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ABSTRACT: We provide a topological proof that each orientation reversing homeomorphism

of the 2-sphere which has a point of period k ≥ 3 also has a point of period 2. Moreover if

such a k-periodic point can be chosen arbitrarily close to an isolated fixed point o then the same

is true for the 2-periodic point. We also strengthen this result proving that if an orientation

reversing homeomorphism h of the sphere has no 2-periodic point then the complement of the

fixed point set can be covered by invariant open sets where h is conjugate either to the map

(x, y) 7→ (x + 1,−y) or to the map (x, y) 7→ 1
2
(x,−y).
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1 Introduction

A classical theorem of Brouwer asserts, in its weaker version, that an orientation
preserving homeomorphism of the plane R2 which possesses a k-periodic point,
k ≥ 2, also has a fixed point (see [2] or [3], [7], [12]). The aim of this paper
is to give a counterpart of this result in the framework of orientation reversing
homeomorphisms. Considering homeomorphisms of the 2-sphere S2, we first prove
that if such a homeomorphism reverses the orientation and has a k-periodic point,
k ≥ 3, then it also admits a 2-periodic point (Theorem 3.1). Using Nielsen-
Thurston theory, such a result was already known for C1-diffeomorphisms ([10])
and one could probably drop the smoothness assumption working again with this
powerful theory. We give a topological proof based on the computation of the
Lefschetz index on suitable open subsets of S2. This point of view emphasizes
the analogy with the result of Brouwer mentioned above and leads, we hope, to
a fairly intuitive proof. For example these arguments allow one to localize the
2-periodic orbit on both sides of a Jordan curve with some index properties and
can be readily adapted to give a local version of Theorem 3.1: If an isolated fixed
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point is the limit of k-periodic points (k ≥ 3) then it is also the limit of 2-periodic
points (Theorem 4.3).

Section 5 is devoted to a “strong version” of our result. This is motivated by
the Brouwer plane translation theorem which, roughly speaking, asserts that if
h is a fixed point free orientation preserving planar homeomorphism then every
point is contained in a simply connected invariant domain where h is conjugated
to a translation (see [9], [12], [16] for modern references). It is then natural to
expect a version of our result which would assert that an orientation reversing
homeomorphism h of S2 without a 2-periodic point has “obvious” dynamics on
some invariant open sets covering the complement of the fixed point set Fix(h).
This is carried out in Theorem 5.1 where such open sets are shown to exist,
where h is conjugate either to the map (x, y) 7→ (x + 1,−y) or to the map
(x, y) 7→ 1

2(x,−y).

2 Background

2.1 Notations and basic definitions

The plane R2 is endowed with its euclidean norm ||·|| and we think of the 2-sphere
S2 as the one point compactification of R2, that is S2 = R2∪{∞}. Thus a planar
homeomorphism is identified with a homeomorphism of S2 fixing the point ∞
and our results are also valid for such a homeomorphism.

For X ⊂ Y ⊂ S2, we write respectively IntY (X), ClY (X) and ∂Y (X) =
ClY (X) \ IntY (X) for the interior, the closure and the frontier of X with respect
to Y . For the sake of simplicity we omit the subscript Y when Y = S2. We also
denote π0(X) the set of all the connected components of X.

An arc is a subset of S2 homeomorphic to the interval [0, 1] and an open arc is
an arc with its two endpoints removed. If γ is an arc with a provided orientation
and a,b two points met in this order on γ, then [a, b]γ is the subarc from a to b
for the chosen orientation of γ.

A topological closed disc is a subset of S2 homeomorphic to the closed unit
disc.

For any map f : E → F , the fixed point set {z ∈ E|f(z) = z} is denoted
by Fix(f). A point z ∈ E is said to be a k-periodic point of f if k is the small-
est positive integer such that the sequence z, f(z), . . . , fk(z) is well-defined and
fk(z) = z.
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2.2 Jordan curves and Jordan domains

A Jordan curve is a subset of S2 homeomorphic to the unit circle S1. According
to the Jordan Theorem, the complement S2 \ J of a Jordan curve J has exactly
two connected components and J is their common frontier. An open subset of
S2 which is a connected component of the complement of a Jordan curve is said
to be a Jordan domain. If J is a Jordan curve with a given orientation and if
a 6= b are two points of J , then [a, b]J denotes the arc on J from a to b for this
orientation of J . Note that our vocabulary slightly differs from the one usually
used in the literature, where a Jordan curve J is often defined as a subset of R2

and a Jordan domain as the bounded component of R2 \ J .
For later use, we collect now a few propositions about Jordan domains. The

first one is a straightforward adaptation of a result of Kerékjártó;

Proposition 2.1 Let U ,U ′ be two Jordan domains such that U ∩ U ′ 6= ∅ and(
S2 \ Cl(U)

) ∩ (
S2 \ Cl(U ′)) 6= ∅. Then every connected component of U ∩ U ′ is

also a Jordan domain, whose frontier is contained in ∂U ∪ ∂U ′.
Indeed, if we assume that Cl(U) and Cl(U ′) are contained in the planeR2 then the
hypothesis

(
S2 \Cl(U)

)∩ (
S2 \Cl(U ′)) 6= ∅ is of course satisfied and Proposition

2.1 is a well-known result of Kerékjártó ([14]). In the general case, let us choose
a point z ∈ (

S2 \Cl(U)
)∩ (

S2 \Cl(U ′)) and a homeomorphism ϕ of S2 such that
ϕ(z) = ∞. We are reduced to the previous situation considering Cl(ϕ(U)) =
ϕ(Cl(U)) and Cl(ϕ(U ′)) = ϕ(Cl(U ′)).

We have also:

Lemma 2.2 Let U , V be two Jordan domains such that V ⊂ U , V 6= U , and
∂V ∩ ∂U contains at least two points.

(1) For any µ ∈ π0(U ∩ ∂V ) we have:

(i) µ is an open arc lying in U with its two endpoints x = x(µ), y = y(µ)
in ∂U (it is usually said that µ is a cross-cut of U),

(ii) We have a partition U \µ = U ′µ∪U ′′µ where U ′µ (resp. U ′′µ) is the Jordan
domain contained in U whose frontier is µ∪[x, y]∂U (resp. µ∪[y, x]∂U ).

(iii) The Jordan domain V is contained either in U ′µ or in U ′′µ .

Notation: We write Uµ,V for the connected component of U \µ containing
V and µ∗ for the arc in ∂U with endpoints x, y such that µ ∪ µ∗ = ∂Uµ,V .

(2) If a is a point in U \ Cl(V ), there exists a unique µ = µ(a) ∈ π0(U ∩ ∂V )
such that a 6∈ Uµ,V (see Fig. 1).
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Figure 1: The Jordan domains U , V and the arcs µ

Proof of Lemma 2.2: (1) (i) follows from the fact that U ∩ ∂V = ∂V \ ∂U is
not connected. (ii) is a classical result of plane topology (known as the Θ-curve
Lemma). It can be proved with only elementary arguments (see for example
[18][Theorem 11.8 page 119]). It can also be seen as a corollary of the Schoenflies
Theorem, constructing a homeomorphism of S2 mapping respectively ∂U and µ
onto S1 and (−1, 1)×{0}. For (iii), it is enough to remark that V is a connected
subset of U \ µ.

(2) Choose a′ to be any point in V . Since a, a′ are separated in S2 by the
closed set ∂V they are also separated in U by a connected component µ of U ∩∂V
(see [18][Theorem 7.1 page 151]) and we have then a′ ∈ V ⊂ Uµ,V , a 6∈ Uµ,V . Now
suppose that we can find two connected components µ 6= ν of U ∩ ∂V such that
a 6∈ Uµ,V ∪ Uν,V and consider the partitions

U \ µ = U ′µ ∪ U ′′µ and U \ ν = U ′ν ∪ U ′′ν
given by (1)(ii). Assume for example that U ′µ = Uµ,V and U ′ν = Uν,V . Since
µ ∩ ν = ∅, we have either µ ⊂ Uν,V or µ ⊂ U ′′ν . This latter case is actually not
possible since µ ⊂ Cl(V ) and U ′′ν ∩ V = ∅. It follows that

a ∈ U ′′ν ⊂ U \ Uν,V ⊂ U \ µ and consequently U ′′ν ⊂ U ′′µ .

