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The motivation for this project comes from the study of the p-local homotopy theory
of classifying spaces of finite groups, or more generally of compact Lie groups. By “p-
local homotopy theory” of a space we mean the homotopy theory of its p-completion.
It turns out that there is a close connection between the p-local homotopy theory
of BG and the “p-local structure” of the group G, by which we mean the fusion
(conjugacy relations) in a Sylow p-subgroup of G. This connection then suggested to
us the construction of certain spaces (classifying spaces of “p-local finite groups” and
“p-local compact groups”) which have many of the same properties as have p-completed
classifying spaces of finite and compact Lie groups.

A brief survey of the Bousfield-Kan p-completion functor will be given in Section 1.
For the purpose of this introduction it suffices to say that this is a functor from spaces
to spaces, which focuses on the properties of a space which are visible through its mod
p homology.

The p-fusion data of a finite group G consists of a Sylow p-subgroup S ≤ G, together
with information on how subgroups of S are related to each other via conjugation in
G. This data includes an abundance of information about BG. For example, the
well known theorem of Cartan and Eilenberg [CE, Theorem XII.10.1], stating that
H∗(G;Fp) is given by the subring of ”stable elements” in H∗(S;Fp), can be interpreted
as saying that mod p cohomology of finite groups is determined by p-fusion.

A much stronger version of the Cartan-Eilenberg theorem is given by the Martino-
Priddy conjecture [MP]. The conjecture, recently proved by the third author, states
roughly that the classifying spaces of two groups have the same p-local homotopy type
if and only if the groups share the same p-fusion data. A more precise formulation
of this result, as well as a discussion of some of the ideas which go into its proof, are
presented in Section 3.

Unfortunately, we do not know how to describe the homotopy theoretic information
associated to the classifying space of a finite group G from the p-fusion alone. For
instance, the topological monoid of homotopy equivalences from BG∧

p to itself cannot
easily be described using the fusion alone, and the work outlined below in Sections 2–3
was initially motivated by the need to obtain an algebraic description of this space. A
partial answer to this problem, phrased in terms of p-fusion, appears in [BL]; but the
complete description in [BLO1] requires the use of an additional structure, the “centric
linking system” of the finite group.

The introduction of this new concept led to several new results, as described in detail
in Section 2. For instance, it gave a different condition for determining when two finite
groups have equivalent p-completed classifying spaces: a condition which is less useful
than that given by the Martino-Priddy conjecture, but which is much easier to prove
(Theorem 2.2). It also made it possible to give a complete algebraic description of the

1991 Mathematics Subject Classification. Primary 55R35. Secondary 55R40, 55Q52, 20D20.
Key words and phrases. Classifying space, p-completion, finite groups, fusion.
C. Broto is partially supported by MCYT grant BFM2001–2035.
B. Oliver is partially supported by UMR 7539 of the CNRS.

1



2 CARLES BROTO, RAN LEVI, AND BOB OLIVER

topological monoid of self homotopy equivalences of BG∧
p for G finite. In addition, the

introduction of centric linking systems for groups paved the way to the more general
concept of p-local finite groups.

The p-fusion in a finite group G with a Sylow p-subgroup S can be made into a cate-
gory, whose objects are the subgroups of S, and whose morphisms are those monomor-
phisms induced by conjugation in G. This category is called the “fusion category of G
at the prime p”. Fusion systems can be defined more abstractly; they are categories
of subgroups of a given finite p-group whose morphisms are certain monomorphisms
between them, and which satisfy certain axioms. The fusion systems we will be inter-
ested in satisfy certain extra conditions first formulated by Puig [Pu3],[Pu4], and are
known as “saturated fusion systems”.

Our first goal is to construct a classifying space for each saturated fusion system.
This is motivated in part by representation theory: we refer to Section 5.3 for a brief
discussion of the fusion system of a block as defined by Alperin & Broué. But it also
provides a new class of spaces, which have many of the same properties of p-completed
classifying spaces of finite groups, and which can be characterized in homotopy the-
oretic terms. To construct these classifying spaces, we define what it means to be a
centric linking system associated to a saturated fusion system. Just like the exam-
ples arising from finite groups, centric linking systems associated to abstract saturated
fusion systems, if they exist, are categories which can be thought of as lifts of the
respective fusion systems. The p-completed nerve of a centric linking system is the
desired classifying space of the corresponding fusion system. This does, however, lead
to the unsatisfactory situation that we do not yet know whether or not there exists a
linking system associated to a given fusion system, and whether or not it is unique (see
Section 4.8).

A “p-local finite group” is now defined to be a triple consisting of a finite p-group, a
saturated fusion system over it and an associated centric linking system. The classifying
space of a p-local finite group is defined to be the p-completed nerve of its linking
system. When the triple consists of a Sylow p-subgroup of a finite group G, together
with its fusion and linking systems, then its classifying space has the homotopy type
of BG∧

p .

A closely related topic, which provides extra motivation, is the study of p-compact
groups. These objects were introduced in the 1980’s by Dwyer and Wilkerson [DW3]
and extensively studied by them and several other authors. A p-compact group is a
loop space X (i.e., X ≃ Ω(BX) for some pointed “classifying space” BX), such that
H∗(X ;Fp) is finite and BX is p-complete. The concept of a p-compact group was
designed to be a homotopy theoretic analogue of a classifying space of a compact Lie
group. For instance if G is a compact Lie group whose group of components is a p-
group, then BG∧

p is the classifying space of a p-compact group. On the other hand if
π0(G) is not a p-group then the loop space Ω(BG∧

p ) is not generally Fp-finite. In spite
of the fact that there are many common aspects to the homotopy theory of classifying
spaces of finite, compact Lie and p-compact groups, the techniques used in the study of
p-compact groups fail or become hard to use if the Fp-finiteness condition is dropped.

Our approach suggests a way to fix this problem. The report on “p-local compact
groups” given here is incomplete, as the research is still in progress at the time of writing
this survey. However, the definition of p-local compact groups is a natural extension of
that of p-local finite groups, the main change being the replacement of the finite p-group
S in the definition of a p-local finite group by what we call a “discrete p-toral group”
(Section 6.1). Once we have defined saturated fusion systems and associated centric
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linking systems over such groups, the definition of a p-local compact group becomes the
obvious generalization of that of p-local finite groups. We are then able to show that
the family of spaces obtained as classifying spaces of p-local compact groups contains
all p-completed classifying spaces of compact Lie groups and p-compact groups.

The theory presented here suggests a vast ground for further exploration. As one
example, we outline some results concerning extensions of p-local finite groups (Section
5.4). Some of the other sections also discuss open problems and topics for further
investigation.

This survey is written in order to make it easier for interested readers to learn about
the subject. As the theory of p-local groups is still relatively new, the main references
are contained in fairly large and quite technical papers. It is our hope that this survey
will be a valuable reference for readers to get the general picture before they plunge into
more comprehensive articles. The paper is designed respectively, namely, we attempted
to give good motivation to all statements, but most of them appear either with a very
brief sketch of proof or with no proof at all. For all statements however, a precise
reference for where a proof can be found is listed.
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1. The p-completion functor

We start with a brief description of the p-completion functor of Bousfield and Kan
[BK], which we denote by (−)∧p . It is a functor from the category of spaces to it-
self, and comes equipped with a natural transformation λ : Id −−→ (−)∧p . A space
X is p-complete if λX : X −−−→ X∧

p is a homotopy equivalence. One property of p-
completion (one of the few) which applies to all spaces is that a map f : X −−→ Y
induces a homotopy equivalence f∧

p : X
∧
p −−−→ Y ∧

p if and only if f induces an isomor-
phism H∗(X ;Fp) ∼= H∗(Y ;Fp).

A space X is called p-good if λX : X −−→ X∧
p induces an isomorphism H∗(X∧

p ;Fp)
∼=

H∗(X ;Fp), or equivalently if X∧
p is p-complete. Spaces which are p-bad (i.e., not

p-good) remain so permanently: repeated application of the completion functor will
never produce a p-complete space. Simply connected spaces, or more generally nilpo-
tent spaces, are p-good. Spaces whose fundamental group is finite are p-good. More
generally, any space X for which π1(X) contains a p-perfect subgroup of finite index
(i.e., a subgroup of finite index generated by its commutators and p-th powers) is also
p-good. All spaces discussed in this article (at least, all spaces for which we want to
take the p-completion) are p-good.

For any p-good space X , the map λX : X −−−→ X∧
p is a final object among homotopy

classes of maps out of X which induce a mod-p homology isomorphism. If X and Y are
any two p-good spaces, then their p-completions are homotopy equivalent if and only

if there exists some space Z, and maps X
f
−−→ Z

g
←−− Y , such that f and g are both
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mod-p homology equivalences. We say that X and Y have the same p-local homotopy
type, or that they are mod p equivalent, if X∧

p ≃ Y ∧
p .

Among our main objects of study here are the p-completed classifying spaces of
compact Lie groups. For any compact Lie group G, BG is p-good since its fundamental
group is finite. Also, π1(BG

∧
p )
∼= π0(G)/O

p(π0(G)), where O
p(Γ) is the maximal p-

perfect subgroup of a finite group Γ (equivalently, the smallest normal subgroup of
p-power index).

While p-completion does not change the mod-p homology of BG when G (or π0(G))
is finite, the space BG∧

p is not generally aspherical. In fact, for finite G, BG∧
p is

aspherical only if G contains a normal subgroup of p-power index and order prime to p;
in all other cases BG∧

p has infinitely many non-trivial homotopy groups. The homotopy
theory of spaces of this form has some fascinating aspects. For a survey on some of the
classical homotopy theory associated with BG∧

p , the reader is referred to [CL].

2. Fusion and linking systems of finite groups

The main idea in this section is to describe how the homotopy theory of BG∧
p is

related to certain categories, which we call the fusion and centric linking systems of
G at the prime p (we emphasize “centric” since there is a notion, presently less useful,
of a more general linking system, which will not be mentioned here). Throughout the
section, we fix a finite group G and a prime p.

2.1. Fusion systems of groups. The fusion system Fp(G) of G is the category whose
objects are the p-subgroups of G, and where for any pair of p-subgroups P,Q ≤ G,

MorFp(G)(P,Q) = HomG(P,Q)
def
= {α ∈ Hom(P,Q) |α = cx, some x ∈ G}.

Thus, if we define

NG(P,Q) = {x ∈ G | xPx
−1 ≤ Q}

(the transporter), then

MorFp(G)(P,Q) ∼= NG(P,Q)/CG(P ).

If S is any Sylow p-subgroup of G, then FS(G) ⊆ Fp(G) will denote the full subcate-
gory whose objects are the subgroups of S. Since every p-subgroup of G is conjugate to
a subgroup of any given S ∈ Sylp(G), the inclusion of FS(G) in Fp(G) is an equivalence
of categories.

2.2. Centric linking systems of groups. For any finite group H , let Op(H) denote
the minimal normal subgroup of p power index, or equivalently the maximal normal
p-perfect subgroup of H . A p-subgroup P ≤ G is p-centric if Z(P ) ∈ Sylp(CG(P )), or
equivalently if CG(P ) = Z(P )×Op(CG(P )) and O

p(CG(P )) has order prime to p. For
such subgroups we write Op(CG(P )) = C ′

G(P ) for short.

The centric linking system Lcp(G) of G is the category whose objects are the p-centric
subgroups of G, and where

MorLc
p(G)(P,Q) = NG(P,Q)/C

′
G(P )

for any pair of objects.
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The category Lcp(G) is the same as what Puig [Pu1, §VI.1] called the “O-localité” of
G (when restricted to p-centric subgroups).

