¢ € J. In a deterministic bounded neighbourhood V; of ¢, (W#)| > 0 and
then the maps z — Y, ,, are analytic. Moreover, by [3] Lemma VI.A., there exists

h €]1,2] such that (Wq)_hIE(Z§;(1) W;’h) < 1, so one can choose V, such that
sup,ey, (W) TME(C5Z (W7 ") < 1
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Then, using the complex version of a key result of [34] (see [5] Lemma 1) yields the
uniform and exponential convergence on V; of ||Y, ,—Y, »||n to 0 as n,p — co. So, if
D is a closed disc contained in Vj, the previous uniform and exponential convergence
together with the Cauchy integral formula applied, as in [5], to the boundary of a
largest disc containing D imply that (z — Y, ,)p>1 converges uniformly on D (the
same approach is used in [5] to study a more general family of analytic martingales
related to some branching random walks; but the families of analytic martingales
that we shall study in part 5. are not covered by [5], this is why we give some
details. Notice that the result of [34] is also crutial in [3] to establish the continuity
of the Mandelbrot process). By writing the Cauchy integral formula for dilez one

d

obtains also sup,cp IE(| Y, ") < oc.

Now we prove that with probability one, the process g — Y is positive. Let K

_1
be a compact subinterval of J. We claim that M = sup,c g IE(Yy *) < oo. Assume
this result. If the event Ax = {3¢ € K;Y, = 0} is of positive probability, as
a zero of ¢ — Y,, which is non negative and analytic, is of even positive order,

_1 _1
E(Ta, [,Yq ?dg) = cc. On the other hand, IE([, Y, * dg) < [, Mdgq < o0, a
contradiction. So P(Ak) = 0, which gives the conclusion.

1

To obtain sup,c g E(Y, ?) < oo, for ¢ € J, let ¢, denote the function t > 0 —
]E(e_tyql). The corresponding version of (E¢) for Y, gives for all ¢ > 0, ¢,(t) =
IE([T520 %a({W) =1 (W;)7)). Let 6, = essinf minjec(W9) "W 1hq(t) < 95 (tdy).
Then, a sequence of iterations, the almost sure continuity of ¢ — Y, and the one of
q — 04 yield B and v > 0 such that for all ¢ > 1 and ¢ € K, 94(t) < e Bt The

conclusion comes from the equality IE Y_% =1 [ t_%z/) t)dt for all ¢ € K.
4 r(z) Jo a

Proof of Corollary 1.1. The part concerning the processes and the construction of
the measures is an immediate consequence of Theorem 1.2.
It is sufficient to establish the results on the limit for any compact subinterval of
J, instead of J. Let K be a compact subinterval of J.

We prove that with probability 1, for all ¢ € K, for p,-almost every z,

log sty (In(2)) _ .,

lim sup 7*(aq), which is the most delicate inequality to obtain.

nooo log[In(z)| —
Forallg € K,e > 0and n > 1, define E, ,, . = {z € 0T} log pq(In(z)) T*(ag)+€}-

Fix € > 0 and 7 €]0,1[; for n > 1, define on K the function s ¢

fa 1 g ¢MOmT@ T @)F) S (T (W, (a))39) Y.177(a). Then
a€T, 0<k<|a|

ZnZl tq(Egn.e) < ZnZl ZaeT,,,lacEqWs tq(1a), so

Zn21 tq(Egn.e) < Zn21 Z(IETn .Ufcll_n(la) ¢ (@a) e — Enzl fn(q)-

A simple calculus using the hypotheses on the W (a)’s gives

E(fa(q) = ("m0~ (=7 @+ (aa)+e))) " (Y} =7). Moreover, for all ¢ € K,

E(Y, ") <IE(Yy) =1 (see [3]). Thus, as for 5 small enough,

Ck =sup,ex ¢ ((A=ma)=(A=m)7(@)+n(7"(2a)+€)) < 1. for such an 7

sup e B 51 fa(@) < 22,51 Ck < 00, so for all ¢ € K, with probability one,
Y n>1 Mq(Eqn,e) < oo. This is not sufficient to conclude.

To improve this, the idea is to show that if n is small enough then
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Je > n>1 |f1(q)|dg < oco. Then, one concludes as follows: with probability one,
D on>1 fn converges uniformly on K, so with probability one, for all ¢ € K,

Y ons1bg(Egn,e) < 0o. Fix D a dense countable subset of |0,00[; as D is count-
able, with probability one, for all ¢ € K, for all ¢ € D, Zn21;1,q(Eq,n,€) < 00,

and by the Borel-Cantelli lemma, for pg-almost every z in 0T, for all ¢ € D,

lim sup,, _, o W < 7*(ag) + €.

With probablhty one, for all n > 1 and q € K, |f}(q)| < gn(q) + hn(q), with
Z |— [cn((l M7 (@) +n(7*(aq)+e)) H (Wak+1(a|k))(1_’7)q]\qu_”(a) and

a€T, 0<k<]al
hn(q) = Z o ((A=m)7(@)+n(7" (aqg)+e)) H (Wak-}—l(a’lk))(l n)q‘_ Yo (@) Yy " (a).
a€T, 0<k<|al dg

~ % c—1 _ — .
As sup g |d%7' (ag)| and supgep (3752, |diq[(Wq) 'TWH[(Wa)TW ") are finite,
new calculus show that there exists a constant C' > 0 such that for all n > 1,
supgex IE(gn(9)) < Cn C% and sup e g B(hn(q)) < Cf sup e B(| £ Yo Y ).

_1
We saw in the proof of Theorem 1.2. that sup,x IE(Yy *) < co and that there
exists A > 1 such that sup,e g IE(|diq Y,|") < co. Thus, if 7 is small enough, an
Holder inequality yields C" = sup,¢ i IE(| qu Y, ") < o0.
So IE( [ Y ops1 [fn(@)da) < 32,5, CnCF + CICK < 00.

. log puq(In(z)) log pu(In (z))
lim infy o0 40&; 1o (z)] ?ggﬁln(w)l

be studied similarly.

log pu(Iy(x))

limsup,, , and liminf, Tog [L (z)] Ca0

2. TWO MARTINGALES OBTAINED BY MULTIPLICATIVE CAS-
CADES.

If W= (Wy,...,We_1) € R} is a random vector, then we say that W satisfy
the hypothesis (Hp) if

c—1 c—1 c—1
(Ho) B W;) =1, PO Lgy,;sep > 1) >0and P()_ W1 —W,;[=0) <1
j=0 j=0 j=0

We denote by £ the set of such W’s, and define
& ={Weé&; ]E(Ec:(l, W, logW;) < 0} and
£y ={W € & E(YX iy WilogW;) = 0,36 > 0, (352 W;)1*?) < oo}
Let W be in & U &y and (W (a)).er be independent copies of W. For a € T and
n > 1 let
= Wi, (a) Wi, (abr) ... We, (aby...bn_1), if W € &

beTy,
and
- Z H (ka+1(ab|k)) log H (ka+1(a’b|k))7 if Weé&,.
beT, 0<k<|b] 0<k<|b|

In the case W € &; (resp. &), the sequence (Y, (a)),,~; was introduced in [26], [27]
(resp. [23]). From [26], [27], [20], [11], [21] and [23], we can state the following

Theorem 2.1. For all a € T, the sequence (Yn(a))n>1 is a martingale which
converges with probability one to a non negative r.v. Y (a) of positive mean. For all
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n > 1, the families (W (a))aey,.,., ,T. and (Y(a))ser, are independent and the
Y(a)’s, a € T,, are mutually independent and have the same probability distribution
asY(e) =Y.

With probability one, for alla € T, Y(a) = Z;;é W;(a)Y(aj) (E,). P(Y =0) is
the unique fized point in [0,1] of f: x — > ;_, P(Z;;(l) Liw,>o0p = k) zF.