Reversing the roles of ν and µ we obtain U ′′µ ⊂ U ′′ν so U ′′µ = U ′′ν and finally

µ = U ∩ ∂U ′′µ = U ∩ ∂U ′′ν = ν ,

a contradiction. ¤
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2.3 Lefschetz index

Let M be a manifold (more generally, a Euclidean Neighbourhood Retract), U an
open subset of M and ϕ : U →M a continuous map such that Fix(ϕ) is compact.
One can define the fixed point index, or Lefschetz index, I(ϕ) ∈ Z (see [5]) which
possesses the following properties:

Properties 2.3 (1) I(ϕ) depends only on the set Fix(ϕ); That is, I(ϕ) =
I(ϕ|U ′) for any open set U ′ such that Fix(ϕ) ⊂ U ′ ⊂ U .

(2) If Fix(ϕ) = ∅ then I(ϕ) = 0.

(3) Additivity; If U =
⋃n
i=1 Ui where U1, . . . , Un are open and if the sets Fix(ϕ|Ui)

are compact and pairwise disjoint (1 ≤ i ≤ n) then

I(ϕ) =
n∑

i=1

I(ϕ|Ui).

(4) Homotopy Invariance; If (ϕt : U →M)0≤t≤1 is a homotopy from ϕ0 = ϕ to
ϕ1 such that

⋃
0≤t≤1 Fix(ϕt) is compact, then I(ϕ)=I(ϕ1).

(5) Topological Invariance; If ψ : M → M is a homeomorphism then the maps
ϕ and ψ ◦ ϕ ◦ (ψ−1)|ψ(U) : ψ(U) →M have the same Lefschetz index.

Proof of Properties 2.3: The first four ones are stated in [5] so we just give the
argument for the fifth one. It is in fact a consequence of the following Commuta-
tivity Property of the Lefschetz index (see [5]):
Let Ui be an open set of a manifold Mi (i ∈ {1, 2}) and let k1 : U1 → M2,
k2 : U2 →M1 be two continuous maps. Then the composite maps

k−1
1 (U2) → M1

x 7→ k2(k1(x))
and

k−1
2 (U1) → M2

x 7→ k1(k2(x))

have homeomorphic fixed point sets. They also have the same Lefschetz index if
their fixed point sets are compact.
We remark that Fix(ψ ◦ ϕ ◦ (ψ−1)|ψ(U)) = ψ(Fix(ϕ)) is compact, which ensures
directly that the Lefschetz index of ψ ◦ ϕ ◦ (ψ−1)|ψ(U) is defined. Now use the
Commutativity Property with

k1 = (ψ−1)|ψ(U) : ψ(U) →M and k2 = ψ ◦ ϕ : U →M.

We obtain

I(ψ ◦ ϕ ◦ (ψ−1)|ψ(U)) = I(ϕ|ϕ−1(U)).
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Furthermore we have obviously

Fix(ϕ) ⊂ ϕ−1(U) ⊂ U

and we conclude with Property 2.3 (1). ¤

Notations: We will deal in this paper with continuous maps f : U → S2, where
U ⊂ S2 is a given open set (U = S2 except in Section 4) and we will calculate the
Lefschetz index of ϕ = f |U for various open sets U ⊂ U . Thus we will speak of
the index of f on U and we will write Ind(f, U) instead of I(f |U ). Moreover, if
U contains exactly one fixed point z of f , we recall that Ind(f, U) is said to be
the Lefschetz index of z (for the map f) and is also denoted Ind(f, z).

The following lemma derives from Properties 2.3.

Lemma 2.4 Let U1, U2 be two open subsets of S2 and let f : S2 → S2 be a
continuous map. We suppose that Ui∩Fix(f) is compact (i ∈ {1, 2}). Then there
are only finitely many connected components V of U1∩U2 such that Ind(f, V ) 6= 0
and we have

Ind(f, U1 ∩ U2) =
∑

V ∈π0(U1∩U2)

Ind(f, V ).

Proof of Lemma 2.4: We can suppose U1 ∩ U2 6= ∅. The set U1 ∩ U2 ∩ Fix(f) is
compact so there exists a finite open covering

U1 ∩ U2 ∩ Fix(f) ⊂ V1 ∪ . . . ∪ Vn
where V1, . . . , Vn are some connected components of U1 ∩ U2. According to Pro-
perties 2.3 (1)-(2) we have Ind(f, U1 ∩ U2) = Ind(f, V1 ∪ . . . Vn) and Ind(f, V )=0
for any V ∈ π0(U1 ∩ U2) \ {V1, . . . , Vn}. Then we obtain with Property 2.3 (3)

Ind(f, U1 ∩ U2) =
n∑

i=1

Ind(f, Vi) =
∑

V ∈π0(U1∩U2)

Ind(f, V ).

¤
Although this is not essential in this paper, let us recall that, for planar maps,

there is an intuitive interpretation for the Lefschetz index on Jordan domains:

Proposition 2.5 Let U be an open subset of R2 and let f : U → R2 be a contin-
uous map. If U is a Jordan domain such that Cl(U) ⊂ U and ∂U ∩ Fix(f) = ∅
then Ind(f, U) is the degree of the map

S1 → S1

t 7→ f(u(t))−u(t)
||f(u(t))−u(t)||
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where u : S1 → ∂U = u(S1) is any homeomorphism which endows ∂U with its
counterclockwise orientation.

This result is for example a consequence of [5][exercise 5 page 207]. In other words,
if f and U are as in Proposition 2.5 then Ind(f, U) is the winding number of the
vector f(z)− z when z moves along the Jordan curve ∂U in the counterclockwise
direction. For this reason Ind(f, U) is also said to be the index of f on the curve
∂U and is often denoted Ind(f, ∂U) instead of Ind(f, U) in the literature.

We end this section with an index zero lemma which will be repeatedly used
in this paper;

Lemma 2.6 Let U, V be two Jordan domains such that V ⊂ U , V 6= U , ∂V ∩∂U
contains at least two points and let f : S2 → S2 be a continuous map. Assume
furthermore that

(i) f has no fixed point in ∂V ,

(ii) U ∩ ∂V ∩ f(U) = ∅,
(iii) there exists µ ∈ π0(U ∩ ∂V ) such that, using the notations of Lemma 2.2,

f(µ∗) ∩ U = ∅.
Then we have Ind(f, V ) = 0.

Proof of Lemma 2.6: Because of (i), Ind(f, V ) is defined. We consider the Jordan
domain Uµ,V and the arc µ∗ associated to µ, as explained in Lemma 2.2. Since
∂Uµ,V = µ ∪ µ∗ it is easy to construct a homotopy

Cl(Uµ,V )× [0, 1] → Cl(Uµ,V )
(z, t) 7→ rt(z)

with the following properties:

1. r0 is the identity map of Cl(Uµ,V ) ,

2. r1(Cl(Uµ,V )) = µ∗ ,

3. ∀t ∈ [0, 1]∀z ∈ µ∗ rt(z) = z ,

4. if 0 < t ≤ 1 then rt(Cl(Uµ,V )) ⊂ Uµ,V ∪ µ∗.
Essentially, this simply means that (rt)0≤t≤1 is a strong retracting deformation
of Cl(Uµ,V ) onto µ∗. The additional fourth property ensures that the maps f ◦ rt
have no fixed point on ∂V (0 ≤ t ≤ 1). Indeed there is nothing to prove for
f ◦ r0|∂V = f |∂V and for 0 < t ≤ 1, z ∈ ∂V ⊂ Cl(Uµ,V ), we have:
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- If z ∈ µ∗ then f ◦ rt(z) = f(z) 6= z,
- If z ∈ Uµ,V ∪ µ then with (4)

f ◦ rt(z) ∈ f(Uµ,V ) ∪ f(µ∗)

and consequently z 6= f ◦ rt(z) since, using (ii) and (iii),

∂V ∩ (Uµ,V ∪ µ) ∩ f(Uµ,V ) ⊂ ∂V ∩ U ∩ f(U) = ∅

and
∂V ∩ (Uµ,V ∪ µ) ∩ f(µ∗) ⊂ U ∩ f(µ∗) = ∅.