If S is any Sylow p-subgroup of G, then LcS(G) ⊆ L
c
p(G) will denote the full subcate-

gory whose objects are the subgroups of S which are p-centric in G. As was the case for
the corresponding inclusion of fusion systems, this inclusion is always an equivalence
of categories.

The following theorem helps to explain the usefulness of centric linking systems when
studying the homotopy theory of BG∧

p .

Theorem 2.1. For any finite group G and any prime p, |Lcp(G)|
∧
p ≃ BG∧

p .

Proof. See [BLO1, Proposition 1.1]. The idea of the proof is to construct a larger

category L̃cp(G), with the same objects as Lcp(G), but where MorL̃c
p(G)(P,Q) = NG(P,Q)

for all P,Q. Let B(G) be the category with one object oG, and where EndB(G)(oG) = G.
One then shows that the maps

|Lcp(G)|
|π|

←−−−−−− |L̃cp(G)|
α̃G−−−−−−→ |B(G)| ∼= BG,

are Fp-homology equivalences, where π is the obvious surjective functor, and where α̃G
is induced by the functor which is the inclusion on all morphism sets NG(P,Q) ⊆ G. �

2.3. Equivalences of p-completed classifying spaces. The Martino-Priddy con-
jecture states roughly that the homotopy type of BG∧

p depends only on the fusion of
G in S ∈ Sylp(G), or equivalently on the fusion system Fp(G). This will be discussed
in more detail in Section 3, and stated precisely in Theorem 3.1.

In this section, we state a weaker result, which says that the homotopy type of BG∧
p

depends only on its linking system Lcp(G). This does provide a (finite) combinatorial
condition for two p-completed classifying spaces to be homotopy equivalent. The condi-
tion is, however, more complicated to check than the one stated in the Martino-Priddy
conjecture, and hence less satisfactory. The proof of this statement is however much
easier than the proof of the Martino-Priddy conjecture.

Theorem 2.2. For any pair G, G′ of finite groups and any prime p, BG∧
p ≃ BG′∧

p if
and only if Lcp(G) ≃ L

c
p(G

′).

Proof. See [BLO1, Theorem A]. The “if” part of this theorem follows immediately from
Theorem 2.1. For the “only if part” a construction of a centric linking system for a
space is required. See Section 2.5 for more details. �

2.4. Maps from classifying spaces of finite p-groups. One of our goals is to
describe in many cases maps between p-completed classifying spaces of finite groups.
The simplest case to consider is that where the source is the classifying space of a finite
p-group.

If H and K are any two discrete groups then the space of (unpointed) maps from
BH to BK is very simple to describe, and the result is classical. Set

Rep(H,K) = Hom(H,K)/ Inn(K),

the set of conjugacy classes of homomorphisms (“representations”) from H to K. Then
the natural map

B : Rep(H,K) −−−−−−−→ [BH,BK]
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is a bijection. Also, for each ρ : H −−→ K, the homomorphism

CK(ρ)×H
incl ·ρ

−−−−−−−→ K,

where CK(ρ)
def
= CK(Im(ρ)), induces a map of spaces BCK(ρ)×BH −−−→ BK, whose

adjoint

BCK(ρ)
∼=

−−−−−−→ Map(BH,BK)Bρ

is a homotopy equivalence. The simplest way to see this result is to first show that
[BH,BK]∗ ∼= Hom(H,K) (i.e., pointed homotopy classes of pointed maps) and that
each component of the pointed mapping space Map∗(BH,BK) is contractible; and
then examine the fibration

Map∗(BH,BK) −−−−−−→ Map(BH,BK) −−−−−−→ BK.

The following “folk theorem” describes one situation in which this result can be
generalized from classifying spaces to p-completed classifying spaces.

Theorem 2.3. For any finite p-group P , and any finite group G, the p-completion
map BG → BG∧

p induces a (weak) homotopy equivalence

Map(BP,BG)∧p
≃

−−−−−−→ Map(BP,BG∧
p ).

In particular, the map (ρ 7→ Bρ∧p ) defines a bijection

Rep(P,G)
B

−−−−−→
∼=

[BP,BG∧
p ].

For each ρ : P → G, the induced product map CG(ρ) × P → G induces (after
taking adjoints) a homotopy equivalence

BCG(ρ)
∧
p −−−−−→ Map(BP,BG∧

p )Bρ .

In particular, the mapping space Map(BP,BG∧
p ) is p-complete.

Proof. See [BL, Proposition 2.1], but this theorem was known to the experts well before
we wrote down a proof. �

This result will be generalized in Section 4 (Theorem 4.2).

2.5. Fusion and linking systems for spaces. The “only if” part of Theorem 2.2 fol-
lows from another construction: a functor from spaces to categories which in particular
sends BG∧

p to LcS(G). This is described as follows.

Fix a space X , a finite p-group S, and a map f : BS −−→ X . We define FS,f(X) to
be the category whose objects are the subgroups of S, and where for P,Q ≤ S,

MorFS,f (X)(P,Q) =
{
α ∈ Hom(P,Q)

∣∣ f |BP ≃ f |BQ ◦Bα
}
.

This is clearly a fusion system over S (though not necessarily saturated!), and can be
thought of as the fusion system of the space X with respect to the pair (S, f).

We next define the analogous linking system forX with respect to (S, f). Let LS,f(X)
be the category whose objects are the subgroups of S, and where for P,Q ≤ S,

MorLS,f (X)(P,Q) =
{
(α, [φ])

∣∣α ∈ Hom(P,Q), [φ] a homotopy class of paths

in Map(BP,X) from f |BP to f |BQ ◦ Bα
}
.

Amorphism of LS,f(X) from P to Q thus consists of a morphism α ∈ HomFS,f (X)(P,Q),
together with a homotopy class of homotopies from f |BP to f |BQ ◦ Bα.
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There is an obvious “forgetful” functor

πS,f (X) : LS,f(X) −−−−−−→ FS,f(X)

which is the identity on objects and sends a morphism (α, [φ]) to α. Note that the set
of morphisms in LS,f(X) sitting over any given α ∈ HomFS,f (X)(P,Q) is in bijective
correspondence with π1(Map(BP,X)f |BP

).

We also want a centric linking system in this situation. Let LcS,f(X) be the full
subcategory of LS,f(X) whose objects are the subgroups P ≤ S such that CS(P

′) =
Z(P ′) for all P ′ isomorphic to P in FS,f(X).

The “only if” part of Theorem 2.2 now follows easily from the following:

Theorem 2.4. For any finite group G and any prime p, fix S ∈ Sylp(G), and let
θ : BS −−→ BG∧

p be the inclusion. Then there are equivalences of categories

FS,θ(BG
∧
p )
∼= FS(G) and LcS,θ(BG

∧
p )
∼= LcS(G).

Proof. See [BLO1, Proposition 2.7]. The first isomorphism says that for any P,Q ≤ S
and any α ∈ Hom(P,Q), α ∈ HomG(P,Q) (i.e., α is induced by conjugation in G) if and

only if the composite BP
Bα
−−→ BQ

incl
−−−→ BG is homotopic to the inclusion BP ⊆ BG,

and this follows from Theorem 2.3.

The isomorphism between the two linking categories is slightly more delicate. Note
first that by definition (and the isomorphism of fusion systems), both categories have
as objects the subgroups of S which are p-centric in G. For any α ∈ HomG(P,Q)
(any P,Q ≤ S), the number of morphisms in FS(G) which cover α is equal to |Z(P )|,
and the number of morphisms in FS,θ(BG

∧
p ) which cover α is equal to the order of

π1(Map(BP,BG∧
p )incl)

∼= Z(P ) (see Theorem 2.3). This suggests that there should be
a natural bijection between these morphism sets, and such a bijection is constructed
by mapping the transporter NG(P,Q) surjectively to both sets and showing that one
has the same identifications in the two cases. �

Theorem 2.4 suggests a way to extend the centric linking system of a finite group
G to all p-subgroups. Let Lp(G) be the category whose objects are the p-subgroups of
G, and where MorLp(G)(P,Q) = NG(P,Q)/O

p(CG(P )). This is easily seen to be well
defined on morphisms. As usual, for S ∈ Sylp(G), LS(G) ⊆ Lp(G) denotes the full
subcategory whose objects are the subgroups of S. Then the argument just sketched
also shows that LS(G) ∼= LS,θ(BG

∧
p ).

2.6. Isotypical equivalences of fusion and linking categories. Let C be any of
the categories Fp(G), L

c
p(G), FS,f(X), or LS,f(X), or any subcategory of one of these

categories. Let C
ǫ
−−→ Gr be the forgetful functor to the category of groups. A self

equivalence ϕ : C −−→ C is called isotypical if there is a natural isomorphism of functors
from ǫ ◦ ϕ to ǫ.

When C is one of the above categories, we let Aut(C) and Auttyp(C) denote the
monoids of self equivalences and isotypical self equivalences, respectively of C. More
generally, we let Auttyp(C) be the strict monoidal category whose objects are the iso-
typical self equivalences of C, and whose morphisms are the natural isomorphisms of
functors. We can then define Outtyp(C) to be the group of automorphisms modulo nat-
ural isomorphisms; i.e., the group of connected components of the nerve |Auttyp(C)|.
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2.7. Self homotopy equivalences of BG∧
p . Using Theorems 2.1 and 2.4, one can also

describe the monoid of self homotopy equivalences of BG∧
p in terms of automorphisms

of the category Lcp(G). For any space X , we let Aut(X) denote the topological monoid
of all self homotopy equivalences of X ; and by analogy with the notation for self
equivalences of categories, let Out(X) = π0(Aut(X)) denote the group of homotopy
classes of self equivalences.

For any finite group G, Op′(G) ⊳ G denotes the largest normal subgroup of G of
order prime to p.

Theorem 2.5. For any finite group G and any prime p, the connected components of
the space Aut(BG∧

p ) are all aspherical, and there are isomorphisms

Out(BG∧
p )
∼= Outtyp(L

c
p(G)) and π1(Aut(BG

∧
p ))
∼= Z(G/Op′(G))

∧
p .

Moreover, there is a homotopy equivalence

B Aut(BG∧
p )
∼= B|Auttyp(L

c
p(G))|.

Proof. See [BLO1, Theorems B & C] and [BL, Theorem 1.1]. �

3. The Martino-Priddy conjecture

Originally, the results in Section 2 were motivated partly as a means of studying
Aut(BG∧

p ) (Theorem 2.5), but also partly as a means of finding algebraic or combi-
natorial conditions for two p-completed classifying spaces to be homotopy equivalent
(Theorem 2.2). What we really want is to describe both of these in terms of the fusion
systems, or equivalently in terms of fusion among subgroups of a Sylow subgroup.

3.1. Fusion preserving isomorphisms. Fix a pair of finite groups G and G′, a prime

p, and Sylow subgroups S ∈ Sylp(G) and S ′ ∈ Sylp(G
′). An isomorphism S

ϕ
−−−→ S ′

is called fusion preserving if for all P,Q ≤ S and all P
α
−−→

∼=
Q, α is induced by

conjugation in G if and only if ϕ(P )
ϕαϕ−1

−−−−→
∼=

ϕ(Q) is induced by conjugation in G′.