We shall need some results about the moments of ¥ = Y (¢). The moments of
positive orders were studied in [20], [11] and [21] when W € &1, and when W € &,
their study is easy to deduce from results of [11] and [23].

Theorem 2.2. i) If W € & then IE(Y) = 1. Moreover, for all h > 1, one has
E(Y") < oo if and only if E(Y;_g W}) < 1.

i) If W € & then limy o "5 = 1 (1], [2]). So B(Y) = o and for all
t
h €]0,1[, E(Y") < co.

The moments of negative orders were studied successively in [19], [28], [3] and
[24], the study being always based on some estimation of the Laplace transform
of the probability distribution of Y. But in these works, there are no explicit
estimations of these moments when they are finite, and we shall need to control
them in 5.

Define ¢ = > 7_ Iqw, 50 and for 0 < k < ¢, p, = P(é = k); m = inf{2 < k <

¢ pe > 0} p=P(Y = 0); s = S5 kp*'pi; C(p) = maxacree Y5y (5) *7;

A—mmgecw>0W if¢>1land A=0if ¢ = 0; 5—essmfA|{c>1} (6 < 1by
(Hp)); Y a random variable independent of A, which satisfies ¥ ~ Y for ¢t > 0,
p(t) = P(0 < AY <t742) 4 e~ ¢ iRy =Ry, £ B(Iysepe™); if a > 1,
o™ its conjugate : é + ai =1.

Theorem 2.3. 1) Suppose 6 > 0. Then

i) Assume py+p1 = 0. For all b > 0, IE(Y™?) < co and more precisely

log m

1 1 & llog w(1)| ,log +
EY )< — + — e m t 7t
R RO
it) Assume pg +p1 > 0. For all b €]0, igg >, E(Iiysoy Y™°) < 0.

\_/

Moreover, if to > 0 is large enough to have s(tg) = s + C(p) p(to) < 1 then for all

s _ to/6)® | s(to)y(to)(to/6)?
b 6]07 lolg (Z‘O) [7 ]E(][{Y>O} Y ) < ( P .

og br(b) (lolgog(zo) . b)F(b)
2) Suppose § = 0. Assume moreover that there exists a > 0 such that for j € C,
if S(WJ > 0) > 0 then IE(][{WJ.>0} Wj_a) < 00. Then m, = IE(][{A>0} A_a) < 00
an
i) Assume po +p1 = 0. For all b €]0,a[, IE(Y™°) < co. Moreover if a > 1 is
given and ty > 0 is large enough to have p(ty) < 1 and p(to)=* mg < 1 then for all

tb b p(tO)“ ma
D2 wm " D G pn)E )t
i1) Assume pg + p1 > 0. For 8 > 1, define s(B) = || Z;zl kpP L amiy || 8-
a) If po =0 then for all B > 1 s(B) =p1 < 1. If po > 0 and B is close enough
to 1 then s(8) < 1.

belo, [, (Y~
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b) Fiz o > 1 such that s(o*) < 1. Let by(x) stand either for & if s(a*)*mg < 1
or for gm if s(a*)*mg > 1. For all b €]0, by (@), E(I{y 0y Y°) < .

log m,
For t > 0 define s(a*,t) = s(a*) + C(p)p(t)a=. If to > 0 is large enough to
have s(a*,to) < 1, let bg(a,to) stand either for & if s(a*,to)*m, < 1 or for

1
% logl(‘;(gai:r;?)a Zf S(Of*, to)a mg > 1. Then fOT b 6]07 ba(a7 tO)[}
b b s(a”, to) B(Lgas gy A% (*00))<
IE(T Y™ 1+ '
(Ly>0pY ™) < bF(b)( ba(a,to) = b (1 — s(a*,to)* E(I{as0} A_O‘b“(“’t")))%)

Remark 2.1. 1) In [19] and [28], the problem of the existence of finite moments
of negative orders is solved when W € (R%)°. In [3], we find nearly the same
conclusions as in [19] and [28], and give good general conditions to solve it when
po+p1 =0o0r pg+p; > 0and 6 > 0; when pg+p1 > 0 and § = 0, we solve
it under some restriction on the probability distribution of W. These three works
was realized independently. In order to complete the statement of Theorem 2.3., we
give one of their conclusions: when the W]fs are i.i.d. and positive, if there exists
a > 0 such that IE(W; ) < oo then IE(Y %) < oo and if IE(W;®) = oo then for
all b > ac, IE(Y %) = oo. In [24] and [25], where the previous studies are improved,
the case pp = 0, p; > 0 and § = 0 is treated under good conditions and when pg > 0
and § = 0, the problem is solved only when the W;s are i.i.d., but in the satisfying
following way : if s IE(T{w,>0} Wy *) < 1 then for all b €]0, a[, IE(I{y>03 Y °) < 00
and if s IE(Lgw, >0y Wy ®) > 1 then for all b > a, E(I{yse Y °) = cc.

This result leads to the following general remark already formulated in [3]: for any
W, if po+p1 > 0 then there exists ap > 0 such that for all a > ag, E(I{ys0 Y %) =
00.

2) [2], [24] and [25] study also the case where Y is constructed with ¢ a random
integer and 0T a branching set in NV,

The proof of Theorem 2.3. requires two lemmas. The first one can be deduced
from Lemma 2.3 of [24] or [25].

Lemma 2.1 (Liu). Let f : [0,00[—]0,1] be a positive non increasing function.
Let B be a non negative r.v. which is not almost surely a constant on {B > 0}.
Assume that for some 0 < X < 1 and tg > 0 one has for all t > to, f(t) <
AE(T g5y f(Bt)). If mqg = E(Iipsoy B~?) < 0o for some a > 0 then

i) either Amg < 1 and for allt >ty f(t) < i\t&Tna =

1
1) or Amg > 1 and for all t > tg f(t) < Wt o« where a/ :alloggn;\a.

Lemma 2.2. Fort > 0 and 8 > 1, one has E(Ljz>0y P (At)) < p(t). Moreover
limy_,00 p(t) = 0 (p(t) is defined just before the statement of Theorem 2.3).

Proof. Left to the reader.

Proof of Theorem 2.3. We prove 2)ii) and leave the other cases to the reader (the
proof of 2)i) is similar to the one of 2)ii) and those of 1)i) and 1)ii) result from
standard sequences of iterations).

By (Ee) (Th. 2.1), for all t > 0, E(e™) = p+ ¢(t) = B([[;Zo(p + ¥ (tW}))). So
as 9 is decreasing p + 1 (t) < po + E(Tz>1y (p + ¥(tA))°)
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= po + Sy Pep® + Yoy Si—y (5)PF I B (T amgy 97 (tA)). Since ¢ < 1 and by
Theorem 2.1. p = ZZ:O prp®, it follows that for ¢ > 0,

(2.1) W(t) < X5y kpF T E(L ek $(tA)) + C(0)E(Lizx2) ¥ (tA)).

(2.2) We recall that for b > 0, E(L{y gy Y7°) = %b) / t= Loy (t) dt.
0

We use the same approach as Liu in [23] and [24] where py = 0 (excepted for the
i.i.d. case, see remark 2.1.).
2)ii)a) By (Hp), f (see Th. 2.1) is strictly convex on [0,1]. Thus, as f(1) =1
f(p) =p,and p < 1, s = f'(p) < 1. Then, as s(1) = s, the conclusion follows from
the continuity of 8 — s(f).
b) Fix a > 1 such that s(a*) < 1 and choose ty > 0 such that s < s(a,tp) < 1. By
(2.1), lemma 2.2., and the Hélder inequality, for ¢ > ¢

@) + C(p) (BE(Lizsay ¥ (tA))a7) "E(Lias0) ¥ (tA))

< (s(
(s(a™) + C(p)p(t) ™) * BT a0y $*(tA))

<
< s(a*,to)“IB(T 50y ¥*(tA)). So by Lemma 2.1., for t > tg

D(0) < ST 1z AP0
- (1—s(a* to)o‘]E(I{A>0} A—aba(a, tO)))a
and the fact that lim;_, o bg(a, t) = bg ().

tba(eto) We conclude by using (2.2)

3. TWO TYPES OF STATISTICALLY SELF-SIMILAR MEASURES.

Let W be in £, U &, and let (W (a))qer be a sequence of independent copies of
W. From now, for a € T, we denote by Yy (a) the r.v. Y (a) constructed in the
part 2.