Moreover we have

f ◦ r1(V ) ∩ V ⊂ f ◦ r1(Cl(Uµ,V )) ∩ U = f(µ∗) ∩ U = ∅

which gives Ind(f ◦ r1, V ) = 0. The result then follows from Property 2.3 (4)
considering the homotopy (f ◦ rt|V )0≤t≤1. ¤

2.4 Translation arcs

Definition 2.7 Let f be a homeomorphism of S2. An arc γ is said to be a
translation arc for f if

1. one of its two endpoints, say p, is mapped by f onto the other one,

2. we have furthermore γ ∩ f(γ) = {p, f(p)} ∩ {f(p), f2(p)}.

Note that, with the above definition, Fix(f) is necessarily disjoint from
⋃
k∈Z f

k(γ).
For convenience we also make the following convention. If f is a given homeo-
morphism of S2 and γ a translation arc for f with endpoints p and f(p) then the
arcs fk(γ) are oriented from fk(p) to fk+1(p) (k ∈ Z). Of course γ could also be
thought as a translation arc for f−1 and the arcs fk(γ) would be then oriented
from fk+1(p) to fk(p).

Lemma 2.8 Let h be a homeomorphism of S2 such that h2 6= IdS2 and let m be
a point in S2 \ Fix(h2). Then at least one of the following two assertions holds:

A1 : There exists a translation arc α for h, with endpoints p and h(p), such
that α ∩ h(α) = {h(p)}, α ∩ h2(α) = {p} ∩ {h3(p)} and m ∈ α \ {p, h(p)}.

A2 : There exists a translation arc β for h2, with endpoints q and h2(q), such
that β ∩ h(β) = ∅ and m ∈ β \ {q, h2(q)}.
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Proof of Lemma 2.8: Let U be the connected component of S2 \ Fix(h2) which
contains m. We know that h2(U) = U (see [4]) and, since an open connected
subset of S2 is arcwise connected, there exists an arc γ lying in U with endpoints
m and h2(m). We can slightly enlarge this arc γ and obtain a topological closed
disc ∆ such that γ ⊂ Int(∆) ⊂ ∆ ⊂ U . For any R > 0, let us denote by DR the
closed disc in R2 with center the origin o = (0, 0) and radius R. Up to conjugacy
in S2, we can suppose that m = o and ∆ = D1. Define respectively R1 > 0 and
R2 > 0 to be the unique real numbers such that

∂DR1 ∩ h(∂DR1) = DR1 ∩ h(DR1) 6= ∅
and

∂DR2 ∩ h2(∂DR2) = DR2 ∩ h2(DR2) 6= ∅.
Observe that, since h2(o) ∈ Int(D1) ∩ h2(Int(D1)), we have necessarily R2 < 1
so

DR2 ⊂ D1 ⊂ S2 \ Fix(h2) ⊂ S2 \ Fix(h).

Lemma 2.8 then follows from the comparison of R1 and R2:
• If R1 ≤ R2, let us choose a point p ∈ ∂DR1 such that h(p) ∈ ∂DR1 . Since
DR1 ⊂ DR2 , the points p, h(p), h2(p) are pairwise distinct and any arc α from p
to h(p) satisfying o ∈ α \ {p, h(p)} ⊂ Int(DR1) (see Fig. 2) has the properties
required in the assertion A1.

o h(p)

h2(p)

DR1
)h(

h(    )α

p

α

DR1

Figure 2: The translation arc α

• If R1 > R2, let q ∈ ∂DR2 such that h2(q) ∈ ∂DR2 . Choose an arc β from q to
h2(q) 6= q such that o ∈ β \ {q, h2(q)} ⊂ Int(DR2). It is clear that β is an arc as
described in the assertion A2 (possibly with q = h4(q)). ¤
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2.5 Brouwer’s lemma

Let f be an orientation preserving homeomorphism of S2. Suppose that γ is a
translation arc for f , with endpoints p, f(p), such that

⋃
k∈Z f

k(γ) is not a simple
curve, i.e. the set {k ≥ 1|(γ \ {f(p)}) ∩ fk(γ \ {f(p)}) 6= ∅} is nonempty. If n
denotes the minimum of this latter set and x the first point on fn(γ) to meet γ,
then

C = [x, f(p)]γ
n−1⋃

i=1

f i(γ) ∪ [fn(p), x]fn(γ)

is clearly a Jordan curve and we have:

Proposition 2.9 (Brouwer’s lemma) Let U be a connected component of S2 \C.
Then we have Ind(f, U) = 1. In particular f admits a fixed point in U .

Usually Brouwer’s Lemma ([3], [12][Appendice]) is stated for an orientation pre-
serving homeomorphism f of R2. The arcs f i(γ) then lie in R2 and it is shown
that Ind(f, U)=1 for the bounded connected component U of R2 \C. Proposition
2.9 is only a minor adaptation of such a statement. Indeed, let U1 and U2 be the
two connected components of S2 \ C. According to the Lefschetz-Hopf Theorem
(see for example [5]) we have

2 = Ind(f,S2) = Ind(f, U1) + Ind(f, U2).

Consequently f admits at least one fixed point z ∈ S2 \ C, say z ∈ U1, and it is
enough to check Ind(f, U2) = 1 . Choosing a homeomorphism ϕ of S2 such that
ϕ(z) = ∞ it is clear that ϕ ◦ f ◦ ϕ−1 is a planar homeomorphism posseding ϕ(γ)
as a translation arc, hence the above references give Ind(ϕ ◦ f ◦ ϕ−1, ϕ(U2))=1.
We derive Ind(f, U2)=1 from Property 2.3 (5).

3 First result: period k ≥ 3 implies period 2

We prove in this section the

Theorem 3.1 Let h be an orientation reversing homeomorphism of the sphere
S2 possessing a point of period at least three. Then h admits also a 2-periodic
point. More precisely, there exist a Jordan curve C ⊂ S2 \ Fix(h2) and a point z
such that, writing U,U ′ for the two connected components of S2 \ C, we have

z = h2(z) ∈ U, h(z) ∈ U ′,

Ind(h, U) = 0, Ind(h2, U) = 1.
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We introduce the following notation in order to avoid unpleasant repetitions.
Notation: f, g being two homeomorphisms of S2, we write f ∼ g if and only if
we have

1. ∀i ∈ {1, 2} Fix(f i) = Fix(gi) and Ind(f i,Ω) = Ind(gi,Ω) for any open set
Ω ⊂ S2 such that Ω ∩ Fix(f i) is compact,

2. ∀z ∈ Fix(f2) f(z) = g(z).

Clearly, ∼ defines an equivalence relation and Theorem 3.1 will be proved if
its conclusion holds for a homeomorphism g ∼ h.

Let us explain the main idea to detect the 2-periodic point z ∈ U . We will
prove actually the following stronger result (although less meaningful from the
dynamical view-point).

An additional index property: There exists a connected component U of S2 \
C such that, in addition to the above index properties, we have Ind(h2, U ∩h(U))
= 0 (possibly with U ∩ h(U) = ∅).

In particular this will show Ind(h2, U) 6= Ind(h2, U ∩ h(U)) and Property 2.3 (1)
then gives Fix(h2) ∩U 6= Fix(h2) ∩U ∩ h(U). In other words there exists a point
z ∈ U such that h2(z) = z and h(z) = h−1(z) ∈ U ′ = S2 \ Cl(U), as announced
in Theorem 3.1.

We remark finally that there is no loss in proving this last index property only
for a homeomorphism g ∼ h:

Claim: Suppose g ∼ h and let Ω ⊂ S2 be any open set. Then the indices
Ind(g2,Ω∩ g(Ω)) and Ind(h2,Ω∩ h(Ω)) are simultaneously defined or not and, if
defined, are equal.

Indeed g and h have exactly the same fixed points and the same 2-periodic orbits
so

Fix(g2) ∩ Ω ∩ g(Ω) = Fix(g2) ∩ Ω ∩ g(Ω) ∩ h(Ω)
= Fix(h2) ∩ Ω ∩ g(Ω) ∩ h(Ω) = Fix(h2) ∩ Ω ∩ h(Ω).

