Feuille d'exercices n°1

GROUPES

A - Groupes et sous-groupes

1 - Sous-groupes ou pas?

Avant de commencer cet exercice, il faut remarquer que \mathbb{Z} , \mathbb{R} ou \mathbb{C} munis de leurs lois d'additions usuelles sont des groupes. De même, \mathbb{R}^* et \mathbb{C}^* munis de leur lois de multiplications usuelles sont des groupes.

- 1. L'ensemble à 2 éléments $\{-1,1\}$ forme-t-il un sous-groupe de (\mathbb{R}^*,\times) ?
- 2. L'ensemble des nombres réels strictement positifs forme-t-il un sous-groupe de (\mathbb{R}^*, \times) ?
- 3. L'ensemble des entiers positifs ou nuls forme-t-il un sous-groupe de $(\mathbb{Z},+)$?
- 4. L'ensemble U des nombres complexes de module égal à 1 forme-t-il un sous-groupe de (\mathbb{C}^*, \times) ?
- 5. Soit n un entier. L'ensemble des entiers relatifs x tels que le reste de la division euclidienne de x par n est égal à 0 forme-t-il un sous-groupe de $(\mathbb{Z}, +)$? L'ensemble des entiers relatifs x tels que le reste de la division euclidienne de x par n est égal à 3 forme-t-il un sous-groupe de $(\mathbb{Z}, +)$?
- 6. Soit n un entier. L'ensemble U_n des nombres complexes z tels que $z^n = 1$ forme-t-il un sous-groupe de (\mathbb{C}^*, \times) ?

2 - Bijections, bijections linéaires, matrices inversibles

1. On considère un ensemble non-vide E. Montrer que l'ensemble S(E) des bijections de E dans E, muni de la loi de composition, forme un groupe.

Remarque. Dans le cas particulier où E est un ensemble fini de cardinal n, ce groupe se note usuellement S_n ; c'est le groupe des permutations d'un ensemble à n éléments.

- 2. On suppose maintenant que E est un espace vectoriel. Montrer que l'ensemble GL(E) des applications linéaires bijectives de E dans E forme un sous-groupe du groupe S(E) des bijections de E dans E.
- 3. Soit $GL(2,\mathbb{R})$ l'ensemble des matrices de taille 2×2 à coefficients réels et inversibles. On munit cet ensemble de la loi de produit habituelle sur les matrices 2×2 . Montrer que $GL(2,\mathbb{R})$ est un groupe.

Remarque. On peut montrer par le même genre de raisonnement que $GL(n,\mathbb{R})$ est un groupe pour tout $n \in \mathbb{N}$. Il suffit de ne pas se perdre dans les manipulations d'indices...

3 - Sous-groupes de $GL(n,\mathbb{R})$

1. Montrer que l'ensemble de matrices $\left\{ \left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right) \;\;,\;\; a \in \mathbb{R} \right\}$ est un sous-groupe de $GL(2,\mathbb{R})$.

- 2. Montrer que l'ensemble des matrices à coefficients réels de taille $n \times n$ triangulaires supérieures inversibles est un sous-groupe de $GL(n,\mathbb{R})$.
- 3. Une matrice $A \in GL(n,\mathbb{R})$ est dite *idempotente* si $A^2 = A$. Montrer que l'ensemble des matrices à coefficients réels de taille $n \times n$ idempotentes est un sous-groupe de $GL(n,\mathbb{R})$.
- 4. Montrer que le sous-ensemble de $GL(n,\mathbb{R})$ constitué des matrices qui commutent à toutes les autres est un sous-groupe de $GL(n,\mathbb{R})$. Autrement dit, montrer que

$$\{A \in GL(n,\mathbb{R}) \text{ telle que } AB = BA \text{ pour tout } B \in GL(n,\mathbb{R})\}$$

est un sous-groupe de $GL(n,\mathbb{R})$. Ce sous-groupe s'appelle le centre de $GL(n,\mathbb{R})$.

4 - Sous-groupes de l'ensemble des bijections de \mathbb{R}^2 dans \mathbb{R}^2

1. Soit C un sous-ensemble de \mathbb{R}^2 . Montrer que l'ensemble

$$\{f \text{ bijection de } \mathbb{R}^2 \text{ dans } \mathbb{R}^2 \text{ telle que } f(C) = C\}$$

forme un sous-groupe du groupe des bijections de \mathbb{R}^2 dans \mathbb{R}^2 .