Clearly, a fusion preserving isomorphism S −−→ S ′ in the above situation induces
an isomorphism of categories FS(G) ∼= FS′(G′), and hence an equivalence of the larger
categories Fp(G) ≃ Fp(G

′). Conversely, given an isotypical equivalence between the
fusion systems of G and G′, it is not hard to construct a fusion preserving isomorphism
between their Sylow p-subgroups [BLO1, Lemma 5.1].

A classical result in group cohomology is a theorem by Cartan and Eilenberg (see [CE,
Theorem XII.10.1]), which states roughly that for any finite group G, the cohomology
ring H∗(BG;Fp) is determined by S ∈ Sylp(G) and fusion in S (see Section 4.6). The
key point of the Martino-Priddy conjecture is the much stronger statement that the
homotopy type of the p-completed classifying space BG∧

p is determined by p-fusion.

Theorem 3.1 (Martino-Priddy conjecture). For any pair G,G′ of finite groups and
any prime p, the following three conditions are equivalent:

(a) BG∧
p ≃ BG′∧

p .
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(b) There is a fusion preserving isomorphism S
ϕ

−−−−→
∼=

S ′ between Sylow p-subgroups

of G and G′.

(c) There is an isotypical equivalence Fp(G) ≃ Fp(G
′).

The implications (a) =⇒ (b) ⇐⇒ (c) were proved by Martino and Priddy [MP]. In
particular, (b) and (c) are equivalent by the above remarks. The remaining implication
was recently proven by the third author ([O1] and [O2]), using the classification theorem
for finite simple groups.

3.2. Obstruction theory. The first step in analyzing the Martino-Priddy conjecture
is to reduce it to a problem of higher derived functors of inverse limits over the orbit
category of G. For any finite group G and any prime p, the orbit category Op(G) of G
is the category whose objects are the p-subgroups of G, and where for all p-subgroups
P,Q ≤ G,

MorOp(G)(P,Q) = MapG(G/P,G/Q)
∼= Q\NG(P,Q).

Let ZG : Op(G)
op −−−→ Ab be the functor

ZG(P ) =

{
Z(P ) if P is p-centric

0 otherwise.

By [BLO1, Proposition 6.1], the obstruction (for S ∈ Sylp(G) and S
′ ∈ Sylp(G

′)) to
lifting a fusion preserving isomorphism

S
ϕ

−−−−−−→
∼=

S ′

to an equivalence

Lcp(G)
≃

−−−−−−→ Lcp(G
′)

lies in the group

lim←−
2

Op(G)

(ZG).

This can be seen directly by choosing maps

MorLc
p(G)(P,Q) −−−−−−→ MorLc

p(G
′)(ϕ(P ), ϕ(Q))

(for all P,Q ≤ S), and then examining the 2-cocycle in

C2(Op(G);ZG)
def
=

∏

P→Q→R

Z(P )

which describes the failure of the images of commutative triangles in Lcp(G) to commute
in Lcp(G

′).

The Martino-Priddy conjecture was proven by showing:

Theorem 3.2. For any finite group G and any prime p, lim←−
i

Op(G)

(ZG) = 0 if i ≥ 2, or if

p is odd and i ≥ 1.

It is the proof of this result which depends on the classification of finite simple groups.
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3.3. Reduction to simple groups. To reduce the proof of Theorem 3.2 to a problem
about simple groups, consider a maximal normal series of G:

1 = H0 ⊳ H1 ⊳ H2 ⊳ · · · ⊳ Hn = G.

Then for each i, Hi/Hi−1 is a product of copies of some fixed simple group Li (see [Go,
Theorem 2.1.5]). Define subfunctors Z iG ⊆ ZG by setting Z iG(P ) = Z(P ) ∩Hi if P is
p-centric, and Z iG(P ) = 0 otherwise. From the long exact sequences

· · · −−−→ lim←−
n

Op(G)

(Z i−1
G ) −−−→ lim←−

n

Op(G)

(Z iG) −−−→ lim←−
n

Op(G)

(Z iG/Z
i−1
G )

−−−→ lim←−
n−1

Op(G)

(Z i−1
G ) −−−→ · · · ,

we see that lim←−
n(ZG) = 0 (for any given n) if lim←−

n

Op(G)

(Z iG/Z
i−1
G ) = 0 for all i.

Higher limits of the functors Z iG/Z
i−1
G are described in terms of higher limits of

certain other functors YΓ
L, defined when L is quasisimple (i.e., L is perfect and L/Z(L)

is simple) and Inn(L) ≤ Γ ≤ Aut(L). For any such L and Γ, let c : L −−→ Γ denote
the homomorphism which sends g ∈ L to conjugation by g, and define

YΓ
L : Op(Γ)

op −−−−−→ Ab

by setting

YLΓ (P ) =

{
(c−1P )P/Z(L)P if P ∩ Inn(L) is p-centric in Inn(L)

0 otherwise .

For example, when L is simple and Γ = Inn(L), then YΓ
L = ZL. In terms of these

functors, we get

Proposition 3.3 ([O2, Theorem 3.3]). Assume Hi−1 ⊳ Hi ⊳ G are normal subgroups,
where Hi/Hi−1 is a minimal normal subgroup of G/Hi−1, and define Z i−1

G ⊆ Z iG as
above. If Hi/Hi−1 is abelian, or if there is a p-subgroup Q ≤ G such that [Q,Hi] ≤ Hi−1

and CHi
(Q) ≤ Hi−1, then the quotient functor Z iG/Z

i−1
G is acyclic (its higher limits

vanish in degrees ≥ 1). Otherwise, there are a quasisimple group L such that Hi/Hi−1

is a product of copies of the simple group L/Z(L) and a subgroup Γ ≤ Aut(L) containing
Inn(L), together with homomorphisms

lim←−
n

Op(Γ)

(YΓ
L) −−−−−→ lim←−

n

Op(G)

(Z iG/Z
i−1
G )

which are onto when n = 1 and isomorphisms when n ≥ 2.

Proposition 3.3 describes how the vanishing of higher limits of ZG for arbitrary finite
groups G is reduced to a question involving finite simple groups. More precisely, it
involves the vanishing of higher limits of the functors YΓ

L̃
, when L̃ is a central extension

of a simple group L and Γ is an extension of L by outer automorphisms. In fact, when
p is odd, a more direct approach was found which does not involve these functors YΓ

L̃
,

but they do still have to be studied when p = 2.

3.4. The odd primary case. When p is odd, then for any finite p-group P , we define
X(P ) ≤ P to be the largest subgroup for which there is a normal series

1 = Q0 ⊳ Q1 ⊳ · · · ⊳ Qn = X(P )

such that Qi ⊳ P for all i, and such that

[Ω1(CP (Qi−1)), Qi; p−1] = 1 ∀ i = 1, . . . , n.
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Here, for any finite p-group P , Ω1(P ) = 〈g ∈ P | g
p = 1〉. Also, for subgroups H,K ≤

G, [H,K;n] denotes the n-fold commutator [· · · [[H,K], K] · · · , K].

In the following proposition, when G is a group and S ∈ Sylp(G), we say that a
subgroup P ≤ S is weakly Aut(G)-closed in S if there is no other subgroup P 6= P ′ ≤ S
which lies in the Aut(G)-orbit of P . Also, Je(P ) denotes the Thompson subgroup: the
subgroup generated by all (maximal) elementary abelian p-subgroups of P of maximal
rank.

Proposition 3.4 ([O1, Propositions 4.1 & 3.7]). For any odd prime p and any finite
group G, ZG is acyclic if for each nonabelian simple group L which occurs in the
decomposition series of G, and any S ∈ Sylp(L), there is a subgroup Q ≤ X(S) which is
centric and weakly Aut(L)-closed in S. In particular, this always holds if Je(S) ≤ X(S).

In fact, [O1, Proposition 4.1] is slightly stronger, in that X(S) in the above statement
is replaced by a larger subgroup (but depending also on L). When p is odd, L is simple,
and S ∈ Sylp(L), then in almost all cases, either X(S) = S, or S contains a unique
elementary abelian subgroup of maximal rank (and clearly Je(S) ≤ X(S) when either
of these happens). The only exceptions to this (i.e., the only cases where X(S) � S
and there is more than one elementary abelian subgroup of maximal rank) occur when
p = 3 and L ∼= PSUn(3

k); in which case the more restrictive hypothesis of Proposition
3.4 holds. In fact, no examples are known of a finite p-group P (for p odd) for which
X(P ) does not contain Je(P ).

3.5. Obstruction groups at the prime 2. Since lim←−
1(ZG) can be nonzero when

p = 2, it is not surprising that this case is harder. We describe here some of the
techniques used to prove, for L simple, that the higher limits of YΓ

L̃
vanish in degrees

≥ 2 whenever L̃ is perfect, L̃/Z(L̃) ∼= L, and Γ ≤ Aut(L̃) contains Inn(L̃). To simplify

the following discussion, we restrict attention to the case L̃ = L and Γ = Inn(L); i.e.,
the case where YΓ

L̃
= ZL.

In most cases, one first filters the functor ZL by subfunctors

0 = F0 ⊆ F1 ⊆ · · · ⊆ Fk−1 ⊆ Fk = ZL,

such that for each i there is a p-centric subgroup Pi ≤ L such that

(Fi/Fi−1)(P ) ∼=

{
Z(P ) if P conjugate Pi

0 otherwise.

We say that “Pi contributes to lim←−
k(ZL)” if

lim←−
k(Fi/Fi−1) 6= 0.

Of course, via the long exact sequences which connect the higher limit of Fi, Fi−1, and
Fi/Fi−1, the contribution of one subgroup to lim←−

k(ZL) can “cancel” the contribution

of another subgroup to lim←−
k±1(ZL).

For simple groups L (and p = 2), there are some cases where a 2-subgroup contributes
to lim←−

2(ZL). For example, this occurs when L is a projective special linear group
PSLn(2) for n ≥ 4, an alternating group An for n ≡ 0, 1 (mod 8), the Mathieu group
M24, or the Held group He. In all such cases, this contribution to lim←−

2(ZL) is cancelled

by another subgroup contributing to lim←−
1(ZL). There do not seem to be any cases in

which a 2-subgroup contributes to lim←−
i(ZL) for i ≥ 3.
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In general, there are graded abelian groups Λ∗(Γ;M), defined for each finite group
Γ and each Z(p)[Γ]-module M , such that

lim←−
∗(Fi/Fi−1) ∼= Λ∗(NL(P )/P ;Z(P ))

[JMO, Lemma 5.4]. Thus P contributes to lim←−
i(ZL) if and only if Λi(NL(P )/P ;Z(P ))

is nonvanishing. Some of the very nice properties of these functors include:

Proposition 3.5. (a) If p ∤ |Γ|, then Λ∗(Γ;M) =

{
MΓ if ∗ = 0

0 if ∗ > 0.

(b) Λ∗(Γ;M) = 0 if p
∣∣|Ker[Γ −−→ Aut(M)]|

(c) Λ∗(Γ;M) = 0 if Op(Γ) 6= 1

(d) Λ∗(Γ;M) ∼= H̃∗−1
Γ (St(Γ);M) (where the Steinberg complex St(Γ) is the nerve of

the poset of nontrivial p-subgroups of Γ)

(e) If |M | <∞ and Λn(Γ;M) 6= 0, then there are p-subgroups

1 = P0 � P1 � · · · � Pn ≤ Γ

such that Pi ⊳ Pn and Pi = Op

(
N(P1) ∩ · · · ∩ N(Pi)

)
for all i, such that Pn ∈

Sylp(N(P1) ∩ · · · ∩ N(Pn−1)); and such that Fp[Pn] ⊆ M (as a Pn-module). In
particular, if M is finite, then rkp(M) ≥ pn.