If these sets are compact we let Ω′ = Ω ∩ g(Ω) ∩ h(Ω). It follows from Property
2.3 (1) and from the definition of ∼ that

Ind(g2,Ω ∩ g(Ω)) = Ind(g2,Ω′) = Ind(h2,Ω′) = Ind(h2,Ω ∩ h(Ω)).
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3.1 A proposition about translation arcs of h

Proposition 3.2 Let h be an orientation reversing homeomorphism of S2. As-
sume that we can find a translation arc α for h, with endpoints p, h(p), such
that:

• α ∩ h(α) = {h(p)}, α ∩ h2(α) = {p} ∩ {h3(p)},
• α ∩ hk(α) 6= ∅ for an integer k ≥ 2, i.e. the set

⋃
k∈Z h

k(α) is not a simple
curve.

Then there exist a Jordan curve C and a point z as announced in Theorem 3.1.

This proposition is a consequence of the following lemmas. The first one
allows us to reduce to the situation where, for a smallest n ≥ 2, the iterate
hn(α) meets the arc α “in a nice way”. This will be convenient to compute some
indices on a suitable Jordan domain. We use the same technique as in the proof
of [3][Theorem 1], observing that the “perturbations” of h can be constructed
without altering not only the fixed point set but also the set of the 2-periodic
orbits. For completeness and because similar lemmas will be used farther in this
paper, we write a rather detailed proof.

Lemma 3.3 Let h, α be as in Proposition 3.2. Let us define n to be the minimun
of the set {k ≥ 2|α ∩ hk(α) 6= ∅} and x to be the first point on hn(α) to meet
α. Then there exists an orientation reversing homeomorphism h∗ ∼ h admitting
α∗ = [x, h(p)]α as a translation arc such that h∗(x) = h(p) and

• ∀i ∈ {1, . . . , n− 1} hi∗(α∗) = hi(α),

• hn∗ (α∗) = [hn(p), x]hn(α).

Proof of Lemma 3.3: If n = 2 then {x} = {p} = {h3(p)} = α ∩ h2(α) and there
is nothing to prove. We suppose from now on n ≥ 3.

• First step.
If we have already x = p, just define g = h. Otherwise, since x 6= h(p) by the
minimality of n, observe that the arc [p, x]α has the following two properties:

(i) it is disjoint from its images by h and h2,

(ii) it is disjoint from hi(α) for every i ∈ {1, . . . , n− 1}.
One can construct a topological closed disc D1 neighbourhood of [p, x]α, thin
enough to satisfy (i) and (ii). Since α∗ = [x, h(p)]α is an arc, one can also
construct a homeomorphism ϕ of S2 with support in D1 such that ϕ(α∗) = α (see
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for example [3][Lemma 2]). Defining g = h ◦ ϕ, let us check that g ∼ h and also
that α∗ is a translation arc for g with g(x) = h(p) and

∀i ∈ {1, . . . , n} gi(α∗) = hi(α).

The Alexander trick gives an isotopy (ϕt)0≤t≤1 with support inD1 from ϕ0 = IdS2
to ϕ1 = ϕ. It is easily seen with D1∩h(D1) = ∅ = D1∩h2(D1) that, for i ∈ {1, 2}
and t ∈ [0, 1], the homeomorphisms hi and (h ◦ ϕt)i have exactly the same fixed
point set. We also observe that

z = h2(z) =⇒ z 6∈ D1 =⇒ h ◦ ϕt(z) = h(z).

Furthermore, if Ω ⊂ S2 is an open set such that Ω∩Fix(hi) is compact, we obtain
Ind(hi,Ω) = Ind(gi,Ω) considering the homotopy ((h ◦ ϕt)i|Ω)0≤t≤1 in Property
2.3 (4). This shows g ∼ h. By the construction we have g(α∗) = h◦ϕ(α∗) = h(α)
with g(x) = h ◦ ϕ(x) = h(p). Since D1 is disjoint from

⋃n−1
i=1 h

i(α), we get g = h
on

⋃n−1
i=1 h

i(α) so

∀i ∈ {1, . . . , n} gi(α∗) = hi(α) with gi(x) = hi(p).

• Second step.
If {x} = {gn+1(x)} = α∗ ∩ gn(α∗), it suffices to define h∗ = g. Otherwise, since
x 6= gn(x) = hn(p), the arc [x, gn+1(x)]gn(α∗) possesses the following properties:

(iii) it is disjoint from its images by g and g2,

(iv) it is disjoint from gi(α∗) for every i ∈ {1, . . . , n− 1}.
Choose now a topological closed disc D2 neighbourhood of [x, gn+1(x)]gn(α∗) sa-
tisfying (iii),(iv) and a homeomorphism ψ of S2 supported in D2 such that

ψ(gn(α∗)) = [gn(x), x]gn(α∗).

Using the same arguments as in the first step, it is not difficult to check that
h∗ = ψ ◦ g ∼ g has the required properties. ¤

Lemma 3.4 Let h, α, n be as in Lemma 3.3. We assume furthermore that α ∩
hn(α) = {p} = {hn+1(p)} and we consider the Jordan curve C =

⋃n
i=0 h

i(α). If
U is a connected component of S2 \C, then we have Ind(h,U) = 0 and Ind(h2, U)
= 1.

Proof of Lemma 3.4: It is easy to construct an orientation reversing homeomor-
phism g of S2 possessing the following properties:

13



1. g = h on
⋃n−1
i=0 h

i(α),

2. g maps hn(α) onto α (hence g(C) = C),

3. g interchanges the two connected components of S2 \ C.

Thus g−1 ◦ h is an orientation preserving homeomorphism of the sphere which
coincides with the identity map IdS2 on the arc

⋃n−1
i=0 h

i(α). Using a variation
of the Alexander trick (see for example [3]Lemma 1) one can find an isotopy
(ϕt)0≤t≤1 from ϕ0 = IdS2 to ϕ1 = g−1 ◦ h such that

∀t ∈ [0, 1]∀z ∈
n−1⋃

i=0

hi(α) ϕt(z) = z.

Defining ht = g ◦ϕt (0 ≤ t ≤ 1), we obtain an isotopy from h0 = g to h1 = h such
that ht = h on

⋃n−1
i=0 h

i(α) and (h2
t )0≤t≤1 is then an isotopy from g2 to h2 such

that h2
t = h2 on

⋃n−2
i=0 h

i(α). Clearly h2 has no fixed point on α and then also
on

⋃
i∈Z h

i(α). Consequently, for every t ∈ [0, 1], the homeomorphism h2
t (and so

ht) has no fixed point on

n−2⋃

i=0

hi(α) ∪ ht
( n−2⋃

i=0

hi(α)
) ∪ h2

t

( n−2⋃

i=0

hi(α)
)

=
n⋃

i=0

hi(α) = C.

Hence all the indices Ind(ht, U) and Ind(h2
t , U) are defined and, according to

Property 2.3 (4), we have Ind(g, U) = Ind(h,U) and Ind(g2, U) = Ind(h2, U). We
conclude observing that U ∩ g(U) = ∅ gives Ind(g, U)=0 and, as it is well known,
U = g2(U) implies Ind(g2, U)=1. ¤

Remark 3.5 If in Lemma 3.4 we have n ≥ 3, then α ∪ h(α) is a translation arc
for the orientation preserving homeomorphism h2 and Brouwer’s lemma gives
directly Ind(h2, U)=1.

Lemma 3.6 Let h, α, n and C be as in Lemma 3.4. Then there exists a con-
nected component U of S2 \ C such that Ind(h2, U ∩ h(U)) = 0.

Proof of Lemma 3.6: Let U1 and U2 = S2 \Cl(U1) be the two connected compo-
nents of S2 \ C. We can assume Ui ∩ h(Ui) 6= ∅ for both i = 1 and i = 2 since
otherwise the result is obvious. Let us choose for example U = U1. According to
Lemma 2.4, it suffices to prove that Ind(h2, V ) = 0 for any given V ∈ π0(U∩h(U)).
Since h reverses the orientation, every point z ∈ C\hn(α) admits a neighbourhood
Nz such that h(Nz ∩U) = h(Nz)∩U2 and h(Nz ∩U2) = h(Nz)∩U . Consequently
we have (C \α)∩Cl(U ∩h(U)) = ∅. In particular this shows h±1(U) 6⊂ U and we
obtain the following properties for every V ∈ π0(U ∩ h(U)):
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(1) V ⊂ U with V 6= U ,

(2) V is a Jordan domain such that ∂V ⊂ α ∪ hn+1(α),

(3) ∂V ∩ C contains at least two points.