Definition 3.1. The relations ((E,))ecT (see Theorem 2.1.) make possible to
define an unique random statistically self-similar measure uw on (0T, T) given on
the 1,’s by the following relations:

with probability one, for all a € T, pw (1) = w(a) Yw(a).

We say that uw is of type 1 (resp. 2) if W € &y (resp. E2).

We denote by 0Tw the support of pw and Ty the o—algebra generated in 0Ty by
the I, NO0Tw’s, a € T.

Proposition 3.1. Define L = lim,,_,o maxger, pw (l,) and Aw the set of the
atoms of pw .

i) One has either P(L = 0) = P(Aw = 0) =1 or for P-almost every w in {uw #
0}, Aw is countable, dense in OTw equipped with the standard ultrametric distance,
and it is, up to a finite set if W € &;, contained in OT (IE(Wy), ..., IE(W._1)).

it) If P(Aw = 0) = 1 then for P-almost every w in {uw # 0}, the mapping
dw : (z,y) = pw(Izay) is an ultrametric distance on 0Ty .

1) If W € & and IE(Yw | log Yw|) < oo, then P(Aw = 0) = 1.

Remark 3.1. 1) f W € &; then by Theorem 2.2, IE(Yw |log Y |) < co as soon as
IE(ZJ -0 Wh) < 1 for some h > 1. If moreover the W;’s are i.i.d., Kahane shows in
[18] that the condition W € &; is sufficient for pw having no atoms
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2) We do not know sufficient condition on W € &, for having one of the alternatives
concerning Ayy.

Now we choose (W, W') € (1 U &2)? and (W(a), W'(a)))eer a sequence of
independent copies of (W, W'). So we obtain two measures, uw and pwy-, simulta-
neously.

Proposition 3.2. i) One has with probability one 0Ty C O0Tw if and only if
S0 P(W; =0, W} > 0) =0.

u) Assume that pw has no atoms. One has with probability one pw (0Tw) = 0 if
and only if there exists j € C such that P(W; = 0,W; > 0) > 0.

Proof of Proposition 3.1. i) First note that L > 0 if and only if gy has an atom.
For n > 1, define m,, = max,er, pw (ls). By (Ee), mpy1 = maxjeec W;my,
where the m,, ;’s are independent copies of m,,, which are also independent of
W (see Th 2.1). For j € C, define L; = lim,_,o my, ;. With probability one,
L = maxjec W; L and the inequality m, < Yy yields L < co. By (FE.) again,
P(L = 0) and P(Yw = 0) are fixed points of f. Moreover, {Yi = 0} C {L = 0}.
So, either P(L = 0) = 1 or P(L = 0,Yw > 0) = 0. If the last situation arises,
for P-almost every w € {uw # 0}, L > 0 and py has an atom in 0Ty . Then,
by the self-similarity of the construction, uy has an atom in every I, such that
I, N OTw # 0. So Aw is dense and countable since ||uw || < oo.

The end of the proof will be given in 4.2.

i1) Left to the reader.

i17) It is the Corollary IV.a.ii) of [3].

Proof of Proposition 3.2. i) It is a simple improvement of [3] Proposition IV.

it) With probability one 0Tw = Nnoo 4 UaeT,, pw (1.)>0la- So if h €]0,1[, using
Proposition 3.1. we obtain with probability one

pw (0Tw) < liminf, 00 D ocr Tiuyy (12)>0p My (1a). Taking the mean and using
Fatou’s Lemma,

IE(pw (0Tw)) < liminfp o0 (E( X525 Tiw, >0y W)"))" E(Liy, 503 Yily)- By The-
orem 2.2., IE(Liy,, >0y Yil) is always finite. Moreover, if for some j € C, P(W; =
0,W; > 0) > 0 then for h close enough to 1, E(Zj;é Liw,;>o0) WJ'h) < 1; so
IE(uw (0Tw)) = 0.

The converse is obvious by ).

4. LOCAL HOLDER EXPONENTS.

Let (W,W', L) be in (£;U&,)3 and (W (a), W'(a), L(a)))ser a sequence of inde-
pendent copies of (W, W' L). We want to study for P-almost every w € {uw: # 0},
for pw-almost every x of a subset of 0Ty of positive ppy -measure, the existence
of local Holder exponents for uy on 077 equipped with the distance dy defined in
Proposition 3.1. To do that, we assume the following hypotheses :

(Hy) For (V,V') € {W,W'} x {W, L}, Y"5Z¢ P({V] = 0,V; > 0}) = 0; pz, has no
atoms.

Then, by Propositions 3.1 and 3.2, with probability one 0Ty C 0Tw C 0Ty

and 0Ty, is equipped with di,. We denote by |B| the diameter of a subset B of 0T},
with respect to dr.
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Remark 4.1. 1) For P-almost every w € {Yy > 0}, for all x € 0Ty, and n > 1: if
Ve {W,W'}, py(In(2)) = py (In(z) N 0Ty) and pr,(In(z)) = |In(x) N OTL|.
2) For V € {W,L}, P(YWI >0,Yy = 0) = 0.

4.1. The case W' € &;.

The following results improve those of [3] IV., because here puy can be of type 2
and 0T, may be different of OT.

Theorem 4.1. Assume that for Ve {W,W' L}, E(Z;;é Wi|log Vj|) < co and
E(Yw: |log Yv|) < co. Then, for P-almost every w in {uw: # 0}, for pw:-almost
every x € 0Ty, for allV € {W, W', L}

_ log py (In(z) N OTY) =
S n = B(3_ W} log V;) = =Dy
J:

Corollary 4.1. Assume the hypotheses of Theorem 4.1. and Dy 1, # 0. Then,
for P-almost every w in {uw: # 0}, for uw:-almost every x € 0Ty,

lim log /,Lw(ln(.’L') N aTL) _ DWI7W.

n—oo log |I,(x) N 0Ty Dw 1

If W =W’ then for P-almost every w in {uw # 0}, uw is carried by the set
. log pw(In(x) N OTL) Dww :
Ep = Tw; 1 =D=—" Hausdorff dimen-
p = {z € 0Tw; Jim log |1, () N 9Ty DW,L} of Hausdorff dimen
sion D (with respect to dy, ), and an element of Ty, of Hausdorff dimension less than
D s of pw-measure 0.

Proof. Once the remark 4.1 is made, it is the same proof as in [3] IV.

4.2. The case W' € &,.

By Theorem 2.2., IE(Yy /) = co. Thus Peyriére’s probability on 2 x 9T (see [3]
IV.), which is essential to obtain Theorem 4.1., fails to be defined. Our approach
is most elementary and typic of this kind of problems when the situation is de-
terministic ([7], [8], [12]). A such approach was developped in [14] to study the
multifractal spectrum of a class of measures of type 1.