Proof. See [JMO, Proposition 6.1(i,ii)] for points (a)–(c), [Gr] for point (d), and [O2,
Proposition 4.4] for point (e). �

As one simple example, let V ∼= F2
2 be the faithful 2-dimensional representation of

Σ3. One can show that
Λ2(Σ3 × Σ3;V

⊗2) ∼= Z/2,

and hence that P ≤ L contributes to lim←−
2(ZL) if N(P )/P ∼= Σ3×Σ3 and Z(P ) ∼= V ⊗2

as a module over N(P )/P . This situation does occur in some simple groups, such as
PSLn(2) for n ≥ 4, and the sporadic groups M24 and He. On the other hand, the
simplest example where Λ3 6= 0 is the case

Λ3(Σ3 × Σ3 × Σ3;V
⊗3) 6= 0,

and this does not seem to occur as a pair (N(P )/P, Z(P )) in any simple group.

4. Abstract finite fusion and linking systems

The results of the preceding section suggest that it may be possible to formulate
a more general context in which to study the homotopy theory of classifying spaces.
In other words, we would like to define an algebraic object for which the notion of
a classifying space makes sense, and in which the p-local homotopy theory of that
classifying space is intrinsic to the algebraic structure and vice versa.

The existence of these algebraic objects was predicted by Dave Benson in the mid-
1990’s. In the introduction to his paper [Be1], where he relates the Dwyer-Wilkerson
space BDI(4) to what he calls the “classifying spaces” of certain “nonexistent finite
simple groups” (see Section 5.2), he writes: “This prompts the speculation that there
should exist a theory of ‘p-local groups’ in which one only gives a Sylow p-subgroup
and a fusion pattern. The fusion pattern should obey a set of axioms which are strong
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enough to be able to build a p-completed classifying space.”. Later, in some unpub-
lished and privately distributed notes, Benson made this more precise by formulating
some of the axioms of what we now call centric linking systems, and predicting that
their p-completed realizations should function as classifying spaces of the fusion pat-
terns.

The concept of a fusion system over a finite p-group S was in fact defined in the
1990’s by Llúıs Puig [Pu3] with an entirely different purpose in mind. Fusion systems of
finite groups are particular cases of these more general objects. The version presented
here is a modification of his definition, but is completely equivalent to it.

In this section, we first present the definition of abstract (saturated) fusion systems,
and then define what it means to be a centric linking system associated to an abstract
fusion system. These concepts then lead to the definition of a p-local finite group and
its classifying space.

4.1. Fusion systems. A fusion system F over a finite p-group S is a category whose
objects are the subgroups of S, and whose morphism sets HomF(P,Q) satisfy the
following conditions:

(a) HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q) for all P,Q ≤ S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

The first requirement in the definition is intuitively obvious. It is less clear that the
second requirement has to be stated as an axiom. However, it clearly holds when the
fusion system is that of a finite group, and it is essential for the theory. Puig calls
fusion systems satisfying (b) “divisible” fusion systems.

The next definitions may appear quite mysterious and are quite hard to motivate.
The fusion system of a finite group turns out to satisfy an extra set of conditions, which
basically makes the theory work. Puig has managed to distil precisely the necessary
features in his definition of a saturated fusion system. Before we can explain what this
means, we must distinguish certain collection of objects in F . By analogy with groups,
two objects P and Q which are isomorphic in F are said to be F -conjugate.

A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P
′)| for every P ′ ≤ S

which is F -conjugate to P , and is fully normalized in F if |NS(P )| ≥ |NS(P
′)| for all

P ′ ≤ S which is F -conjugate to P .

A fusion system F is saturated if the following two conditions hold:

(I) For each fully normalized subgroup P in F , P is fully centralized, and AutS(P ) ∈
Sylp(AutF(P )).

(II) If P ≤ S and ϕ ∈ HomF(P, S) are such that ϕP is fully centralized, and if we set

Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(ϕP )},

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.

4.2. Centric linking systems. Before we can define a centric linking system associ-
ated to a given saturated fusion system, we need to explain what it means to be centric
in this context.

Let F be any fusion system over a finite p-group S. A subgroup P ≤ S is F-
centric if CS(P

′) = Z(P ′) whenever P ′ is F -conjugate to P . We let F c denote the full
subcategory of F whose objects are the F -centric subgroups.
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Let F be a fusion system over the finite p-group S. A centric linking system asso-
ciated to F is a category L whose objects are the F -centric subgroups of S, together
with a functor

π : L −−−−−−→ F c,

and “distinguished” monomorphisms P
δP−−→ AutL(P ) for each F -centric subgroup

P ≤ S, which satisfy the following conditions.

(A) π is the identity on objects and surjective on morphisms. More precisely, for each
pair of objects P,Q ∈ L, Z(P ) acts freely on MorL(P,Q) by composition (upon
identifying Z(P ) with δP (Z(P )) ≤ AutL(P )), and π induces a bijection

MorL(P,Q)/Z(P )
∼=

−−−−−−→ HomF(P,Q).

(B) For each F -centric subgroup P ≤ S and each g ∈ P , π sends δP (g) ∈ AutL(P ) to
cg ∈ AutF(P ).

(C) For each f ∈ MorL(P,Q) and each g ∈ P , the following square commutes in L:

P
f
→ Q

P

δP (g)
↓

f
→ Q .

δQ(π(f)(g))
↓

Condition (A) means that F c is a quotient category of L, which is obtained by
dividing out a free action of the centers of source objects. Conditions (B) and (C)
ensure compatibility of the different ingredients with each other.

4.3. p-local finite groups. A p-local finite group is a triple (S,F ,L), where F is a
saturated fusion system over the finite p-group S and L is a centric linking system
associated to F . The classifying space of the p-local finite group (S,F ,L) is the space
|L|∧p .

The first thing one wants to make sure of is that genuine finite groups give rise to p-
local finite groups, which is indeed the case. For any finite group G and S ∈ Sylp(G) the
fusion system FS(G) is saturated and LcS(G) is an associated centric linking system.
Thus (S,FS(G),L

c
S(G)) is a p-local finite group whose classifying space |LcS(G)|

∧
p is

homotopy equivalent to BG∧
p . It is interesting to point out that another consequence

of the proof of the Martino-Priddy conjecture is that the natural centric linking system
of a finite group G is (up to equivalence) the only one associated to the fusion system
of G (see Section 4.8).

In the examples coming from finite groups it is clear that the nerve of the centric
linking system is p-good, so that its p-completion is p-complete. It is one crucial
ingredient among what makes it possible to reconstruct both the fusion system and
the centric linking system from the classifying space of the corresponding p-local finite
group. This is also the case for p-local finite groups; and in fact, we can also describe
explicitly the fundamental group of the classifying space.

For any saturated fusion system F over a finite p-group S, define

Op
F(S) =

〈
g−1α(g)

∣∣ g ∈ P ≤ S, α ∈ Op(AutF (P ))
〉
⊳ S.

This subgroup Op
F(S) is the hyperfocal subgroup of F as defined by Puig [Pu4]. If

F = FS(G) is the fusion system of a finite group G with respect to S ∈ Sylp(G), then
the hyperfocal subgroup theorem [Pu2, §1.1] says that Op

F(S) = S ∩ Op(G) (where
Op(G) is the smallest normal subgroup of p-power index).
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Theorem 4.1. Let (S,F ,L) be any p-local finite group at the prime p. Then |L| is
p-good. Also, the composite

S
π1(|θS |)

−−−−−−−−→ π1(|L|) −−−−→ π1(|L|
∧
p ),

induced by the inclusion B(S)
θS−−−→ L, is surjective, and induces an isomorphism

π1(|L|
∧
p )
∼= S/Op

F(S).

Proof. See [BLO2, Proposition 1.11] and [BCGLO, §1]. �

4.4. Centralizers and mapping spaces. Our next task is to study mapping spaces
from the classifying space of a finite p-group to that of a p-local finite group. The
result is a generalization of Theorem 2.3, which we now describe. If G is a finite group
and Q a finite p-group, then the set of components [BQ,BG∧

p ] is described in terms of
homomorphisms from Q to G modulo conjugation in G. This motivates us to define,
for any p-local finite group (S,F ,L) and any finite p-group Q,

Rep(Q,F) = Hom(Q, S)/∼,

where ∼ is the equivalence relation defined by setting ρ ∼ ρ′ if there is some χ ∈
IsoF(ρ(Q), ρ

′(Q)) such that ρ′ = χ ◦ ρ.

Components of mapping spaces Map(BQ,BG∧
p ) are described in terms of p-com-

pleted classifying spaces of centralizers. Thus before we can state the analogous result
for p-local finite groups, we need to define what is meant by the centralizer fusion and
linking systems. The original definition of the centralizer fusion system is due to Puig.

Fix a p-local finite group (S,F ,L) and a subgroup Q ≤ S which is fully centralized
in F . Define CF(Q) to be the category whose objects are the subgroups of CS(Q), and
where

HomCF (Q)(P, P
′) =

{
ϕ ∈ HomF(P, P

′)|∃ϕ ∈ HomF(PQ, P
′Q), ϕ|P = ϕ, ϕ|Q = 1Q

}
.

Define CL(Q) to be the category whose objects are the CF(Q)-centric subgroups of
CS(Q), and where MorCL(Q)(P, P

′) is the set of those ϕ ∈ MorL(PQ, P
′Q) whose

underlying homomorphisms are the identity on Q and send P into P ′. By [BLO2,
Proposition 2.5], the triple (CS(Q), CF(Q), CL(Q)) is always itself a p-local finite group
in this situation. When Q is fully normalized, there is an analogous construction of a
“normalizer” p-local finite group (NS(Q), NF(Q), NL(Q)) [BLO2, Lemma 6.2].

If G is a finite group, S ∈ Sylp(G) and Q ≤ S is fully centralized in F = FS(G) (i.e.,
CS(Q) ∈ Sylp(CG(Q))), then CF(Q) and CL(Q) are isomorphic to FCS(Q)(CG(Q)) and
LcCS(Q)(CG(Q)) respectively. Also Rep(Q,F) ∼= Rep(Q,G). With this in mind all that
is left is to translate the statement of Theorem 2.3 to the new terminology.

Theorem 4.2. Let (S,F ,L) be a p-local finite group, and let f : BS −−→ |L|∧p be the
natural inclusion followed by completion. Then the following hold, for any finite p-group
Q.

(a) The map

Rep(Q,F)
∼=

−−−−−→ [BQ, |L|∧p ],

defined by sending the class of ρ : Q −−→ S to f ◦ Bρ, is a bijection.

(b) For any homomorphism ρ : Q −−→ S such that ρQ is fully centralized in F ,

Γ′
L,ρQ : |CL(ρQ)|

∧
p

≃
−−−−−−→ Map(BQ, |L|∧p )Bρ
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is a homotopy equivalence.

In particular, Map(BQ, |L|∧p ) is p-complete.

Proof. See [BLO2, Corollary 4.5 & Theorem 6.3]. �

Our original motivation for considering the centric linking system of a finite group
G was as a tool for describing the monoid of self homotopy equivalences of BG∧

p . The
description in Section 2.7 can be extended directly to this more general situation. We
refer to Sections 2.6 and 2.7 for definitions of isotypical equivalences, and the category
Aut(C) of self equivalences of a category C.