The first one is clear since U 6⊂ h(U). We know from Proposition 2.1 that V is
a Jordan domain such that ∂V ⊂ C ∪ h(C) =

⋃n+1
i=0 h

i(α) and, since Cl(V ) ⊂
Cl(U ∩ h(U)) is disjoint from C \α, we obtain more precisely ∂V ⊂ α∪ hn+1(α).
The third property follows since otherwise we would have

∂V = Cl(∂V \ C) ⊂ hn+1(α)

which is absurd because an arc cannot contain a Jordan curve.
Thus we can use Lemma 2.2. Every connected component µ of U ∩ ∂V is an

open arc and the property (2) above also shows that such a µ is a subset of hn+1(α)
and has its two endpoints in α. Consequently C \ α is contained in the frontier
of one of the two connected components of U \ µ and is disjoint from the frontier
of the other one (see Lemma 2.2 (1)). Now, since C \α ⊂ C \Cl(V ), there exists
a path γ from a point a ∈ U to a point b ∈ C \ α such that γ \ {b} ⊂ U \ Cl(V ).
Let µ = µ(a) ∈ π0(U ∩ ∂V ) be such that a 6∈ Uµ,V (Lemma 2.2 (2)). Thus b is
in the frontier of the connected component of U \ µ which does not contain V so
(C \ α) ∩ ∂Uµ,V = ∅ and then µ∗ ⊂ α.

We obtain finally Ind(h2, V ) = 0 applying Lemma 2.6 with f = h2 because

U ∩ ∂V ∩ h2(U) ⊂ hn+1(α) ∩ h2(U) = h2(hn−1(α) ∩ U) = ∅,
h2(µ∗) ∩ U ⊂ h2(α) ∩ U = ∅.

¤

Proof of Proposition 3.2: We consider the integer n ≥ 2 and the point x ∈
hn(α) defined in Lemma 3.3. The set

C = [x, h(p)]α
n−1⋃

i=1

hi(α) ∪ [hn(p), x]hn(α)

is then a Jordan curve. If necessary we can replace h,α with h∗,α∗ given by
Lemma 3.3 so there is no loss in supposing x = p = hn+1(p) and C =

⋃n
i=0 h

i(α).
We complete the proof using Lemmas 3.4 and 3.6. ¤
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3.2 A proposition about translation arcs of h2

Proposition 3.7 Let h be an orientation reversing homeomorphism of S2. As-
sume that we can find a translation arc β for h2, with endpoints q, h2(q), such
that

• β ∩ h(β) = ∅,
• either q = h4(q) or hk(β) ∩ β 6= ∅ for an integer k ≥ 3, i.e. the sets⋃

i∈Z h
2i(β) and

⋃
j∈Z h

2j+1(β) are not two disjoint simple curves.

Then there exist a Jordan curve C and a point z as announced in Theorem 3.1.

Beginning of the proof of Proposition 3.7: It will be convenient to define
an integer n ≥ 2 and a point x ∈ hn(β) as follows:

- if q = h4(q) then n = 2 and x = q = h4(q),

- if q 6= h4(q) then n is the minimum of the set {k ≥ 3|β ∩ hk(β) 6= ∅} and x
is the first point on hn(β) to intersect β.

Let us remark that, because of the minimality of n, we have necessarily x 6∈
{h2(q), hn(q)}. We also note that h2 (and so h) has no fixed point on

⋃
k∈Z h

k(β).
The proof of Proposition 3.7 depends on the parity of n, as explained below.

3.2.1 n is even

We consider the set

C = [x, h2(q)]β
n−2⋃

2i=2

h2i(β) ∪ [hn(q), x]hn(β).

It is a Jordan curve contained in
⋃n

2i=0 h
2i(β) (we have simply C = β ∪ h2(β) if

n = 2). It follows from the minimality of n that

(
n⋃

2i=0

h2i(β)

)
∩




n−1⋃

2j+1=1

h2j+1(β)


 = ∅.

Hence
⋃n−1

2j+1=1 h
2j+1(β) is disjoint from C and, by connectedness, is contained

in one of the two connected components U1, U2 of S2 \ C, say in U2. Thus we
have also

⋃n
2i=2 h

2i(β) ⊂ h(U2). Observe that this implies h±1(U1) 6⊂ U1 and
U2 ∩ h(U2) 6= ∅. Since β is a translation arc for h2, Brouwer’s lemma gives
Ind(h2, U1)=1 and U1 ∩ Fix(h2) 6= ∅. We can suppose U1 ∩ h(U1) 6= ∅ since
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otherwise we have U1 ∩ Fix(h) = ∅, hence Ind(h,U) = 0, and every fixed point z
of h2 in U1 satisfies h(z) ∈ U2. Writing simply U = U1, we know from Proposition
2.1 that every connected component V of U ∩h(U) is a Jordan domain such that
∂V ⊂ C ∪h(C). Since Cl(V ) ⊂ Cl(U)∩Cl(h(U)) is disjoint from

⋃n
k=1 h

k(β) we
get in fact

∂V ⊂ [x, h2(q)]β ∪ [hn+1(q), h(x)]hn+1(β).

Choosing a point a ∈ U close enough to C ∩ ( ⋃n
2i=2 h

2i(β)
)

and considering
µ = µ(a) ∈ π0(U ∩ ∂V ) such that a 6∈ Uµ,V (Lemma 2.2) one can check that
necessarily µ∗ ⊂ [x, h2(q)]β (see Fig. 3). All this can be done as in Lemma 3.6
and details are left to the reader. Furthermore, since

q

h (q)
n

x

h  (q)
n+2

h (q)2

h (q)3

n+3
h  (q)h(U)

U

V

n+1
h  (q)

h(q)

a

β

βh(  )

Figure 3: The Jordan domains U and h(U)

U ∩ ∂V ∩ h(U) ⊂ ∂(U ∩ h(U)) ∩ U ∩ h(U) = ∅,
h(µ∗) ∩ U ⊂ h(β) ∩ U = ∅,

and

U ∩ ∂V ∩ h2(U) ⊂ hn+1(β) ∩ h2(U) = h2(hn−1(β) ∩ U) = ∅,
h2(µ∗) ∩ U ⊂ h2(β) ∩ U = ∅,
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one can use Lemma 2.6 with successively f = h, f = h2 and thus obtain Ind(h, V )
= 0 = Ind(h2, V ). Since Fix(h) ∩ U ∩ h(U) = Fix(h) ∩ U we have with Property
2.3 (1) and Lemma 2.4:

0 =
∑

V ∈π0(U∩h(U))

Ind(h, V ) = Ind(h,U ∩ h(U)) = Ind(h, U),

0 =
∑

V ∈π0(U∩h(U))

Ind(h2, V ) = Ind(h2, U ∩ h(U)).

This proves Proposition 3.7 when n is even.

3.2.2 n is odd and hn+1(β) ∩ β = ∅
We begin with a lemma which plays the same role as Lemma 3.3. Note that the
assumption hn+1(β) ∩ β = ∅ is useless in this proof.

Lemma 3.8 (see Fig. 4) There exists an orientation reversing homeomorphism
h∗ ∼ h such that h2∗ admits β∗ = [x, h2(q)]β as a translation arc with h2∗(x) = h2(q)
and

• h∗(β∗) = [h(x), h3(q)]h(β),

• ∀i ∈ {2, . . . , n− 1} hi∗(β∗) = hi(β),

• hn∗ (β∗) = [hn(q), x]hn(β),

• hn+1∗ (β∗) = [hn+1(q), h(x)]hn+1(β).

Proof of Lemma 3.8 (outline): As in Lemma 3.3 the proof divides into two steps;
• First step.