For V € {W, W', L} and (z,y) € R?, let oy,v (z,y) = E(X5, Liwisoy Wi V)
and Yw v (z,y) = E(Iy,,, >03 Yii Y57

Theorem 4.2. 1) Assume that for V.€ {W,L} \ {W'}, ow' v(1,.) is finite in
a neighbourhood of 0 and there exists § > 0 such that Yw: v (0,—0) < co. Then,
for P-almost every w in {puw: # 0}, there exists a subset E of 0Tw: such that
pw(E) > 0 and for pw-almost every x € E, for all V € {W, W' L}

lim log Mv(In(.’E) N 8TL)

n—o00 n

c—1
= ]E(Z WJI lOg V}) = _DW’,V-

J=0

If V. =W/, the set E can be choosen equal to 0Ty .
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Corollary 4.2. Assume the hypotheses of Theorem 4.2. and Dy 1, # 0. Then,
for P-almost every w in {uw: # 0}, there exists E C 0Tw such that puw:(E) > 0

. 10g Hw (In(éE) N 8TL) DWI w
d r-almost €eFE, 1 = .
and for pw-almost every x Jim log |I,,(z) 1 9Ty, Dz
If W =W’ then for P-almost every w in {uw # 0}, the set
. log /Lw(In(.’E) N 8TL)
Ey = € 0Tw; 1
0 =7 € OTws B0 " og |1n(x) N 0Ty
its largest subset carrying pw is of Hausdorff dimension 0 (with respect to dy,) .

= 0} is of positive pw -measure and

We shall need the following lemma

Lemma 4.2. Assume the hypotheses of Theorem 4.2. Let V.€ {W,W' L} and
e > 0. Forn > 0 close enough to 0 and y €]0,1[ close enough to 1, one has
owr v (Y, —n) e~ Pwivte)n <1 and ow.v(7,n) ePwrv=e)n < 1.

Proof. Simple study of function using the log-convexity of pw: v.

Proof of Theorem 4.2. During this proof we keep in mind remark 4.1.

By Proposition 3.1 and the fact that ||uw|| < oo, for P-almost every w in {puw: #
0}, there exists a smallest integer n(w) such that the set E, = {z € 0Tw; Vn >
n(w), pw'(In(z)) < 1} is of positive py-measure. We claim that if Ve {W, W' L},
then for P-almost every w in {uw- # 0}, for puw-almost every = € E,,,

1 I,(z) N OT,
i sup 198 2V Un@) 1OT1)

n—00 -n

Fixe > 0, v €]0, 1] and 5 €]0, 7]. For P-almost every w in {pw # 0} and n > n(w),
define E,, . = {z € E,; W > Dy v +¢}. Then

< Dy y:

ZnZn(w) ,UWI(En,s) S ZnZn(w) ZaETn, I,NE,CEy . [L’JV,(Ia)
< ZnZn(w) ZaETn pw Y (L) py~"(1y) e~ (Dwr v+e)n
S ZnZl ZaETn w/’Y(a) U‘”(a) e_n(DW’,V+5) n YV’[Y/’ (a) YV_n (a)

Moreover, the mean of the right hand side of the last inequality is
— ’ n
M =35 (ewr v (v, —n) e”Pw vt g, v (v, —n).

As for all h €]0,1[, IE(Y{%) < oo, we can choose v and 7 so as to satisfy the
conclusions of Lemma 4.2. and such that ¢w v (v, —7n) < oo (by an Hoélder’s
inequality). With this choice M < oo and for P-almost every w in {uw: # 0},
ZnZn(w) Hww (En,a) < o0.

So, if D is a dense countable subset of R% , as it is countable, for P-almost every
win {puw: # 0}, for all e € D, 37, 5, () bw' (En,e) < 00, and the conclusion comes
from the density of D and the Borel-Cantelli Lemma.

If V. = W', one can choose 0Ty instead of E,, because in the previous calculus,
can be replaced by 1.

The study of lim inf,,_, o 8LV Un@N0TL) jo iilar for V € {W, L} \ {W'}.

bt £

End of the proof of Proposition 3.1.i). We are under the notations of Proposition
3.1. By Theorem 4.1. and the proof of Theorem 4.2., if V = (pg, ..., pc—1) is a non

negative real vector such that Z;;(l) p; =1 and Z;;éP(Wj > 0,p; = 0) =0, by
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considering the Bernouilli measure on 9T generated by V', we obtain: on {uw # 0},
for every atom x of py if W € &; or for every atom x of py such that pw ({z}) <1
it W e &, lim, M ZC 1]E( W;) log p;j. So, as V can be choosen
arbitrarily, we have the desn‘ed conclusmn

Proof of corollary 4.2. The part concerning the limits is clear. The part on the
Hausdorff dimension of a set carriyng puw is, as in corollary 4.1. a consequence of
the Billingsley Theorem ([6], p 136-145).

5. MULTIFRACTAL ANALYSIS.

In this paragraph, we are given the same measures puy and pz as in paragraph
4. In particular, we are under (H;) and with probability one 0Tw C 0Tr. Our
purpose is, for P-almost every w € {uw # 0} to calculate for all « of a largest as
possible subinterval of Ry the Hausdorff dimension of the set

log ,U:W(In(fl?) N 3TL) _
log |I,(x) N OTy|

E, ={z € 0Tw; lim
n—oo

Define C1 = {(¢,t); ow,(g,t) < 0o} and Ca = {(g,t); Yw,r(g,t) < oo}
Our hypotheses are the following:
(H) (0,0) € Int(Cq) and if W € & then (1,0) € Int(C1). Moreover Dy 1, # 0.

Then, by Theorem 2.2 and 2.3.: (0,0) € Int(C2) and if W € &; then (1,0) € Int(Cs).
We have to distinguish the two following alternatives:

1
M A>0V 0<j<c—1 Tw,soLj=Tw,>0 Wfl,
(II) >0V 0<5j<c—1 ][{Wj>0} Lj = ]I{Wj>0} ng.

We shall need the following result, which gives an a priori upper bound for the
dim E,’s associated to some positive measure on a subset of 0T :

Proposition 5.1 (Multifractal formalism). Let B # ) be a closed subset of 0T
for the standard topology, d a metric distance on B, and u a positive measure on
(B,d). For a >0, define

I NB
Fo = {z € supp(p); lim —° pln(2) 0 B)

M g (@) N B a}, where | | denotes the diameter

with respect to d.

For (g,t) € R?, define C(q,t) = limsup,,_, Z pi(I, N B)|I, N B[
a€Ty, ,I,Nsupp(p)#£0

Then for ¢ € R, 7(q) = sup{t € R, C(q,t) = oo} = inf{t € R, C(q,t) = 0} is

defined and

i) T is convez, non increasing and 7(1) = 0.

Recall that T* is the Legendre transform of T (see 1.1). If o € Ry then

it) If 7*(a) < 0 then E, = 0.

iii) If 7*(a) > 0 then dim E, < 7*(a).

If dim E, = 7*(«), say that the multifractal formalism holds at c.

The proof of this proposition is left to the reader which can find such upper bound
a priori in [7] or [30]. We shall use this proposition with (B,d, u) = (0T, dr, pw)-
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5.1. Multifractal analysis in the case (I).

From now, we denote w1, by ¢ and ¢w,r by 1. Before stating our result, we
need to determine a good domain on which calculate the multifractal spectrum.
This is the object of the following proposition.

Proposition-definition 5.2. 1) There exits a largest interval Jy containing |0, 1]
such that

i) If W € & then |0,1] C Int(J1) and 7(q) = inf{t € R, ¢(q,t) < 1} is defined for
all ¢ € J1 and satisfy ¢(q,7(q)) = 1.

i'") If W € & then 1 = max(J1) and 7(q) = inf{t € R, ¢(q,t) < 1} is defined for
all g € J1 \ {1} and satisfy ¢(q,7(q)) = 1. Define 7(1) = 0.

i1) The function q — 7(q) is C*, strictly convex and decreasing on J;.

i1i) 0 & Jy if and only if (L € &2 and ¢(0,1) = 1), which is also equivalent to say

that lim,_,o+ 7'(q) = —oo. Then defining 7(0) = 1 makes T continuous at 0.
If ¢ ¢ Jy then define 7(q) = co.
Define J = {q € J1; 7*(—7'(q) > 0}, I = —7'(J), cint = inf(I) and asyp = sup(l).