Theorem 4.3. For any p-local finite group (S,F ,L), the topological monoids Aut(|L|∧p )
and |Auttyp(L)| are equivalent in the sense that their classifying spaces are homotopy
equivalent. In particular,

Out(|L|∧p )
∼= Outtyp(L) and πi(Aut(|L|

∧
p ))
∼=




lim←−
Fc

0(Z) if i = 1

0 if i ≥ 2

where Z(P ) = Z(P ) for each F-centric subgroup P ≤ S.

Proof. See [BLO2, Theorem 8.1]. �

4.5. Homology decompositions. One of the standard techniques when studying
maps between p-completed classifying spaces of finite groups is to replace them by
(the p-completion of) a homotopy colimit of simpler spaces. There are many ways of
decomposing BG∧

p [Dw], of which the two most frequently used are the following:

• The subgroup decomposition: BG is mod p equivalent to the homotopy direct
limit, over the orbit category of G (Section 3.2), of the classifying spaces of
its p-radical subgroups [JMO]. The same type of decomposition holds for the
collections of the p-centric subgroups, or the p-centric and p-radical subgroups
of G.
• The centralizer decomposition: BG is mod p equivalent to the homotopy direct
limit, over the fusion category of nontrivial elementary abelian p-subgroups
E ≤ G, of the classifying spaces of the centralizers CG(E) [JM].

Both of these decompositions have analogs for classifying spaces of p-local finite groups.

For any p-local finite group (S,F ,L), the subgroup decomposition of |L|∧p is taken
over the orbit category of F . This is the categoryO(F) whose objects are the subgroups
of S, and whose morphisms are defined by

MorO(F)(P,Q) = RepF(P,Q)
def
= Inn(Q)\HomF(P,Q).

Also, Oc(F) denotes the full subcategory of O(F) whose objects are the F -centric
subgroups of S. If L is a centric linking system associated to F , then π̃ denotes the
composite functor

π̃ : L
π

−−−−։ F c −−−−։ Oc(F).

There is a difference between the orbit category of a fusion system and the orbit
category of a group. If G is a group and S ∈ Sylp(G), then

MorOS(G)(P,Q) ∼= Q\NG(P,Q), while MorO(FS(G))(P,Q) ∼= Q\NG(P,Q)/CG(P ).
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In general, of course, these can be very different; but if P is p-centric, they differ only
by the action of the group C ′

G(P ) which is of order prime to p.

Let Top denote the category of spaces. Let C and D be small categories and let

C
φ
→D and C

F
→ Top be functors. The left homotopy Kan extension of F along φ

is a functor LφF : D → Top with the property that

hocolim−−−−−→
C

F ≃ hocolim−−−−−→
D

(LφF ).

Details on the construction and properties of LφF are given in [HV].

Proposition 4.4. Fix a saturated fusion system F and an associated centric linking
system L, and let π̃ : L −−→ Oc(F) be the projection functor. Let

B̃ : Oc(F) −−−−−−→ Top

be the left homotopy Kan extension along π̃ of the constant functor L
∗
−−→ Top. Then

B̃ is a homotopy lifting of the homotopy functor P 7→ BP , and

|L|∧p ≃
(
hocolim−−−−−→
Oc(F)

(B̃)
)
∧
p . (1)

Proof. See [BLO2, Proposition 2.2]. The proof is mostly a formality, following from
elementary properties and the construction of homotopy Kan extensions. �

The centralizer decomposition of |L| is also mostly a formality in this context. Recall
the definition of centralizer fusion and linking systems in Section 4.4: for any p-local fi-
nite group (S,F ,L) and any fully centralized subgroup Q ≤ S, (CS(Q), CF(Q), CL(Q))
is again a p-local finite group. Also, for any fusion system F over a finite p-group S,
we let F e denote the full subcategory of F whose objects are the nontrivial elementary
abelian p-subgroups of S which are fully centralized in F .

Theorem 4.5. Fix a p-local finite group (S,F ,L). Then there is a functor

C̃ : F e −−−−−−−→ Top,

which is a homotopy lifting of the homotopy functor E 7→ |CL(E)|, such that
(
hocolim−−−−−→
E∈Fe

(C̃)
)
∧
p ≃ |L|

∧
p .

Proof. See [BLO2, Theorem 2.6]. The functor C̃ is defined explicitly there as a left
Kan extension. �

4.6. Cohomology of the classifying space. Arguably one of the most fundamen-
tal theorems in group cohomology is the statement that if G is a finite group and
S ∈ Sylp(G), then for every p-local G-module M , H∗(G,M) is the module of “stable
elements” in H∗(S,M); i.e., the module of elements stable with respect to fusion in
G. In our context, if we restrict attention to trivial p-local coefficients, then the same
statement holds for classifying space |L|∧p of a p-local finite group. As one consequence
of this result, H∗(|L|∧p ;Fp) is noetherian for any p-local finite group (S,F ,L).

For any fusion system F over a finite p-group S, let H∗(F ;Fp) be the subring of
H∗(BS;Fp) consisting of those elements which are stable under all fusion in F ; i.e.,

H∗(F ;Fp) =
{
x ∈ H∗(BS;Fp)

∣∣α∗(x) = x|BP , all α ∈ HomF(P, S)
}
.
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The proof that H∗(|L|;Fp) ∼= H∗(F ;Fp), when (S,F ,L) is a p-local finite group, is
based on the construction of a certain (S, S)-biset: a set which has left and right
actions of S which commute with each other. If P ≤ S and ϕ ∈ Hom(P, S), let
S ×(P,ϕ) S denote the biset

S ×(P,ϕ) S = (S × S)/∼, where (x, gy) ∼ (xϕ(g), y) for x, y ∈ S, g ∈ P ,

and set

[S ×(P,ϕ) S] =
(
H∗(BS)

ϕ∗

−−−−→ H∗(BP )
trfP−−−−→ H∗(BS)

)
∈ End

(
H∗(BS;Fp)

)
.

Here, trfP denotes the transfer map. If B is a disjoint union of bisets Bi of this form,
we let [B] be the sum of the endomorphisms [Bi]. If B is an (S, S)-biset, then for
P ≤ S and ϕ ∈ Inj(P, S), we let B|(P,S) denote the restriction of B to a (P, S)-biset,
and let B|(ϕ,S) denote the (P, S)-biset where the left P -action is induced by ϕ.

Proposition 4.6 ([BLO2, Proposition 5.5]). For any saturated fusion system F over
a finite p-group S, there is an (S, S)-biset Ω with the following properties:

(a) Ω is a disjoint union of bisets of the form S×(P,ϕ)S for P ≤ S and ϕ ∈ HomF(P, S).

(b) For each P ≤ S and each ϕ ∈ HomF(P, S), Ω|(P,S) and Ω|(ϕ,S) are isomorphic as
(P, S)-bisets.

(c) |Ω|/|S| ≡ 1 (mod p).

Furthermore, for any biset Ω which satisfies these properties, [Ω] is an idempotent in
End(H∗(BS;Fp)), and

Im
[
H∗(BS;Fp)

[Ω]
−−−→ H∗(BS;Fp)

]
= H∗(F ;Fp).

It was Markus Linckelmann and Peter Webb who first formulated conditions (a),
(b), and (c) in the above proposition, and who saw the significance of finding a biset
with these properties.

Theorem 4.7. For any p-local finite group (S,F ,L), the natural homomorphism

H∗(|L|∧p ;Fp)
∼=

−−−−−−−→ H∗(F ;Fp),

induced by the inclusion of BS in |L|, is an isomorphism. Furthermore, the ring
H∗(|L|∧p ;Fp) is noetherian.

Proof. See [BLO2, Theorem 5.8]. The idea is to use a certain decomposition theorem
for unstable algebras over the Steenrod algebra, due to Dwyer and Wilkerson [DW1,
Theorem 1.2]. Their theorem implies both that H∗(F ;Fp) is the inverse limit of the
cohomology rings H∗(|CL(E)|;Fp) as E runs over the elementary abelian p-subgroups
1 6= E ≤ S, and also that higher derived functors of this inverse system vanish. Since
|L|∧p is the homotopy direct limit of spaces homotopy equivalent to |CL(E)|

∧
p (Theorem

4.5), we can then conclude from the spectral sequence of a homotopy colimit that
H∗(F ;Fp) ∼= H∗(|L|;Fp). One of the requirements when applying the Dwyer-Wilkerson
theorem is that the homomorphism

H∗(F ;Fp) −−−−−−→ H∗(BS;Fp)

be a split monomorphism, and the splitting is provided by Proposition 4.6.

The argument just sketched is carried out inductively, since we need to assume the
theorem holds for the centralizers. This means that a separate argument is needed for
fusion systems F with nontrivial center; i.e., those for which F = CF(E) (and hence
L = CL(E)) for some 1 6= E ≤ S. �
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The (S, S)-biset Ω of Proposition 4.6, associated to a given saturated fusion system
F over S, can also be used to construct a spectrum associated to F which is equivalent
to the suspension spectrum of any classifying space for F (if any exists). Any finite
(S, S)-biset induces, via inclusions and transfer maps, a stable map from the suspension
spectrum Σ∞BS to itself. The properties of Ω listed in Proposition 4.6 imply that the
induced map [Ω] is an idempotent in the ring of homotopy classes of maps from Σ∞BS
to itself, and that the image of H∗([Ω];Fp) is equal to H∗(F ;Fp). The infinite mapping
telescope of [Ω] is thus a stable summand of BS whose mod p cohomology is isomorphic
to H∗(F ;Fp). Hence by Theorem 4.7, if |L|∧p is any classifying space for F , then this
stable summand of Σ∞(BS) is homotopy equivalent as a spectrum to Σ∞(|L|∧p ).

4.7. Fusion and linking systems determined by their classifying space. A
priori, one might think that the classifying space of a p-local finite group (S,F ,L)
should contain only part of the information given by the fusion and linking systems
F and L. But in fact, one can recover both categories from the homotopy type of
|L|∧p . This is done with the help of the functors from spaces to categories described in
Section 2.5.

Theorem 4.8. Fix a p-local finite group (S,F ,L), and let f : BS −−→ |L|∧p be the
natural inclusion. Then there are equivalences of categories

F ∼= FS,f(|L|
∧
p ) and L ∼= LcS,f(|L|

∧
p ).

Proof. See [BLO2, Proposition 7.3]. The proof is very similar to that of Theorem
2.4. �

In other words, if (S,F ,L) and (S ′,F ′,L′) are two p-local finite groups and |L|∧p ≃
|L′|∧p , then (S,F ,L) and (S ′,F ′,L′) are isomorphic as triples, via isomorphisms of
groups and of categories which commute with all of the structures which link them. To
see how this follows from Theorem 4.8, note that by Theorem 4.2, for any homotopy

equivalence |L|∧p
ψ

≃
→ |L′|∧p , there is an isomorphism S

α

∼=
→ S ′ such that the following

square commutes up to homotopy:

BS
f
→ |L|∧p

BS ′

Bα
↓

f ′

→ |L′|∧p .

ψ
↓

Here, f and f ′ are the natural inclusions.