If x = q we rename h = g. Otherwise observe that the arc [h2(q), h2(x)]h2(β) has
the following properties:

(i) it is disjoint from its images by h and h2 ,

(ii) it is disjoint from hi(β) for every integer i ∈ {1} ∪ {3, . . . , n+ 1}.
One can construct a homeomorphism ϕ of S2 mapping [h2(x), h4(q)]h2(β) onto
h2(β) whose support is contained in a topological closed disc D1 so close to
[h2(q), h2(x)]h2(β) that it satisfies also (i) and (ii). Defining g = ϕ ◦ h, we have
then g ∼ h and g = h on β ∪ ⋃n

i=2 h
i(β), hence g(β∗) = [h(x), h3(q)]h(β) with

g(x) = h(x) and

∀i ∈ {2, . . . , n+ 1} gi(β∗) = hi(β) with gi(x) = hi(p).
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x

h(x)

q

h(q)

h (q)3

h (q)
n

n+2
h   (q)

h (q)2

h (q)4

n+1

n+3

h (x)2

h(  )β

h  (q)
h  (q)

h  (q)
n−1

β

Figure 4: The arcs hi(β), 0 ≤ i ≤ n+ 1

• Second step.
If {x} = {gn+2(x)} = β∗ ∩ gn(β∗) it is enough to define h∗ = g. Otherwise we
remark that the arc [x, gn+2(x)]gn(β∗) is disjoint from its images by g and g2 and

also from the set
(⋃n−1

i=1 g
i(β∗)

)
∪ gn+1(β∗). It is possible to have the same for

a topological closed disc D2 containing the support of a homeomorphism ψ of
S2 such that ψ(gn(β∗)) = [gn(x), x]gn(β∗). Then h∗ = ψ ◦ g ∼ g possesses the
announced properties. ¤

Continuation of the proof of Proposition 3.7: We consider now the sets

γ− = [x, h2(q)]β ∪
n−1⋃

2i=2

h2i(β) ∪ [hn+1(q), h(x)]hn+1(β),

γ+ = [h(x), h3(q)]h(β)

n−2⋃

2j+1=3

h2j+1(β) ∪ [hn(q), x]hn(β)

and finally C = γ− ∪ γ+. Keeping in mind that β ∩ hn+1(β) = ∅, we see that
γ− and γ+ are two arcs which meet only in their common endpoints x, h(x).
Consequently C is a Jordan curve. Replacing h, β with respectively h∗,β∗ given
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by Lemma 3.8, one can suppose that x = q = hn+2(q), that is

γ− =
n+1⋃

2i=0

h2i(β), γ+ =
n⋃

2j+1=1

h2j+1(β) and C =
n+1⋃

i=0

hi(C).

Lemma 3.9 Let U be a connected component of S2 \C. Then we have Ind(h,U)
= 0 and Ind(h2, U) = 1.

Proof of Lemma 3.9: It is similar to the one of Lemma 3.4. One can easily
construct an orientation reversing homeomorphism g of S2 such that

1. g = h on the set
⋃n
i=0 h

i(β),

2. g maps hn+1(β) onto β (hence g(C) = C),

3. g interchanges the two connected components of S2 \ C.

Thus g−1 ◦ h is an orientation preserving homeomorphism of the sphere which
coincides with IdS2 on the arc

⋃n
i=0 h

i(β). Using the same variation of the Alexan-
der trick as in Lemma 3.4, one can find an isotopy (ϕt)0≤t≤1 from ϕ0 = IdS2 to
ϕ1 = g−1 ◦ h such that

∀t ∈ [0, 1]∀z ∈
n⋃

i=0

hi(β) ϕt(z) = z.

Defining ht = g ◦ ϕt (0 ≤ t ≤ 1), we get an isotopy from g to h such that ht = h
on

⋃n
i=0 h

i(β) and also an isotopy (h2
t )0≤t≤1 from g2 to h2 such that h2

t = h2 on⋃n−1
i=0 h

i(β). It follows, for every t ∈ [0, 1], that h2
t has no fixed point on

n−1⋃

i=0

hi(β) ∪ h2
t

( n−1⋃

i=0

hi(β)
)

=
n+1⋃

i=0

hi(β) = C.

Using again Property 2.3 (4), we get Ind(g, U)=Ind(h,U) and Ind(g2, U) = Ind(h2, U).
We obtain finally Ind(g, U) = 0 (resp. Ind(g2, U)=1) because U ∩g(U) = ∅ (resp.
U = g2(U)). ¤

Continuation of the proof of Proposition 3.7: Let U1, U2 be the two
connected components of S2 \ C. According to Lemma 3.9 we have Ind(h,Ui)
= 0 and Ind(h2, Ui) = 1. In particular we have Ui ∩ Fix(h2) 6= ∅ (i ∈ {1, 2}).
If one can find i ∈ {1, 2} such that Ui ∩ h(Ui) = ∅ then the result is easy.
Otherwise we consider for example U = U1. Let V be any connected component
of U∩h(U). Since h reverses the orientation, every point z ∈ C\hn+1(β) possesses
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a neighbourhoodNz such that h(Nz∩U) = h(Nz)∩U2 and h(Nz∩U2) = h(Nz)∩U .
It follows that C \ β is disjoint from Cl(U ∩ h(U)) and in particular from Cl(V ).
Using one more time Proposition 2.1, we obtain that V is a Jordan domain such
that ∂V ⊂ β ∪ hn+2(β). As in the proof of Lemma 3.6 one can use Lemma 2.2
and find µ ∈ π0(U ∩ ∂V ) such that the corresponding arc µ∗ satisfies µ∗ ⊂ β. We
have then

∂V ∩ U ∩ h2(U) ⊂ hn+2(β) ∩ h2(U) = h2(hn(β) ∩ U) = ∅,
h2(µ∗) ∩ U ⊂ h2(β) ∩ U = ∅,

and Lemma 2.6 gives Ind(h2, V ) = 0. We deduce from Lemma 2.4 that

0 =
∑

V ∈π0(U∩h(U))

Ind(h2, V ) = Ind(h2, U ∩ h(U)).

3.2.3 n is odd and hn+1(β) ∩ β 6= ∅
The following remarks allow us to reduce to the cases studied in Sections 3.2.1
and 3.2.2. We consider the last point y on β to intersect hn(β) ∪ hn+1(β). Since
β ∩ h(β) = ∅, y does not belong simultaneously to hn(β) and hn+1(β) and y 6= q.
We have also y 6= h2(q) because of the minimality of n. We can then assert:

Lemma 3.10 There exists an orientation reversing homeomorphism ĥ ∼ h such
that ĥ2 admits β̂ = [y, h2(q)]β as a translation arc with ĥ2(y) = h2(q) and

• ĥ(β̂) = [h(y), h3(q)]h(β),

• ∀i ∈ {2, . . . , n+ 1} ĥi(β̂) = hi(β).

Proof of Lemma 3.10: It is enough to replace x with y in the construction of the
intermediate homeomorphism g in the proof of Lemma 3.8. ¤

End of the proof of Proposition 3.7: By the definition of y we have:
- if y ∈ hn(β) = ĥn(β̂) then ĥn+1(β̂)∩ β̂ = hn+1(β)∩ β̂ = ∅ and we reduce to the
situation of Section 3.2.2. replacing h, β with ĥ, β̂.
- if y ∈ hn+1(β) = ĥn+1(β̂) then ĥ4(y) = h4(q) 6= y and n + 1 is the smallest
integer k ∈ {3, . . . , n+1} such that ĥk(β̂) = hk(β) intersects β̂. We reduce to the
case treated in Section 3.2.1. replacing h, β and n with ĥ, β̂ and n+1. Proposition
3.7 is proved. ¤
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3.3 Proof of Theorem 3.1

Choose m to be a k-periodic point of h (k ≥ 3) and consider an arc α or β given
by Lemma 2.8. Then m = hk(m) ∈ α ∩ hk(α) or m = hk(m) ∈ β ∩ hk(β) and
either Proposition 3.2 or Proposition 3.7 applies. ¤

3.4 Some consequences

Corollary 3.11 Let h be an orientation reversing homeomorphism of the sphere
S2 without a 2-periodic point. If a connected and simply connected compact set
K ⊂ S2 satisfies K ∩ h(K) = ∅ = K ∩ h2(K) then we have K ∩ hk(K) = ∅ for
every integer k 6= 0. Consequently, the only non-wandering points are the fixed
points of h.