If o> 0 is such that 7*(a) = 0 then o € {inf, Qsup }-
For g € J1, define W, = (][{WJ.>0} W;’L;(q))jec.

Define F1 = {q € J1; 7*(=7'(¢q)) >0, 3V € {W,L}, IE(Yw,|log Yv|) = oo},
Fy={qe Ji; 7 (-7 (q) =0, Wg & &} and S = —7'(FL U Fy); S C {inf, Qsup }-

Finally define J' = {q € J1; Fe > 0, {q} x [7(q),7(q) + €] CCa} and I' = —F'(J").

) If W € & then J and J' are intervals which contain ]0,1] in their interior;
ICRy andI' CRy.

w') If W € & then J and J' are intervals which contain |0,1[; 1 € J \ (F1 U Fy);
0€I\SCR; andI' CR;.

Remark 5.1. 1) Remark 2.1. suggests that J and J’, and so I and I’ might be
different, in particular I’ ¢ I or I ¢ I, and there are effectively examples of such
situations.

2) When W € &1, in (H) we assume that (0,1) € Int(C1) in view to have dim Ep =
D by Corollary 4.1.

3) Fy U F, C {inf(J),sup(J)} and J \ Fy U F» is the set of the elements ¢ of J such
that one can apply Corollary 4.1 or 4.2 with (W, Wy, L).

4) 7(0) < 1 and 7(0) =1 if and only if P(0Tw = 0TL) = 1.

Recall that for ¢ € J, Dw, 1 = IE(Z;;(l) W, log Lj). Now, remark 3) made

in introduction on the Legendre transform gives a better understanding of the
following

Theorem 5.1. For P-almost every w € {uw # 0}, one has:

i) Study of E, when «a €|ains, @syp[ (main result).
a) dim E, > 7*(a) > 0 for all o €]int, Agup]-

b) dim E, = 7*(a) = 7* () for all o €]cting, atsup[NCUI").
The multifractal formalism holds on |aing, atsup[NCIUT").

ii) Study of E,,_, and E

Qsup *
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a) IfRY C J, Dw, 1 # 0 as ¢ = oo and 7*(aing) > 0, or RY. ¢ J and ajnr € I\ S,
then Eq. . # 0 and dim E,_, > 7*(ng).

b) If agup < 0o then: if R C J, Dw,r /0 as ¢ = —oo and 7*(asup) > 0, or
R_ ¢ J and agyp € I'\ S, then Ey,,, #0 and dim E, > 7 (0sup)-

Moreover, in the cases a) and b), if o € {Qinf, Qsup} 5 in CU(I'), then
dim F, = 7 (a) = 7*(«), the multifractal formalism holds at c.

iii) Study of E, when o & [nf, ®sup)-

a) If awms € CII') then, if RG C J or Ry ¢ J and 7*(cunt) = O then for all
o€ [0, Otinf[, E, = 0.

b) If agup € CU(I') then, if R_ C J or R_ ¢ J, agyp < 00 and 7*(asyp) = 0 then
for all & €]agsyp, o[, Eq = 0.

iv) Comparison of 7 with 7.

a) 7(q) < 7(q) for all g € CI*(J).

b) 7(q) = 7(q) for all g € Int(J)N CI*(J'); (1)
q=1,7(q) =0.

7(1) =0. If W € & then for all

The following corollary gives examples where L € &1, the case for which we know
a sufficient condition for py, defining a distance dy, (see Prop. 3.1).

Corollary 5.1. (Examples). Assume L € & and IE(Yy |log Yz|) < oo. For
V e {W, L}, define hy = sup{h > 1;]E(Z;;(1) th) =1}. Forw € {uw # 0}, let T
be the largest interval such that for allo € T, Ey # 0 and dim E, = 7*(a) = 7* ().
Then for P-almost every w in {uw # 0},

i) if W € &, P(X5) Tyw,; >0y > 2) = 1 and Cy = R?, then

a) if hw = hy =1 then |ainf, 0sup|C Z C [Qint, Xsup);

b) if hw =1, hy > 1 and 7(inf(J)) < hr, then |aint, sup] C Z C [inf, Csup);

¢) if hw > 1 and h, =1 then [®inf, @sup|C Z C [®inf, Xsup);

d) if hw > 1, hy > 1, sup(J) < hw and 7(inf(J)) < hy, then T = [int, Csup]-

it) If W € &, P(E;;é Liw, >0y > 2) = 1, for all ¢ < 0, p(q,0) < co and for all
t>1, ¢(0,t) < oo, then

a) if hp, =1 then [0, gup[C Z C [0, tsup);

b) if hy, > 1 and 7(inf(J)) < hg then T = [0, aup) -

Moreover, in i)a)b) (resp. i)a)c) and ii)a)), if Ry (resp. R_) C J and neither
7T*(0int) = 0 nor limy_,oo Dw, 1 = 0 (resp. neither agyp = 00 nor agyp < 00 and
T*(asup) = 0 or limg_,_ o Dw, .1 = 0) arises, then cine (resp. asup) € I; in i) and
it), for all & & [Qinf, Qsup), Fa = 0.

Remark 5.2. 1) Assertion 4i) of Theorem 5.1. is a first improvement of the other
works on the measures of type 1, which tell nothing about E, when « is an end
point of [tinf, Gsup]. When aine € I'\ S and 7*(cuns) = 0, the proof will show the
fundamental role of the existence of the measures of type 2.

Nevertheless this point does not conclude when Ry C J and 7*(nf) = 0 or s € S
and sup(J) < oo ((and in the symetric cases on R_).

Taking L; = < and the W;’s i.i.d. with distribution of the form Ad, + (1 — A)dy
with A €]0,1[, 0 < a < b < 1 and Aa + (1 — A\)b = 1, provides examples of the
alternatives Ry C J and 7*(aynr) > 0 and Ry C J and 7*(ajns) = 0.
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Under our hypothesis Dy, 1, # 0 one has Dy, 1 # 0 as ¢ — oo or Dy, 1 / 0 as
g — —oc for example as soon as the L;’s are bounded by 1.

2) Assertion i) of Theorem 5.1. is the main result announced in the introduction.
It claims that for the measures of type 1 and 2, it is possible to permute the “for
all o” and the “with probability one” usually met in the results on the multifractal
analysis of the measures of type 1 ([16], [19], [14], [29], [28], [1], [3])-

3) If S” =|ctinf, Asup[\C1(I") # 0 and a € S’, we do not know how to establish the
inequality dim E, < 7*(a).

4) The ultrametric distance is given by a measure, so the multifractal analysis made
here may be compared with the one made in an other context in [9]. Moreover, if
we suppress the hypothesis that pr has no atoms, we have nevertheless the

Theorem 5.2. Assume the hypotheses of Theorem 5.1, excepted the fact that pr,

_ o Jog pw (In(2) N OTL)
has no atoms. For a € Ry define F, = {z € 0Tw; nh_)rgo og iz (In(2) N 0Ty)

a}. Then, for P-almost every w € {uw # 0},
i) Fo # 0 for all o €]tint, Asupl.-

it) a) If R, C J, Dw,r # 0 as ¢ — oo and 7T*(aint) > 0, or R} ¢ J and
ainf € I\ S, then F,, . # 0.

b) If agyp < 0o then: if R C J, Dw,r / 0 as ¢ = —oo and 7*(asup) > 0, or
R_ ¢ J and agy, € I\ S, then Fy # 0.