We also note here that for any given fusion system F over a finite p-group S, there
are bijective correspondences





linking
systems

assoc. to F




∼=





classifying
spaces
for F




∼=





liftings of the
homotopy functor

P 7→ BP





which are given as follows:

L
|−|∧p

$$

Lπ̃(∗) // B̃

hocolim

vv♠♠♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠
♠

X
Lc
S,θ

(−)

ee



THE THEORY OF p-LOCAL GROUPS: A SURVEY 21

More precisely, the first set (from the left) consists of all linking systems associated to
F up to isomorphism (isomorphisms of categories which commute with the projections
to F and the distinguished monomorphisms). The second set contains all classifying
spaces (p-completed nerves of linking systems associated to F), modulo the relation
that |L|∧p and |L′|∧p are equivalent if there is a homotopy equivalence between them
which commutes (up to homotopy) with the natural inclusions of BS. The third set
consists of all functors from the orbit category Oc(F) to spaces which lift the homotopy
functor P 7→ BP , modulo natural homotopy equivalences of functors to Top. The
bijection between the first two sets follows from Theorem 4.8, and the commutativity
of the triangle involving Kan extension, homotopy colimit, and | − |∧p was shown in
Proposition 4.4. It remains to check that each lifting of (P 7→ BP ) is the left Kan
extension of some linking system, and this is shown in the proof of [BLO2, Proposition
2.3], where an explicit procedure is given for constructing a linking system associated
to any given homotopy lifting.

It is also worth noting that the obstructions to lifting a given saturated fusion system
F to centric linking system L described in Section 4.8 below coincide with those for
lifting homotopy functors on the orbit category associated to F described by Dwyer and
Kan [DK]. It was this observation which first suggested to us the above bijections, and
in fact which first suggested to us the idea that two groups have equivalent p-completed
classifying spaces if and only if their linking systems are equivalent.

4.8. Existence and uniqueness of linking systems or classifying spaces. One
of the main open questions in this subject is that of the existence and uniqueness of
linking systems associated to a given saturated fusion system. The obstructions for
these problems are well understood, and are closely related to those for the Martino-
Priddy conjecture as discussed in Section 3.

Fix a saturated fusion system F over a finite p-group S. Define a functor

ZF : Oc(F)op −−−−−−−→ Ab

by setting ZF(P ) = Z(P ) = CS(P ) for each F -centric subgroup P ≤ S. The ob-
struction to the existence of a centric linking system associated to F lies in lim←−

3(ZF ),

and the obstruction to its uniqueness lies in lim←−
2(ZF) [BLO2, Proposition 3.1]. This

is completely analogous to the obstructions to the existence and uniqueness of an ex-
tension of a group G by another group K which acts on G via outer automorphisms:
obstructions which lie in H3(K;Z(G)) and H2(K;Z(G)), respectively.

One way to see the obstruction to the existence of associated linking systems is to
construct directly a “category” which satisfies all of the conditions for a linking system,
except that the composition of morphisms need not be associative. This can be done
in such a way that the failure of associativity assigns to each triple of composable
morphisms P0 → P1 → P2 → P3 in Oc(F) an element of Z(P0), and these elements
combine to form a 3-cocycle with coefficients in ZF .

We do have some results about the existence and uniqueness of associated linking
systems in various special cases. For example,

Proposition 4.9. Let F be a saturated fusion system over a finite p-group S. Then
there exists a linking system associated to F if rk(S) < p3, and the linking system is
unique if rk(S) < p2.
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Proof. [BLO2, Corollary 3.4]. The point of this proof is that the corresponding higher
limit obstruction groups for existence and uniquness vanish under the hypotheses of
the proposition. �

Note that the Martino-Priddy conjecture is a special case of the problem of unique-
ness of centric linking systems. The proof of this conjecture, as sketched in Section 3,
shows in fact that there is exactly one linking system associated to the fusion system
of a finite group. We do still hope to find a proof of this conjecture which is indepen-
dent of the classification of finite simple groups: not only for esthetic reasons, but also
because it seems likely that any such proof could extend to a proof of the existence
and uniqueness of linking systems (hence classifying spaces) associated to any given
saturated fusion system.

5. Examples and methods of construction

One of the weak points in our investigations into the theory of p-local finite groups is
the problem of constructing “exotic” examples: examples which do not come from finite
groups. The key difficulty seems to be that of showing that newly constructed fusion
systems are saturated. Some attempts to develop general techniques for constructing
saturated fusion systems are described in Section 5.1. We then describe some which
arise more “naturally”, notably those of the type studied by Solomon and Benson,
and those which come from block theory. We finish this section with a discussion of
“extensions” of p-local finite groups: a subject which is still to a large extent under
development.

We first note the following general result which is very useful when constructing
saturated fusion systems.

Proposition 5.1 ([BCGLO, Theorem 2.3]). Let F be a fusion system over a finite
p-group S. Assume the following hold:

(I) If P ≤ S is F-centric and fully normalized in F , then AutS(P ) ∈ Sylp(AutF(P )).

(II) For each F-centric subgroup P ≤ S and each ϕ ∈ HomF(P, S), if we set

Nϕ = {x ∈ NS(P ) |ϕcxϕ
−1 ∈ AutS(ϕ(P ))},

then ϕ extends to some ϕ ∈ HomF(Nϕ, S).

Let F ′ ⊆ F be the subcategory with the same objects, and whose morphisms are the
composites of restrictions of morphisms in F between F-centric subgroups. Then F ′ is
saturated.

In fact, [BCGLO, Theorem 2.3] is formulated more generally, and deals with fusion
systems which satisfy the axioms of saturation only on subgroups which are both F -
centric and F -radical (though an extra axiom is then needed). But the case formulated
above seems to be the most important one.

5.1. Construction of exotic p-local finite groups. The following theorem is the
only result we know which gives a geometric criterion for showing that a fusion system

is saturated. If S is a finite p-group, then we say that a map BS
f
−−→ X is Sylow

if every map BP −−→ X , for a finite p-group P , factors through f up to homotopy.
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A map Y
f
−−→ X is centric if composition with f induces a homotopy equivalence

Map(Y, Y )Id ≃ Map(Y,X)f between the connected component of IdY and the con-
nected component of f .

Theorem 5.2. Fix a space X, a finite p-group S, and a map f : BS −−→ X. Assume
that

(a) f is Sylow, and

(b) f |BP is a centric map for each FS,f(X)-centric subgroup P ≤ S.

Let F ′ ⊆ FS,f(X) be the subcategory with the same objects, and whose morphisms are
the composites of restrictions of morphisms in FS,f(X) between F-centric subgroups.
Then F ′ is saturated, and the triple

(
S,F ′,LcS,f(X)

)
is a p-local finite group.

Proof. See [BLO4]. One uses direct geometric arguments to show that FS,f(X) satisfies
the axioms of saturation on centric subgroups, and then applies Proposition 5.1. �

One might expect that it is difficult to find interesting examples of maps BS −−→ X
which satisfy the centricity condition (b) above. But in fact, with the help of [BLO2,
Proposition 4.2], which says that homotopy colimits commute with mapping spaces
Map(BP,−) under certain conditions, spaces X can be constructed which satisfy the
above conditions without being completed classifying spaces of finite groups.

The following is one example of how Theorem 5.2 can be applied. If F0 is a fusion
system over a finite p-group S, and for each i = 1, . . . , m we are given subgroups Qi ≤ S
and groups of automorphisms ∆i ≤ Out(Qi), then we let

F
def
= 〈F0;FQ1

(∆1), . . . ,FQm
(∆m)〉

be the fusion system over S defined as follows. For each pair of subgroups P, P ′ ≤ S,
HomF (P, P

′) is the set of composites

P = P0
ϕ1

−−−→ P1
ϕ2

−−−→ P2 −−−→ · · · −−−→ Pk−2
ϕk−1

−−−→ Pk−1
ϕk−−−→ Pk = P ′,

where for each i, either ϕi ∈ HomF0
(Pi−1, Pi); or Pi−1, Pi ≤ Qj for some j, and ϕi =

α|Pi−1
for some α ∈ Aut(Qj) with [α] ∈ ∆j .

Proposition 5.3. Fix a finite group G, a Sylow p-subgroup S ≤ G, and subgroups
Q1, . . . , Qm ≤ S such that no Qi is conjugate to a subgroup of Qj for i 6= j. Set
Ki = OutG(Qi), and fix subgroups ∆i ≤ Out(Qi) which contain Ki. Assume for each
i that

(1) p ∤ [∆i:Ki];

(2) Qi is p-centric in G, but for each P � Qi there is α ∈ ∆i such that α(P ) is not
p-centric in G; and

(3) for all α ∈ ∆irKi, Ki ∩ αKiα
−1 has order prime to p.

Then the fusion system F
def
= 〈FS(G);FQ1

(∆1), . . . ,FQm
(∆m)〉 is saturated, and has an

associated centric linking system.

Proof. See [BLO4]. One first checks that for each i, there is a unique extension Gi of
Qi by ∆i which contains NG(Qi) (up to isomorphism). Let X be the union of BG and
the BGi, where each BGi is attached to BG along their common subspace BNG(Qi).
The proposition then follows from Theorem 5.2, applied to the space X∧

p . Condition
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(2) guarantees that the fusion system of X∧
p is generated by its restriction to centric

subgroups; i.e., that F ′ = FS,f(X
∧
p ) in the notation of Theorem 5.2. �

Proposition 5.3 is a generalization of [BLO2, Proposition 9.1]. Some more concrete
applications of that result, for primes p ≥ 5, are given in [BLO2, §9]: constructions
which can be thought of (very roughly) as mixing features of the fusion systems of two
different groups.

The above proposition can also be applied when p = 3, to construct exotic 3-local
finite groups with Sylow subgroup the groups

S± =
〈
a, b, x

∣∣ [a, b] = 1, xax−1 = ab, xbx−1 = ba∓3
〉

of order 81. We do not yet know whether it can be used to construct any exotic 2-local
finite groups.

In all of our examples, except those described in the next section, the proof that a
saturated fusion system is not the fusion system of a finite group always involves using
the classification of finite simple groups.

5.2. Fusion systems of a type studied by Solomon. Well before Puig formulated
the axioms defining a saturated fusion system, Ron Solomon had essentially found one
which does not arise from the p-fusion system of any finite group. This was a bi-product
of one step in the classification of finite simple groups [Sol]. Solomon considered the
problem of classifying all finite simple groups whose Sylow 2-subgroups are isomorphic
to those of the Conway group Co3. The end result of his paper was that Co3 is the only
such group. In the process of proving this, he needed to consider groups G in which
all involutions are conjugate, and such that the centralizer of each involution contains
a normal subgroup isomorphic to Spin7(q) with odd index, where q is an odd prime
power. Solomon showed that such a group G does not exist. However, the 2-local
structure that he found turned out to be perfectly consistent. It was only by analyzing
its interaction with the p-local structure (where p is the prime of which q is a power)
that he found a contradiction.

In a later paper [Be1], Dave Benson, inspired by Solomon’s work, constructed certain
spaces which can be thought of as the 2-completed classifying spaces which the groups
studied by Solomon would have if they existed. Benson’s construction was arguably the
first indication of the existence of spaces which “behave” like p-completed classifying
spaces of finite groups, but which are themselves not of this form. To construct these
spaces he started with the spaces BDI(4) constructed by Dwyer and Wilkerson having
the property that

H∗(BDI(4);F2) ∼= F2[x1, x2, x3, x4]
GL4(2)

(the rank four Dickson algebra at the prime 2). He then considered, for each odd
prime power q, the homotopy fixed point set of the Z-action on BDI(4) generated by
an “Adams operation” ψq constructed by Dwyer and Wilkerson. Denote this homotopy
fixed point set by BDI4(q).