Proof of Corollary 3.11: Construct a topological closed disc D containing K and
so close to K that it is disjoint from its iterates h(D) and h2(D). We claim
that D ∩ hk(D) = ∅ for every integer k 6= 0; otherwise, there exists a smallest
k ≥ 3 such that D ∩ hk(D) 6= ∅. Replacing the disc D with a slightly larger
one if necessary, we can suppose Int(D) ∩ hk(Int(D)) 6= ∅. Then we can choose
m ∈ Int(D) ∩ h−k(Int(D)) and a homeomorphism ϕ with support in D such
that ϕ(hk(m)) = m. Thus ϕ ◦ h is an orientation reversing homeomorphism of
S2 posseding m as a k-periodic point. According to Theorem 3.1, ϕ ◦ h admits
a 2-periodic point. The support of ϕ is disjoint from its images by h and h2 so,
for i ∈ {1, 2}, the homeomorphisms (ϕ ◦h)i and hi have the same fixed point set.
Thus we get a 2-periodic point for h, a contradiction.

Now, for any point m ∈ S2 \ Fix(h) = S2 \ Fix(h2) we can choose K to be a
neighbourhood of m so m is a wandering point. ¤

Remark 3.12 As an immediate consequence of Corollary 3.11, any area preserv-
ing and orientation reversing homeomorphism of the 2-sphere (or of the closed
2-disc) possesses a 2-periodic point.

Remark 3.13 If in Theorem 3.1 we assume furthermore that h2 has only finitely
many fixed points then the 2-periodic point z can be chosen such that Ind(h2, z)
= Ind(h2, h(z)) is a positive integer (resp. an odd integer).

The equality Ind(h2, z) = Ind(h2, h(z)) is a consequence of Property 2.3 (5) and
of the obvious relation h2 = h ◦ h2 ◦ h−1. Keeping the notations of Theorem 3.1
let us define

F = Fix(h2) ∩ U, F1 = F ∩ h(U), F2 = F \ F1 = Fix(h2) ∩ U ∩ h−1(U ′).
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We have then

1 = Ind(h2, U) =
∑

z∈F
Ind(h2, z) =

∑

z∈F1

Ind(h2, z) +
∑

z∈F2

Ind(h2, z).

Recall we have shown Ind(h2, U ∩ h(U)) = 0 hence
∑

z∈F1
Ind(h2, z) = 0 and the

assertion follows.

4 A local version of Theorem 3.1

We first remind two recent results:

Theorem 4.1 ([1]) Let V,W be two connected open subsets of R2 containing the
origin o and let h : V → W = h(V ) be an orientation reversing homeomorphism
which possesses o as an isolated fixed point.

Then Ind(h, o) ∈ {−1, 0, 1}.
The iterate homeomorphisms hk : Vk → hk(Vk), k ≥ 1, are defined inductively

on the open sets Vk by V1 = V , h1 = h and, for k ≥ 2, Vk = h−1(Vk−1) ⊂
Vk−1, h

k(z) = hk−1(h(z)).
We have then

Theorem 4.2 ([11]) Let h be as in Theorem 4.1. Assume that the whole sequence
(Ind(hk, o))k≥1 is defined, i.e. o is an isolated fixed point of hk for every integer
k ≥ 1.

Then (Ind(h2k+1, o))k≥0 is a constant sequence.

We can now state:

Theorem 4.3 Let h be as in Theorem 4.1. If there exists an integer k ≥ 3 such
that any neighbourhood of o contains a k-periodic point of h then there is also a
2-periodic point in every neighbourhood of o. In other words, the whole sequence
(Ind(hk, o))k≥1 is defined if and only if the second term Ind(h2, o) is defined.

Proof of Theorem 4.3: Let Ω be an open disc with center o, so small that Ω ∩
Fix(h) = {o} and Cl(Ω) ⊂ V. Let us show that Ω necessarily contains a 2-
periodic point of h. Using the Schoenflies Theorem, we can extend h|Cl(Ω) to a
homeomorphism H of the whole sphere. Let Ω′ be an open disc with center o such
that Ω′ ⊂ Ω ∩H−1(Ω) and let N be the connected component of

⋂k+1
i=0 H

−i(Ω′)
containing o. The set N ∩ H−2(N) is a neighbourhood of o so it contains a k-
periodic pointm of h, and such a pointm is also k-periodic forH because hj = Hj

on
⋂k−1
i=0 H

−i(Ω′) for j = 1, . . . , k. Since h = H and h2 = H2 on Ω ∩H−1(Ω) it
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is enough to prove that H has a 2-periodic point in Ω′. Suppose this is not true.
Then we have

{m,H2(m)} ⊂ N \ {o} = N \ Fix(H2).

The contradiction is obtained by following carefully the proof of Theorem 3.1
for the homeomorphism H. Since an open connected subset of R2 is arcwise
connected, there exists an arc γ ⊂ N \ {o} joining m and H2(m). Going back to
the proof of Lemma 2.8, we now slightly enlarge γ to obtain a topological closed
disc ∆ such that

γ ⊂ Int(∆) ⊂ ∆ ⊂ N \ {o}.
Then we obtain a suitable translation arc for either H or H2, which is denoted by
respectively α or β. Observe that, by the construction, α and β are contained in ∆
and so in

⋂k+1
i=0 H

−i(Ω′). Remark finally that all the Jordan curves C constructed
in the proof of Theorem 3.1 are subset of

⋃k
i=0H

i(α) ⊂ Ω′ or of
⋃k+1
i=0 H

i(β) ⊂ Ω′,
hence S2 \C has a connected component which is contained in the disc Ω′. Thus
we obtain a 2-periodic point of H in Ω′, a contradiction. ¤

5 A strong version of Theorem 3.1

We prove in this section the following result;

Theorem 5.1 Let h be an orientation reversing homeomorphism of the sphere
S2 without a 2-periodic point. Then for any point m ∈ S2 \ Fix(h) there exists
a topological embedding (i.e. a continuous one-to-one map) ϕ : O → S2 \ Fix(h)
such that

• O is either R2 or {(x, y) ∈ R2|y 6= 0} or R2 \ {(0, 0)},
• m ∈ ϕ(O),

• if O = R2 or O = {(x, y) ∈ R2|y 6= 0} then

(i) h ◦ ϕ = ϕ ◦G|O where G(x, y) = (x+ 1,−y),
(ii) for every x ∈ R, ϕ

(
({x}×R)∩O)

is a closed subset of M \Fix(h) (it
is said that ϕ is a proper embedding),

• if O = R2 \ {(0, 0)} then

(iii) h ◦ ϕ = ϕ ◦H|O where H(x, y) = 1
2(x,−y).
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Sections 5.2 and 5.3 below contain preparatory results. Section 5.2 gives some
dynamical properties for orientation reversing homeomorphisms of the sphere,
derived from results in Section 3. In particular it is shown that recurrence of
discs, just as recurrence of points, implies the existence of a 2-periodic point.
Section 5.3 recall the notion of brick decomposition of a surface introduced by
P. Le Calvez and A. Sauzet ([16], [19]) to give a dynamical proof of the Brouwer
plane translation theorem. Theorem 5.1 is proved in Section 5.3.

Note that, since we are looking for conjugacy outside the fixed point set,
the map H in the statement of Theorem 5.1 can be replaced with any map
(x, y) 7→ λ(x,−y) where λ ∈ R \ {0,±1}.

5.1 Some recurrence properties

Lemma 5.2 Let h be an orientation reversing homeomorphism of S2 without a
2-periodic point and let V be an open connected subset of S2 such that V ∩h(V ) =
∅ = V ∩ h2(V ). Then we have V ∩ hk(V ) = ∅ for any integer k 6= 0.

Proof of Lemma 5.2: Suppose this is not true. Then we have V ∩ hk(V ) 6= ∅
for an integer k ≥ 3 and we can choose z ∈ V ∩ hk(V ). Since an open connected
subset of S2 is arcwise connected, there exists an arc K ⊂ V with endpoints
h−k(z) and z. Such an arc is disjoint from its two first iterates h(K), h2(K) but
meets hk(K). This contradicts Corollary 3.11. ¤

The next lemmas can be regarded as the counterpart of Frank’s Lemma ([8][Propo-
sition 1.3]) in the case of an orientation reversing homeomorphism.