As an example, if W € Ea, L € €y and P(0Tw = 0Tr) = 1, then for all a € [0, o0],
F, #0.

The proof of Proposition 5.2 is left to the reader. The ideas are the same as in
the proof of Proposition VI.A.a. of [3], and based on the strict log-convexity of ¢
under (I). To prove Theorem 5.1., we need a serie of lemmas.

Lemma 5.1. For all ¢ € Int(J), there ezists a neighbourhood Vy of q in C such
that

i) for all z € V,, there exists 7,(z) € C such that E(Z;;é Liw, >0y W7 L;‘J(z)) =1
and the function z — 74(z) is an analytic extension of Tirnyv, -

Fora €T and z € Vy let W,(a) denote the r.v. (Lw,)>0y W7 (a) L;Q(z)(a))jec.
i1) With probability one, for all a € T, the sequence

(z = Yyn(a) = Z Wap (@) Wy, (ab1) ... W, (ab1...bp—1))n>1 of analytic

beT,
Junctions on V, converges, uniformly on the compact sets, to an analytic function

z Y, (a).

Proof. i) Let ¢ be in Int(J). In a neighbourhood O of (¢,7(q)) in €%, (z,2') —
E(Y o Lgw, >0y | Wi || L7 ])is finite and ¢ : (2, 2') — (X520 Lgw, 0y W L2)
is analytic in z and 2’. Since ¢ € Int(J), as in [3] Lemma VLA, the strict log con-
vexity of ¢ yields h > 1 such that ¢(hg, h7(q)) < 1. So, one can choose h and O to
have

SUDP( .1 e0 IE(Z;;(I) Tiw, >0y (W7 |L§’|h) < 1. Moreover, as in [3] (proof of Prop.
VLA.a.ii)), 2¢(g,7(g)) # 0 and so 22-¢(q, 7(q)) = 2 (q,7(q)) # 0. So, there exist
a neighbourhood V; (resp. V3) of ¢ (resp. 7(¢q)) in € such that V3 x Vo C O and an
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analytic function 7, : Vi — V; such that for all z € V1, ¢(z, 74(2)) = (¢, 7(q)) = 1.
Choose V, = Vj.

i1) For a = ¢, the proof follows the same lines as the one of the corresponding point
in Theorem 1.2. Then the result comes from the fact that for alla € T and n > 1,
z2+—=Y,(a) ~z—Y, ,(e) and T is countable.

Corollary 5.2. (Simultaneous auxiliary measures). Fora € T and q € Int(J)

let Wy(a) denote the random vector (Lw,(ay>0y Wj(a) L;(q)(a))ogjs(;_l. For a

fized q, the Wy(a)’s, a € T, are i.i.d., in &1, and they allow to define a measure

pw, as in 3. In fact these measures uw, are defined simultaneously :

i) With probability one, for all a € T and q € Int(J), the sequence

(Yw,n = Z Wy b, (@) Wy, (ab1) ... Wy, (aby .. .bn_l))n21 converges to a finite
beT,

limit Y (a), (V,(9) = Y,)-

Moreover, with probability one, for alla € T :

a) the function ¢ — Y4(a) is analytic on Int(J).

B) For all q € Int(J), Yq(a) = Yi2g W ;(a) Yo(aj).

it) Leta be in T. «) For P-almost every w in {Yw (a) = 0}, ¢ — Y, (a) is identically
equal to zero.
B) For P-almost every w in {Yw (a) # 0}, ¢ — Y,(a) has no zero in Int(J).

i1t) For P-almost everyw in {Yw # 0}, for all ¢ € Int(J), the following relations de-
fine an unique positive measure g on (0T, T) : for alla € T, pqy(1,) = wq(a) Yq(a).
Moreover, for P-almost every w € {uw # 0}, for all ¢ € Int(J), supp(pq) =
supp(pw) C 0Ty,.

Proof of Corollary 5.2. We saw in the proof of Lemma 5.1 that for all ¢ in Int(J),
there exists h > 1 such that ¢(hq, h7(q)) = ]E(Z;;é WJL’J-) < 1,s0 W, € & by
construction.

i)a)B) Simple consequences of Lemma 5.1. and the construction of the Y,(a)’s.
i1) Consequence of the continuity of ¢ — Y, and Proposition 3.2. applied simul-
tameously for all the W’s, ¢ € Int(J) N Q

) With probability one, ¢ +— Y, is continuous and non negative, so if Z is a
subinterval of Int(J), Sz = {3 ¢ € Z, Y, = 0} is an event.

Let K be a compact subinterval of Int(.J). For J C C, define Ay ={Vje J, W; >
0;VjeJge, Wj :0}, BJZ{HQEK, VjeT, Yq(j) ZO} and BJZQJEJB{J'}.
They are also events. As the processes g — Y,(j), j € C, are i.i.d. with ¢ — Y, for
all j € C, P(By;y) = P(Sk) and for J C C, P(Bys) = (P(Sk))*#7. By (E.) (Th.
2.1),

Sk ={3qeK, Vjel, Wy,;Ye(j)=0}={3 ¢ K, Vjel, W;Y,(j)=0}. So

P(Sk) =3 7cc P(A7)P(Bs) < X 7cc P(A7)P(Bg) = 3 7cc P(A7)(P(Sk))*7
= f(P(Sk)) (see Th. 2.1). So as f is strictly convex on [0,1] (by (Hp)) and its
fixed points are P({Yw = 0}) and 1 (see Th 2.1.), one has either 0 < P(Sk) <
P{Yw = 0}) or P(Sk) = 1.

If P(Sk) = 1 then there are only equalities in the previous calculus, and by (Hy)
there exists J C C, with #J > 2, such that P(By) = 1. Let (j1,j2), j1 # Jo,
be in J?; P(Byj, j,3) = 1 and for all Z; and 7, subintervals of K, S% = {3 q €
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I;, Yq(ji) = 0}, i = 1,2, are independent events and P(Sz,) = P(S7,). We can
suppose that K = [0,1]. If P(S[lo,% ) <1 and P(S 1 1]) < 1 then

P(Q\ S[lo’%[ N\ 5[2%,1]) > 0, and P(Byj, j,3) < 1 There is a contradiction. So
one constructs a decreasing sequence (I,)n>0 of dyadic closed subintervals of [0, 1]
such that for all n > 0, P(S;,) =1 and Sr,,, C S1,. Let go be the unique point
of Np>o0ln: {Ygo = 0} = S{g} = Mn>051,, 50 P({Yy, = 0}) = 1, new contradiction
since W, € &;.

Thus, 0 < P(Sk) < P({Yw = 0}) and since {Yy = 0} C Sk, one has P({Yw #
0} NSk) = 0. The conclusion comes from the fact that Int(J) can be written as a
countable union of compact subintervals.

i1¢) It is a simple consequence of the points ¢) and ).

Lemma 5.2. i) Recall that ¢ = Z;;é Liw,>0y- For q € Int(J), define
Aq = ming<j<c_1, w, ;>0 Wq,j on {¢ > 1} and Ay = 0 on {¢ = 0}. Then define
d(q) = ess infiz>1)y Aq. There erists a finite subset F' of Int(J) such that for all
compact interval contained in Int(J) \ F' one has the following alternatives : either
infoex 6(q) > 0 or for all g € K, §(q) =

Fiz such an F.
i1) Let K be a compact interval contained in Int(J) \ F. There exists n > 0 such
that sup, e e IB(Ty, 503 Y, ") < 00.