In [LO], the second and third authors have shown that for each odd prime power q,
there is a saturated fusion system F = FSol(q) over a Sylow 2-subgroup S = S(q) ≤
Spin7(q), with the properties that all involutions in S are F -conjugate, and that when
z ∈ Z(S) is the generator, then CF(z) is the fusion system of Spin7(q). The ob-
struction theory described in Section 4.8 applies to show that there is a unique cen-
tric linking system LcSol(q) associated to FSol(q). We thus get a 2-local finite group
(S(q),FSol(q),L

c
Sol(q)), which by Solomon’s theorem (together with some other group

theoretic results) cannot be associated to any finite group.
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The classifying spaces BSol(q)
def
= |LcSol(q)|

∧
2 turn out to be equivalent to the spaces

constructed by Benson in [Be1]. For fixed q, one can take the union of the spaces
BSol(qn) for all n (strictly speaking this is not true as stated, but it can be done up
to homotopy), and the 2-completion of this union is homotopy equivalent to BDI(4).
Conversely, if ψq ∈ Aut(BDI(4)) is an “Adams map” (its restriction to a maximal

torus is induced by the Frobenius automorphism (x 7→ xq) on the algebraic closure Fq),
then BSol(q) is homotopy equivalent to BDI4(q) — the homotopy fixed point set of
ψq when regarded as an action of the monoid N. For more details, see [LO, §4].

Other “exotic” p-local finite groups have been constructed by the first author to-
gether with Møller [BM]. Their method resembles Benson’s construction of BDI4(q).
Namely, they first take homotopy fixed point sets of actions of Adams maps on certain
p-compact groups, and then show that these are the classifying spaces of p-local finite
groups.

5.3. The fusion system of a block. Part of the motivation for constructing classify-
ing spaces for fusion systems, and part of the reason in general for looking at abstract
fusion and linking systems, comes from representation theory. Fix a finite group G,
a prime p, and an algebraically closed field k of characteristic p. A block in k[G] is a
factor in the maximal decomposition of k[G] as a product of rings, or equivalently a
minimal central idempotent. Alperin and Broué [AB] defined, for any block b, inclusion
and conjugacy relations among the Brauer pairs associated to b (the “b-subpairs”); and
Puig [Pu3] showed that these satisfy the axioms of a saturated fusion system over the
defect group of the block. We refer to [AB] or [Alp] for more details (including the
definitions of defect groups and Brauer pairs). The existence of a (unique or canon-
ical) linking system associated to the fusion system of a block would thus imply the
existence of a classifying space for the block, which might in turn have implications in
representation theory (see [Li]).

5.4. Extensions of p-local finite groups. We describe here some work in progress
which will appear in [BCGLO]; work which in certain specialized situations allows us to
study extensions of p-local finite groups. It is still unclear how to define such extensions
in general.

One of the reasons for this difficulty is that an extension of (finite) groups need
not induce a fibration sequence of their p-completed classifying spaces. For example,
if 1 → H → G → K → 1 is an extension where K has order prime to p, then
BK∧

p is contractible, while BH∧
p and BG∧

p need not be homotopy equivalent (since H
and G need not have the same cohomology mod p). Two cases where an extension
does induce a fibration sequence of p-completed classifying spaces are those where the
quotient group is a finite p-group, and the case of central extensions. It is this last case
which is the simplest to consider.

If F is a fusion system over a finite p-group S, then a subgroup A ≤ S is called central
if CF(A) = F ; i.e., if each ϕ ∈ HomF(P,Q) extends to a morphism ϕ ∈ HomF(PA,QA)
which is the identity on A. Clearly, if A is central in F , then A ≤ Z(S). In such a
situation, there is an obvious way to define a quotient fusion system F/A over S/A,
by letting HomF/A(P/A,Q/A) be the image in Hom(P/A,Q/A) of HomF (P,Q), and
this is saturated by [BLO2, Lemma 5.6]. If, furthermore, L is a centric linking system
associated to F , then there is a canonical way to construct a centric linking system
L/A associated to F/A ([BLO2, Lemma 5.6] again). A central extension of a p-local
finite group (S,F ,L) by an abelian group A can now be defined as a p-local finite
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group (S̃, F̃ , L̃), together with an isomorphism A ∼= A′ ≤ S̃ where A′ is central in F̃ ,

such that (S̃/A, F̃/A, L̃/A) ∼= (S,F ,L).

Theorem 5.4. Central extensions of a p-local finite group (S,F ,L) by a finite abelian
p-group A are in one-to-one correspondence with principal fibrations

BA→ X → |L|∧p ,

and also in natural one-to-one correspondence with H2(|L|∧p ;A).

Proof. See [BCGLO, §8]. �

We next look at extensions where the quotient group is a finite p-group.

Theorem 5.5. Let (S,F ,L) be a p-local finite group. Let λ : π1(|L|
∧
p ) −։ π be any

surjection of groups, and set S0 = Ker[S −։ π1(|L|
∧
p ) −։ π]. Let f : |L|∧p −−→ Bπ be

the classifying map for λ, and let X be its homotopy fiber. Then there is a p-local finite
group (S0,F0,L0), where F0 is a subcategory of F , such that |L0|

∧
p ≃ X.

Conversely, assume that |L0|
∧
p −−→ X −−→ Bπ is a fibration sequence, where the

fiber is the classifying space of a p-local finite group (S0,F0,L0). Then X ≃ |L|∧p for
some p-local finite group (S,F ,L), where S0 ⊳ S, F0 ⊆ F , and S/S0

∼= π.

Proof. See [BCGLO, §5]. �

Note that in the above proposition, we do not say that the centric linking system
L0 is a subcategory of L. In fact, it is not in general a subcategory, since F0-centric
subgroups of S0 need not be F -centric. This helps to illustrate another of the key
problems in this subject: the lack of a good concept of subobjects (or morphisms),
since even group inclusions and group homomorphisms do not in general send p-centric
subgroups to p-centric subgroups.

We can also describe “extensions” where the quotient is a group of order prime to
p. For the purpose of the following theorem, for any saturated fusion system F over a
finite p-group S, we say that a saturated fusion subsystem F ′ ⊆ F over S has index
prime to p if

AutF ′(P ) ≥ Op′(AutF (P ))

for each P ≤ S. Here, for any group G, Op′(G) is the largest normal subgroup of index
prime to p; i.e., the subgroup generated by the Sylow p-subgroups of G.

Theorem 5.6. Fix a saturated fusion system F over a finite p-group S. Then there is
a normal subgroup Out0F(S) ⊳ OutF(S) of index prime to p, and a map

θ̂ : Mor(F c) −−−−−−→ OutF(S)/Out0F (S)

with the following properties:

(a) θ̂(β ◦ α) = θ̂(β)·θ̂(α) for each composable pair of morphisms β, α in F c.

(b) The restriction of θ̂ to AutF(S) is the natural surjection.

(c) θ̂ sends inclusions to the identity.

(d) For each subgroup T ≤ OutF(S)/Out0F(S), the subcategory FT ⊆ F with the same

objects and whose morphisms are generated by restrictions of morphisms in θ̂−1(T ),
is a saturated fusion subsystem of F of index prime to p.

(e) Each saturated fusion subsystem F ′ ⊆ F of index prime to p is equal to FT for
some subgroup T ≤ OutF (S)/Out0F(S).
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(f) If L is a centric linking system associated to F with projection functor π : L −−→ F ,

and if T ≤ OutF(S)/Out0F(S) is a subgroup, then LT
def
= π−1(FT ) ⊆ L is a centric

linking system associated to FT .

Proof. See [BCGLO, §6], where the subgroup Out0F (S) is defined explicitly. (In fact,

it is the smallest subgroup of OutF (S) for which a map θ̂ exists satisfying conditions
(a–c).) Note, in point (f), that if T ⊳ OutF(S)/Out0F(S) is a normal subgroup with
quotient group σ, then |LT |

∧
p −−→ |L|

∧
p −−→ Bσ is not in general a fibration sequence.

�

The map θ̂ of Theorem 5.6 cannot be extended to arbitrary morphisms in F , and
still satisfy conditions (a–c). For example, any such extension would have to send the
inclusion 1 −−→ S to the identity in OutF(S)/Out0F(S) — and Condition (a) would
then imply that all automorphisms of S also get sent to the identity.

6. p-local compact groups

In very recent work still in progress, we have begun to extend the results on p-local
finite groups to a more general situation, one which includes p-completed classifying
spaces of compact Lie groups and classifying spaces of p-compact groups. One of our
hopes is that this will provide a new tool to study certain maps between these spaces,
in particular self equivalences of these spaces.

6.1. Discrete p-toral groups. A p-toral group is a compact Lie group P whose iden-
tity component is a torus T , such that P/T ∼= π0(P ) is a finite p-group. By contrast,
a discrete p-toral group is a discrete group P , with normal subgroup P0 ⊳ P , such
that P0 is isomorphic to a finite product of copies of Z/p∞ (= Z[1

p
]/Z) and P/P0 is a

finite p-group. Any discrete p-toral group P contains a unique minimal subgroup P0

of finite index, which we call its connected component. Also, P0
∼= (Z/p∞)r for some

r
def
= rk(P ) = rk(P0). We define |P | = (rk(P ), |P/P0|) ∈ N×N, and order the elements

of N × N lexicographically. This ordering of the “orders” of discrete p-toral groups
is what allows us to adapt with very little change the definition of a saturated fusion
system over a finite p-group to this new situation.

The motivation for studying fusion and linking systems over discrete p-toral groups
comes from regarding them as “discrete approximations” of p-toral groups. The p-toral
subgroups of compact Lie groups play the same role as p-subgroups of finite groups
(more on this below). Note that by a “discrete p-toral subgroup” of a p-toral group
(or of any other compact Lie group) we mean a subgroup which as a discrete group is
discrete p-toral, even though its topology as a subgroup might not be discrete.

Proposition 6.1. Each p-toral group P contains a dense subgroup Pδ ≤ P which is a
discrete p-toral group of the same rank; and any two such subgroups are conjugate in
P . Furthermore, the inclusion induces an isomorphism H∗(BP ;Fp) ∼= H∗(BPδ;Fp),
and hence a homotopy equivalence (BPδ)

∧
p ≃ BP ∧

p .

Proof. See [DW3, Proposition 6.9]. Let T ≤ P be the identity connected component,
and let Tδ ≤ T be the subgroup of elements of p-power order. Clearly, Tδ is the unique
discrete p-toral subgroup of T of the same rank, and there is a bijective correspondence



28 CARLES BROTO, RAN LEVI, AND BOB OLIVER

between dense discrete p-toral subgroups of P which contain Tδ and splittings of the
group extension 1 → T/Tδ → P/Tδ → P/T → 1. Since P/T is a finite p-group and
T/Tδ is uniquely p-divisible, H i(P/T ;T/Tδ) = 0 for all i > 0, and hence the above
group extension has a splitting which is unique up to conjugation.

The proof that H∗(BP ;Fp) ∼= H∗(BPδ;Fp) is easily reduced to the case where P ∼=
S1 and Pδ ∼= Z/p∞, and this result is classical. �

One advantage in working with discrete p-toral groups rather than p-toral groups is
that all subgroups of discrete p-toral groups are again discrete p-toral groups, unlike
the case for compact p-toral groups. It is also simpler in general to work with discrete
groups, without worrying about their topology.

6.2. Fusion and linking systems over discrete p-toral groups. A fusion system
F over a discrete p-toral group S is a category whose objects are the subgroups of S,
and whose morphism sets HomF(P,Q) satisfy the following conditions:

(a) HomS(P,Q) ⊆ HomF(P,Q) ⊆ Inj(P,Q) for all P,Q ≤ S.