- 2. Soit P un polygone régulier à n côtés centré en 0 dans \mathbb{R}^2 . Déduire de la question précédente que l'ensemble des applications linéaires bijectives de \mathbb{R}^2 dans \mathbb{R}^2 qui préservent globalement P est un sous-groupe de $GL(\mathbb{R}^2)$. Pouvez identifier (en termes géométriques) les éléments de ce sous-groupe ?
- 3. Pour $v=(x,y)\in\mathbb{R}^2$, on note $||x||=\sqrt{x^2+y^2}$. Montrer que

$$O(\mathbb{R}^2) = \{ f \in GL(\mathbb{R}^2) \text{ telle que } ||f(v)|| = ||v|| \text{ pour tout } v \in \mathbb{R}^2 \}$$

est un sous-groupe de $GL(\mathbb{R}^2)$.

5 - Sous-groupes de \mathbb{Z} et pgcd

Soient a et b deux entiers. Vérifier que $a\mathbb{Z} + b\mathbb{Z} = \{a.x + b.y , x, y \in \mathbb{Z}\}$ est un sous-groupe de \mathbb{Z} . Comment peut-on écrire ce groupe plus simplement ? Montrer que les éléments a et b + 7a engendrent le sous-groupe $a\mathbb{Z} + b\mathbb{Z}$.

6 - Commutativité des groupes de petits cardinal

- 1. Montrer que tout groupe à 2 éléments est commutatif. Essayer de montrer de même pour les groupes à 3 éléments, puis 4, puis 5 (c'est de plus en plus difficile).
- 2. Montrer que S_3 est un groupe à 6 éléments qui n'est pas commutatif.

B - Homomorphismes et isomorphismes

7 - Exponentielle

Montrer que l'application $t \mapsto e^{it}$ est un homomorphisme du groupe $(\mathbb{R}, +)$ vers (\mathbb{C}^*, \times) . Cet homomorphisme est-il injectif ? surjectif ?

8 - Noyau d'un homomorphisme.

1. Soient G et H deux groupes, et $\phi: G \to H$ un homomorphisme de groupes. L'ensemble

$$\{x \in G \text{ tels que } \phi(x) = 1_H\}$$

est-il un sous-groupe de G?

Remarque. Cet ensemble s'appelle le noyau de ϕ et se note $Ker(\phi)$.

2. Soient G et H deux groupes, $\phi:G\to H$ un homomorphisme de groupes, et h un élément quelconque de H. L'ensemble

$$\{x \in G \text{ tels que } \phi(x) = h\}$$

est-il un sous-groupe de G?

3. Soient G et H deux groupes, $\phi, \psi: G \to H$ deux homomorphismes de groupes. L'ensemble $\{x \in G \text{ tels que } \phi(x) = \psi(x)\}$ est-il un sous-groupe de G?

9 - Deux endomorphismes usuels

- 1. Soit G un groupe, et a un élément de G. Montrer que l'application $x \mapsto a.x$ définit un homormophisme de G dans G. A quel condition cet homomorphisme est-il bijectif?
- 2. Soit G un groupe, et n un entier positif. Montrer que l'application $x\mapsto x^n$ définit un homormophisme de G dans G.

C - Sous-groupes normaux

10 - Sous-groupes d'un groupes abélien

Montrer que tout sous-groupe d'un groupe abélien est normal.

11 - Noyau d'un homomorphisme

Soient G et H deux groupe, et $\phi: G \to H$ un homomorphisme de groupes. Montrer que $Ker(\phi) = \{x \in G \text{ tels que } \phi(x) = 1_H\}$ est un sous-groupe normal de G.

12 - Sous-groupes normaux de $GL(n\mathbb{R})$

Relire l'énoncé de l'exercice 3 avant de faire celui-ci.

- 1. Le centre de $GL(n,\mathbb{R})$ est-il un sous-groupe normal de $GL(n,\mathbb{R})$?
- 2. Le sous-groupe de $GL(2,\mathbb{R})$ formé par les matrices idempotentes est-il normal?
- 3. Le sous-groupe de $GL(2,\mathbb{R})$ formé par les matrices triangulaires supérieures est-il normal?