Proof. i) We leave the verification to the reader.

ii) Let (¢ — Y,) be a copie of (¢ — Y,) on K, which is independent of (g — A,)
on K. For all ¢ € K define 1, : t > 0 — IE(Iy,>03e"*¥2). Then for ¢ € K define
Py it >0 P(0< AV, <t71/2) 4 et

By using ¢), Theorem 2.3, (H), and the fact that for a fixed ¢ > 0, ¢ — py(t) and
q — q(t) are continuous on K, one obtains that for all ¢ € K, there exists a
neighbourhod O, of ¢ and 7, > 0 such that SUPgrco, ]E(][{yq,>()} Yanq) < 00. One
ends the proof by using a covering of K by a finite number of O,’s.

Lemma 5.3. Let K be a compact subinterval of Int(J). Fix e > 0. For n €]0,1]
close enough to 0, one has for 6 € {—1,1} and V € {W, L} :

i)a) supge g (D52 1W1 5”) —6(Dwq,wo+oe)n 1
b) SqueK]E(Zg =0 ][{Wq i>0} ‘dq 0. qu M < 0.
it)a) Supqu]E(Zc L S W, V_‘s")e_‘s(DWq vHse)n .
b) supyex B 5o |4 W, 31V, " () < 0.
iii)a) Sup,e i ]E(qu 57}) < 0.
b) if KNF =0 then sup,e x IB(Ly, >0} ‘qu | Y_5") < oo
i) sup,e i E(Y, YV_(S") < 00 and sup,e i IB(| ;Y| Y_5") < .

Fr

Proof. The most delicate point is iii). 4ii)a) follows from the fact that in lemma
5.1, the convergence is locally uniform in L* norm for some h > 1. The proof of
i1¢)b is similar to the one of the corresponding point in the proof of Theorem 1.2.
and uses Lemma 5.2.
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Lemma 5.4. Fiz e > 0 and let n €]0,1[. Assume Corollary 5.2. Let 1 denote
the subset of {Yw # 0} on which q — Yy is positive and analytic on Int(J) and for
all ¢ € Int(J), supp(pq) = supp(pw) C 0TL. For w € Qq, define for all n > 1,
0 €{-1,1} and V € {W, L} the following functions on Int (J):
9sn + Q> ZaeTn w(}_(sn(a) e OmDwq,wq+oe)n }/ql_én (a)7
fsvin 0= Caer, wq(a) v=0"(a) e o Pwa v H0OM Y, (q) Y707 (q).
Forw € Q\ Q4, define the same functions to be identically equal to 0.

Let K be a compact interval contained in Int(J) \ F. If n > 0 is small enough
then for P-almost every w in {Yw # 0}, the series > <1 9sn and Y . <q [5vn,

V € {W, L}, converge uniformly on K and they converge on F (F was defined in
Lemma 5.2).

Proof. Write K = [g1,q2] (¢1 < ¢2). One verifies easily that proving the following
assertion gives the conclusion :

With probability one,

i) Forallg € FU{q1}, 2,5, 95,n(q) <ocoand for Ve {W,L} 37 5, fsvn(a) < o0
i1) don>1 Jx |95, (%) dz < o0 and for V € {W, L} D on>1 Jx | fsvn(@) ‘ dz < oo.

Choose 1 €]0, 1] such that: all the conclusions of Lemma 5.3 hold for K; all the
conclusions of Lemma 5.3, excepted the 4i7)b), hold for each {q}, ¢ € F. Then one
proceeds as in Corollary 1.1. to study .~ fn-

Lemma 5.5. Assume Corollary 5.2. For P-almost every w € {Yw # 0}, for all
q € Int(J), if Ve {W,W,, L}, for pg-almost every x € 0Ty,

lim log py (I,(x) N 0Ty)

n—>00 n

c—1
=B} W, log V;) = —Dw, v
Jj=0

Proof. For w € ©; (see Lemma 5.4), e >0, g € Int(J), V € {W,W,, L} and n > 1,
define ELY = {x € 0Ty; W > Dy, v +¢} and

q7n76

E(Zrlz,’,‘e/ ={x € 0Ty; M < Dw, v —€}.

Fix ¢ > 0 and 7 €]0,1]. For w € Q4, ¢ € Int(J) and V € {W,W,,V}, a similar

calculus to the one made in the proofs of Corollary 1.1. and 4.2. yields

1,W, —-1,W, .
ZnZl tq(Eqiné) + pq(Eqnie *) < ZnZl 91,n(q) + 9-1,n(q) and if V. € {W,L}

Yons1Ha(Egn ) + mg(Bgwd) < st fvin(a) + f-1,vin(q) (with the notations
of Lemma 5.4.). One concludes by using lemma 5.4. and as in Corollary 1.1., the
Borel-Cantelli Lemma.

Lemma 5.6. For P-almost every w € {uw # 0} :

i) If Ry(resp. R_) ¢ J and o = cune(resp. asyp) € I\ S then E, # 0 and
dim Ey > 7*(a).

ii) If R% C J, Dw, . # 0 as ¢ = oo and 7*(ain¢) > 0, then E, , # 0 and
dim Eg, , > #(a).

iii) IfR_ C J, agup < 00, Dw,,L 7 0 as ¢ = —o0 and 7*(asup) > 0 then Eq,,, # 0
and dim E,__ > 7*(«a).

Qsup

Proof. First remark that with the notations of 4., for a € I, o = —7'(qq),
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Dy

. W Dw, w
5.1) ™ (a) = —222"22 and (5.2) = —2= .
G:1) #(a) = T (:2) @ = et

(e}

i) By construction of J and by (H), if 7*(a) > 0 (resp. =0) then by (5.1) W(qa) €
&1 (resp. &) and we are under the hypotheses of Corollary 4.1 (resp. 4.2) with
(W, W (qa), L) : for P-almost every w € {ugq, # 0}, E, carries a piece of pyy(q,) and
so Ey # 0 and dim E, > 7*(«a) by the Billingsley Theorem. But by Proposition
3.2., the event {y,, # 0} differs from {uw # 0} by a set of probability 0.

i1) By the geometrical remark made in the introduction on the Legendre transform,
ainf > 0 and 7*(ing) = limg_y 00 7*(—7'(q))-

We need

Lemma 5.7. Assume that Dw, 1 # 0 as ¢ — oo. Then there erists a sequence
(gn)n>0 € le_, lim,, o0 ¢n = 00, such that as n — oo, (W, W, ,L) converges in
distribution towards a random vector (W, W', L) and

i) If 7 (cting) > 0 then W' € &, (Y5 W)|logV;|) < oo for V € {W, L}, there
exists n > 0 such that ]E(Z;;(l) WJ{H") <1 and :

D1 v Dyt i
wiw w'w' =
Dy, = Qinf and — = 7*(Qinf) -

i#) If #(in) = 0 then P(SS_EW!1— W/ =0) =1 and W' & £ U &,

w' L

Assume lemma 5.7. Then, as (W, L) ~ (W, L), in the initial construction we
can replace the sequence (W (a), L(a))aer by a sequence (W (a), W'(a), L(a))qer of
independent copies of (W, W', f/) Thus we obtain (uy,, pw, pz) with (uw, pr) ~
(14535 17 ), we are under the conditions of Corollary 4.1. with (W, W’ L) and we
conclude as in 7).

i17) the proof is similar to the one of i7).

Proof of Lemma 5.7. For g > 0, we denote by v, the probability distribution of
(W, Wy, L) on R¥. For all ¢ > 0, (352, W;) = E(3 52, Wa,;) = B( 5 L)) =
1. Thus, the 3¢ non negative components of (W, W,, L) have a mean less than or
equal to 1. So the family (v4)4>0 is tight and the Prohorov’s Theorem yields (gn)n>0
converging towards oo such that as n — oo, (W, W, _, L) converges in distribution
towards a random vector (W, w’, f)) Moreover, as by construction for all ¢ > 0
Dyw,.r <0, the hypothesis Dy, 1 # 0 as ¢ — oo make possible to choose (gn)n>0
in the set of the ¢'s such that Dy, < —¢ for some € > 0.