(b) Every morphism in F factors as an isomorphism in F followed by an inclusion.

A subgroup P ≤ S is fully centralized in F if |CS(P )| ≥ |CS(P
′)| for all P ′ ≤ S

which is F -conjugate to P , and is fully normalized in F if |NS(P )| ≥ |NS(P
′)| for

all P ′ ≤ S which is F -conjugate to P . By establishing upper bounds on numbers of
components in centralizers and normalizers, one can show that each subgroup P ≤ S
is F -conjugate to a fully centralized subgroup, and to a fully normalized subgroup.

The fusion system F is saturated if the following three conditions hold.

(I) For each P ≤ S which is fully normalized in F , P is fully centralized in F , OutF(P )
is finite, and OutS(P ) ∈ Sylp(OutF (P )).

(II) If P ≤ S and ϕ ∈ HomF(P, S) are such that ϕP is fully centralized, and if we set

Nϕ = {g ∈ NS(P ) |ϕcgϕ
−1 ∈ AutS(ϕP )},

then there is ϕ ∈ HomF (Nϕ, S) such that ϕ|P = ϕ.

(III) If P1 ≤ P2 ≤ P3 ≤ · · · is a sequence of subgroups of S, P∞ =
⋃∞
n=1 Pn, and

ϕ ∈ Hom(P∞, S) is such that ϕ|Pn
∈ HomF(Pn, S) for all n, then ϕ ∈ HomF(P∞, S).

We note here that OutS(P ) is a finite p-group for any pair P ≤ S of discrete p-toral
groups.

Since every subgroup P ≤ S is F -conjugate to a subgroup P ′ which is fully nor-
malized in F , condition (I) implies that OutF(P ) ∼= OutF(P

′) is finite for all P ≤ S.
The only real difference between this new definition and the definition of a saturated
fusion system over a finite p-group is condition (III), which can be thought of as a
“continuity” condition.

When S is a discrete p-toral group and F is a saturated fusion system over S, then
the definitions of F -centric subgroups of S, and of centric linking systems associated to
F , are identical to the definitions given in Section 4 above when S is a finite p-group.
A p-local compact group is now defined to be a triple (S,F ,L), where S is a discrete
p-toral group, F is a saturated fusion system over S, and L is a centric linking system
associated to F . The classifying space of such a triple (S,F ,L) is the p-completed
nerve |L|∧p . Thus, as in the case for fusion and linking systems over finite p-groups,
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a centric linking system for a fusion system F over a discrete p-toral group S can be
thought of as a means of associating a classifying space to F .

6.3. Reduction to finite subcategories. The main difficulty when generalizing re-
sults about p-local finite groups to the discrete p-toral case is that the categories are
no longer finite. It is, however, possible to replace any centric linking system L asso-
ciated to a saturated fusion system F over a discrete p-toral group S, by a finite full
subcategory L0 ⊆ L such that |L0|

∧
p ≃ |L|

∧
p . This is done by restricting L to those

F -centric subgroups which are also F-radical ; i.e., those P ≤ S for which OutF(P )
contains no nontrivial normal p-subgroup.

Proposition 6.2. Let F be a saturated fusion system over a discrete p-toral group S,
and let L be an associated centric linking system to F . Then S contains only finitely
many F-conjugacy classes of subgroups which are both F-centric and F-radical. There
is a finite full subcategory L0 ⊆ L whose objects include F-conjugacy class representa-
tives for all F-radical F-centric subgroups of S, such that the inclusion |L0|

∧
p ⊆ |L|

∧
p

is a homotopy equivalence.

Proof. See [BLO3, Corollary 3.5 & Proposition 5.5]. �

6.4. A homology decomposition of the classifying space. The orbit category of
a fusion system F over a discrete p-toral group S is defined exactly as before: it has
the same objects as F , and

MorO(F)(P,Q) = RepF(P,Q)
def
= HomF(P,Q)/ Inn(Q).

Also, we write Oc(F) to denote the full subcategory of O(F) whose objects are the
F -centric subgroups of S.

When F is a saturated fusion system over a discrete p-toral group S, then we have
the same correspondence between centric linking systems associated to F , classifying
spaces associated to F , and liftings over Oc(F) of the homotopy functor (P 7→ BP )
as we do when S is finite (Section 4.7). In particular, any classifying space for F has a
decomposition as the homotopy direct limit of the corresponding homotopy lifting, as
described by the next proposition.

Proposition 6.3. Fix a saturated fusion system F over a discrete p-toral group S,
and let F0 ⊆ F

c be any finite full subcategory whose objects include F-conjugacy class
representatives for all F-radical F-centric subgroups of S. Let L0 be any centric linking
system associated to F0, and let π̃0 : L0 −−→ O(F0) be the projection functor. Let

B̃ : O(F0) −−−−−−→ Top

be the left homotopy Kan extension over π̃0 of the constant functor L0
∗
−−→ Top. Then

B̃ is a homotopy lifting of the homotopy functor P 7→ BP , and

|L|∧p ≃ |L0|
∧
p ≃

(
hocolim−−−−−→

O(F0)

(B̃)
)
∧
p . (1)

Proof. See [BLO3, Proposition 5.4]. �
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6.5. Reduced linking systems. Constructing centric linking systems over discrete
p-toral groups is not as straightforward as it sometimes is in the case of finite p-groups.
For this reason, we define another type of category which is intermediate between fusion
systems and linking systems.

Let F be a fusion system over a discrete p-toral group S, and let F0 ⊆ F
c be

any full subcategory. A reduced linking system associated to F0 consists of a cat-

egory L0, together with a functor π : L0 −−→ F0 and distinguished homomorphisms

P
δP−−→ Aut

L0

(P ), which satisfy axioms (A), (B), and (C) in Section 4.2, except that

Ker(δP ) = Z(P )0, and that the group Z(P )/Z(P )0 ∼= π0(Z(P )) (not Z(P ) itself) acts
freely on morphism sets Mor

L
(P,Q) and induces bijections

Mor
L
(P,Q)/π0(Z(P ))

∼=
−−−−−−→ HomF(P,Q).

When F0 = F c (i.e., when all F -centric subgroups are objects of F0 and L0), we call

L0 a reduced centric linking system associated to F .

Fortunately, we do know that each reduced linking system lifts to a unique linking
system.

Proposition 6.4. Let F be a fusion system over the discrete p-toral group S. Then any

reduced linking system L associated to F c lifts to a centric linking system L associated
to F which is unique up to isomorphism.

Proof. See [BLO3, Corollary 5.7]. �

6.6. Compact Lie groups. It was immediately obvious that every finite group can
be regarded as a p-local finite group. In fact, we were already studying the fusion
system and centric linking system for finite groups long before we considered the more
abstract definitions. The definitions of fusion systems, and of reduced centric linking
systems, for compact Lie groups are also straightforward, but the definition of their
linking systems is less obvious.

Fix a compact Lie group G and a prime p. Let T ≤ G be a maximal torus, and fix a

Sylow p-subgroup S/T ∈ Sylp(NG(T )/T ). Then S is a maximal p-toral subgroup of G,

and any other maximal p-toral subgroup of G is conjugate to S. These subgroups play
the role of “Sylow p-subgroups” when working with compact Lie groups. For example,
an arbitrary p-toral subgroup P ≤ G is maximal p-toral if and only if χ(G/P ) is prime
to p, where χ denotes as usual the Euler characteristic.

Now let S ≤ S be any discrete p-toral subgroup which is dense in S and has the
same rank. By Proposition 6.1, there is such a subgroup, and any two such subgroups

are conjugate in S. Since the closure of any discrete p-toral subgroup of G is p-toral,
we now see that S is a maximal discrete p-toral subgroup of G, and that any other
maximal discrete p-toral subgroup is G-conjugate to S.

Define the fusion category FS(G) exactly as was done for finite G: its objects consist
of all subgroups of S, and MorFS(G)(P,Q) is the set of all group homomorphisms which
are induced by conjugation in G. A subgroup P ≤ S is FS(G)-centric if and only if
Z(P ) is a maximal discrete p-toral subgroup of CG(P ), or equivalently if and only if

CG(P ) = Z(P ) × C ′
G(P ) for some (unique) subgroup C ′

G(P ) which is finite of order
prime to p.
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We now define the reduced centric linking system LcS(G) to be the category whose
objects are the FS(G)-centric subgroups of S, and where

Mor
Lc
S
(G)

(P,Q) = NG(P,Q)
/(
Z(P )0 × C

′
G(P )

)
.

By Proposition 6.4, there is a unique centric linking system LcS(G) associated to LcS(G).

Theorem 6.5. Fix a compact Lie group G and a maximal discrete p-toral subgroup
S ≤ G. Then (S,FS(G),L

c
S(G)) is a p-local compact group, with classifying space

|LcS(G)|
∧
p ≃ BG∧

p .

Proof. See [BLO3, §8]. The proofs that FS(G) is a fusion system and LcS(G) an asso-
ciated centric linking system are straightforward. The proof that |LcS(G)|

∧
p ≃ BG∧

p is
based on the homology decomposition of BG∧

p in [JMO]. �

6.7. p-compact groups. A p-compact group is a triple (X,BX, e), where BX is a
pointed, connected, p-complete space, e : X −−→ Ω(BX) is a homotopy equivalence,
and H∗(X ;Fp) is finite. These objects were introduced in the 1980’s by Dwyer and
Wilkerson [DW3], and extensively studied by them and many other authors. The
concept of a p-compact group was designed to be a homotopy theoretic analog of a
classifying space of a compact Lie group. For instance, if G is a compact Lie group
whose group of components is a p-group, then BG∧

p is the classifying space of a p-
compact group. In contrast, if π0(G) is not a p-group, then the mod p cohomology of
the loop space Ω(BG∧

p ) is not in general finite.

One of our original motivations for defining p-local compact groups was to provide
a wider framework for studying p-compact groups. This requires first checking that
every p-compact group X can be considered as a p-local compact group; in particular,
that BX ≃ |L|∧p for some centric linking system L associated to a saturated fusion
system F over a discrete p-toral group.

By [DW3, §8–9], for any p-compact group X , there is a unique maximal p-toral sub-
group, hence a unique maximal discrete p-toral subgroup f : BS −−→ BX (Proposition
6.1); and any other map from the classifying space of a discrete p-toral group to BX
factors through f . We set

FS,f(X)
def
= FS,f(BX) and LcS,f(X)

def
= LcS,f(BX),

where the fusion and linking systems of the space BX are defined as in Section 2.5.
Using the properties of the mapping spaces Map(BP,BX) described in [DW3, §5–6]
(for a discrete p-toral group P ), we check that FS,f(X) is a saturated fusion system

over S, and that LcS,f(X) is a reduced centric linking system associated to FS,f(X). Let

LcS,f(X) be the centric linking system associated to LcS,f(X) (and hence to FS,f(X))
by Proposition 6.4. We then show:

Theorem 6.6. For any p-compact group X and any maximal discrete p-toral subgroup
f : BS −−→ BX, (S,FS,f(X),LcS,f(X)) is a p-local compact group with classifying space

|LcS,f(X)|∧p ≃ BX .

Proof. See [BLO3, §9]. The proof that |LcS,f(X)|∧p ≃ BX is based on the decomposition,
shown in [CLN], of BX as a homotopy direct limit of BP ’s for p-toral (or discrete p-
toral) subgroups P ≤ X . �
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