There exists 6 > 0 such that for all g € [1, 00|, IE(Z;;(I) qu’;f‘s) <1:

As limg_,oo —7'(q) = ins and as ¢ is log-convex, the set D C {¢ > 0} delimited by
the graph of 7 and the line ¢t = 7(0) —inrq is contained in {¢ < 1}. Asa — —7/(07),
7* reaches the strict maximum 7(0). So 7(0) > 7*(—7'(1)) = —7'(1) > quns. Let
d > 0 be such that 7(0) — ains(1 +6) > 0. Since ¢ — aunrq + 7(¢) is decreasing, for
q > 1, the point ((1+ 6)q, (1 + 9)7(q)) is under the line t = 7(0) — @inrg. Moreover
q— @ is strictly decreasing on R% . So ((1+6)q, (1 +0)7(q)) is above the graph

of 7. Thus for all ¢ > 1,((1 + d)gq, (1 4+ 6)7(¢q)) € D and so ]E(Z;;(l) W ) < 1.

Now, (H), the uniform inequality for all ¢ € [1,00], IE(Z;;(I) qu’;'."s) < 1, the

convergence in distribution of (W, W, , L) towards (W, W', L), (5.1) and (5.2) imply
that :
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5.3) (Z; (I)W')— 1, (5.4) B 1W’H‘S)glfor some 0 < ¢ < § and
5.5) (35— Wj’|logV]|) < oo for V e {W,L}, so DW, yw and Dy, 7 exist with

. D ARV} ! ~
Dy ; < —¢, and by construction DV‘:,,’VEV = ajyr and V:V,VZ = 7*(Qnf)-

) If 7*(cune) > 0 then by (5.3), (5.4) and (5.5) W' satisfies (Hp) and there exists
c—1 1+

0 <7 <& such that B ;_, W, ") < 1.

i1) If 7*(cing) = 0, the mapping x — ]E(Z;;(l) W;") is convex, equal to 1 at 1 by

(5.3), less or equal to 1 at some z > 1 and its derivate at 1 is equal to 0; so it is

constant, from which comes 7).

~.

Proof of Theorem 5.1. iv)a) By using the same approach as in the proof of Th.
VI.A.a. of [3], one obtains for P-almost every w € {uw # 0}, for all ¢ € J',
7(q) < 7(q). One can extend the inequality to C1t(J’) because 7 is always finite
and non increasing on [1, 0o].

it)a),b) By Lemma 5.6, if g € {inf, Qsup }, then for P-almost every w € {uw # 0},
E., # 0 and dim E,, > 7* (). By Proposition 5.1. this implies that dim E,, <
T*(ao).

Moreover, by iv)a), for P-almost every w € {uw # 0}, for all @ € I', @ = —7'(qa),
one has 7*(a) =

infoer g + 7(q) < infyey ag + 7(q) < infyes g + 7(q) = aga + 7(ga) = 7*().
The differentiability of 7 where it is finite make possible to extend the inequality
to CL(I"). So if ag € CI(I’) then for P-almost every w € {uw # 0}, dim E,, =
(o) = 7 ().

i)a) Lower bound comes from Lemma 5.5., relations (5.1) and (5.2), and the
Billingsley Theorem. 7)b) Proceeding as in i), one obtains that for P-almost every
w € {uw # 0}, for all @ € Int(I) N Cl(I"), dim E, < 7*(a) < 7*(a).

iti)a) If aine € CI(I'), Ry ¢ J and 7*(cune) = 0 then by the proof of ii), for
P-almost every w € {uw # 0}, 7*(ainf) < 7*(@inf) < 0. Moreover 7* is strictly
concave at aips (since by i) 7 = 7 on a € Int(l) N CL(I")) so for 0 < a < iy,
7*(a) < 0 and E, = () by Proposition 5.1.

If Ry C J then ajnr > 0 and if 0 < o < ang, for all ¢ > 0, ag+7(q) < (@ — aint)q+
7(0), so 7*(a) < 0 and we conclude as above.

i13)b) Same discussion as in %ii)a).

iv)b) By 1), for P-almost every w € {uw # 0}, for all a € Int(I) N Cl(I'), 7*(a) =
7*(«). Moreover by iv)a) for all ¢ € C1T(J'), 7(q¢) < 7(q). Proceeding as in the
proof of [3] Theorem V' I.A.a.iit), we obtain that for P-almost every w € {uw # 0},
for all ¢ € Int(J) N CI*(J'), 7(¢) = 7(g). We cannot extend the inequality to
CL(J) N CI(J") because for example at inf(J) 7 can be finite while 7 is infinite.
AsT=7on0,1], 7(1) =7(1) =0, 7/(1) = 0 and 7 is non increasing, for all ¢ > 1,
7(q) = 0.

Proof of Corollary 5.1 and Theorem 5.2. We leave these verifications to the reader.
5.2. Multifractal analysis in the case (II).

In this simpler situation we only give a statement.
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Theorem 5.3. There exists a largest interval J containing |0,1], such that for
P-almost every w in {puw # 0},

i) for allqe J, 7(q) = 6(1 — q).

ii) dim Es = 6.

ii1) For all « > 0 such that inf ey ag+7(q) < 0, E, = 0. Moreover, ifC; = Cy = R?
then for all « € Ry \ {6}, Eo = 0.

6. GEOMETRICAL REALIZATIONS.
We are under the same hypotheses as in paragraph 5.
6.1. Statistically self-similar measures on a random interval.

We define on Qp, = {Yy, # 0} a random family of intervals. Let w € Q. For all
a € T define F, = {0 < j < c—1, pr(ls;) > 0}. Define J. = [0,Yz]. Then cut
Je in #F, semi-open to the right subintervals, the J;’s, j € F,, which follow one
another like the j’s in F, and satisfy |J;| = pr(I;). For all j € F, one can repeat
the operation in J; and obtain the Jj;:’s, j' € F}, which follow one another like the
J"’s in F; and satisfy |J;;/| = pr(L;5/), and so on.
Now, assume that with probability one, uw has no atoms. One can project it
on the J,’s in a measure py as follows: for all @ € T such that pr(l,) > 0,
py(Ja) = pw(ly). Then, if one substitutes uw for s, the I,’s for the J,’s, and if
one uses Lemma 4.3.2. of [33] instead of Billingsley’s Theorem in the computation
of the Hausdorff dimensions, Theorem 5.1., Corollary 5.1 and Theorem 5.3. are
still valid, excepted Theorem 5.1.i7) in the case where for o = ainr (resp. Qsup),
J ¢ Ry (resp. R_), 7*(a) = 0, and pw,_, which is of type 2, is carried only by
points of T which encode the end points of the J,’s (because of Proposition 3.1,
this exception does not arise for example in the situation considered in [3] where

L e (R})°).

6.2. Statistically self-similar measures on a random Cantor set in R".
In our second geometrical application in [3], which generalizes the result of Fal-
coner [14], one can now choose W in (1 U&2) instead of &£, and improve the result
of [3] by subsituting Theorem 5.1., Corollary 5.1., and Theorem 5.3. for Theorem
VI.A.a. and VI.B.
Moreover, an attentive reading of the Arbeiter and Patzschke paper [1] (where
the strong separation condition of Falconer [14] is replaced by the strong open set
condition) shows that it is possible to extend Theorem 5.1.7¢)7i%)iv) and results of
[3] to their Theorem 4.10, with W € £; and weaker hypotheses on the distribution
of W. To extend Theorem 5.1.7) to their study, it would be sufficient to know
that, with probability one, for all ¢ € Int(J), uy(0K) = 0 where, in [1], K is some
compact fixed under the action of the random similarities which define the random
self-similar set. We do not know prove that for instance.
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