Lemma 5.3 Let h be an orientation reversing homeomorphism of S2. Assume
that there exists a finite sequence of topological closed discs D1, . . . , Dn satisfying

(i) ∀i, j ∈ {1, . . . , n} Di = Dj or Int(Di) ∩ Int(Dj) = ∅,
(ii) ∀i ∈ {1, . . . , n} h(Di) ∩Di = ∅ = h2(Di) ∩Di,

(iii) ∀i, j ∈ {1, . . . , n} Dj meets at most one of the two sets h−1(Di) or h(Di),

Equivalently: h(Di) ∩Dj 6= ∅ =⇒ h(Dj) ∩Di = ∅,
(iv) ∀i ∈ {1, . . . , n− 1} ∃ki ≥ 1 such that hki(Di) ∩ Int(Di+1) 6= ∅ and ∃kn ≥ 1

such that hkn(Dn) ∩ Int(D1) 6= ∅.
Then h possesses a 2-periodic point.
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Proof of Lemma 5.3: Let us choose a sequence D1, . . . , Dn0 satisfying (i)-(iv)
and whose length n0 is minimal among all these sequences. If n0 = 1 then the
result is contained in Corollary 3.11 so we can assume n0 ≥ 2. Moreover we can
suppose that the integers k1, . . . , kn0 are minimal for the property (iv). In order
to simplify the notations we also define Dn0+1 = D1. We have clearly

hki(Di) ∩ Int(Di+1) 6= ∅ ⇐⇒ hki(Int(Di)) ∩ Int(Di+1) 6= ∅

so we can choose for every i ∈ {1, . . . , n0} a point xi ∈ Int(Di) such that hki(xi) ∈
Int(Di+1). Since the sequence D1, . . . , Dn0 has minimal length we have

1 ≤ i 6= j ≤ n0 =⇒ Int(Di) ∩ Int(Dj) = ∅

so there exists an orientation preserving homeomorphism ψ of S2 with support
in D1 ∪ . . . ∪Dn0 preserving setwise each disc Di (1 ≤ i ≤ n0) and such that

∀i ∈ {1, . . . , n0 − 1} ψ(hki(xi)) = xi+1, ψ(hkn0 (xn0)) = x1.

Furthermore we have for every i, j ∈ {1, . . . , n0}

1 ≤ k ≤ ki − 1 =⇒ hk(xi) 6∈ Dj

since otherwise either D1, . . . , Di, Dj , . . . , Dn0 or Dj , . . . , Di would define a se-
quence satisfying (i)-(iv) with length ≤ n0 − 1. Thus the homeomorphism g =
ψ ◦ h reverses the orientation and possesses x1 as a periodic point with period
k1 + . . . + kn0 ≥ 2. Theorem 3.1 then gives a 2-periodic point for g and it is
enough to check that Fix(h) = Fix(g) and Fix(h2) = Fix(g2).
• The first equality is well known and follows easily from the fact thatDi∩h(Di) =
∅ for every i ∈ {1, . . . , n0}.
• Let us check that Fix(g2) = Fix(h2).
- First we observe that if m ∈ h−1(Dj) for an index j ∈ {1, . . . , n0} then necessa-
rily m 6= g2(m): For such a point m we have g(m) = ψ(h(m)) ∈ ψ(Dj) = Dj so
h(g(m)) ∈ h(Dj). If h(g(m)) 6∈ ⋃n0

i=1Di then g2(m) = ψ(h(g(m))) = h(g(m)) and
consequentlym 6= g2(m) since h−1(Dj)∩h(Dj) = ∅. If one can find i ∈ {1, . . . , n0}
such that h(g(m)) ∈ Di then we obtain h(g(m)) ∈ Di ∩ h(Dj) 6= ∅ and (iii) im-
plies Di ∩ h−1(Dj) = ∅. Since g2(m) = ψ(h(g(m))) ∈ ψ(Di) = Di, it follows that
g2(m) 6= m.
- Secondly we remark that if m 6∈ ⋃n0

i=1 h
−1(Di) but m ∈ h−2(Dj) for a j ∈

{1, . . . , n0} then we also have m 6= g2(m). Indeed we have then g(m) = h(m),
g2(m) = ψ(h2(m)) ∈ ψ(Dj) = Dj and consequently m 6= g2(m) since h−2(Dj) ∩
Dj = ∅.
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Thus we obtain:

m = g2(m) =⇒ m 6∈
(
n0⋃

i=1

h−1(Di)

)
∪

(
n0⋃

i=1

h−2(Di)

)
=⇒ g2(m) = h2(m).

On the other hand, it is easily seen with (ii) that

m = h2(m) =⇒ m 6∈
(
n0⋃

i=1

h−1(Di)

)
∪

(
n0⋃

i=1

h−2(Di)

)
=⇒ g2(m) = h2(m).

¤
We will use actually the following slightly stronger lemma which relax the

hypothesis (iv) of Lemma 5.3. This technical improvement allows to suppress, in
the original work of Le Calvez and Sauzet ([16]), a hypothesis of “transversality”
for the brick decompositions of a surface (see Section 5.2 below for a definition).
These refinements are due to F. Le Roux ([17]) for orientation preserving homeo-
morphisms. We use the same arguments to write a proof adapted to our situation.

Lemma 5.4 If in Lemma 5.3 we replace the condition (iv) with the weaker

(iv’) ∀i ∈ {1, . . . , n− 1} ∃ki ≥ 1 such that hki(Di) ∩Di+1 6= ∅ and

∃kn ≥ 1 such that hkn(Dn) ∩D1 6= ∅,
then the conclusion still holds.

Proof of Lemma 5.4: Let D1, . . . , Dn0 be a sequence of topological closed discs
satisfying (i)-(iii),(iv’) and whose length n0 is minimal among all these sequences.
We have then

1 ≤ i 6= j ≤ n0 =⇒ Int(Di) ∩ Int(Dj) = ∅.
Let us choose for each i ∈ {1, . . . , n0} a point xi ∈ Di such that hki(xi) ∈ Di+1

(again with the convention Dn0+1 = D1).
First we observe that the points x1, . . . , xn0 are pairwise distinct because

(1 ≤ i, j ≤ n0 and xi = xj) =⇒ hkj (xi) = hkj (xj) ∈ hkj (Di) ∩Dj+1

and the fact that D1, . . . , Dn0 has minimal length gives i = j.
Now, if we can find i, j ∈ {1, . . . , n0} and an integer k ≥ 1 such that hk(xi) = xj
then h possesses a 2-periodic point. Indeed, this implies

hkj+k(xi) = hkj (xj) ∈ hkj+k(Di) ∩Dj+1.

Again because D1, . . . , Dn0 has minimal length, this is possible only for i = j
and consequently hk(xi) = xi. Because of (ii) we have necessarily k ≥ 3 and
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Theorem 3.1 then gives a 2-periodic point for h. Thus we can assume without
loss of generality

(∗∗) ∀i, j ∈ {1, . . . , n0} ∀k 6= 0 hk(xi) 6= xj .

For convenience we let k0 = kn0 and x0 = xn0 . Then we choose for each i ∈
{1, . . . , n0} an arc γi with endpoints xi and hki−1(xi−1) 6= xi lying entirely in
Int(Di) except possibly its endpoints in ∂Di. Since γi ⊂ Di, these arcs possesse
the same properties (ii),(iii) as the discs Di. Moreover, remembering that the
Di’s have disjoint interiors and the xi’s are pairwise distinct (1 ≤ i ≤ n0), we
obtain using (∗∗):

(i’) i 6= j =⇒ γi ∩ γj = ∅.
By the construction we have also

∀i ∈ {1, . . . , n0 − 1} hki(γi) ∩ γi+1 6= ∅ and hkn0 (γn0) ∩ γ1 6= ∅.
One can construct for each i ∈ {1, . . . , n0} a topological closed disc D′

i neighbour-
hood of γi and so close to γi that (i’),(ii),(iii) are still true with the D′

i ’s in place
of the γi’s. Such a sequence D′

1, . . . , D
′
n0

then satisfies the conditions (i)-(iv) of
Lemma 5.3. ¤

5.2 Brick decompositions

As mentioned above, this notion is due to P. Le Calvez and A. Sauzet ([16], [19]).
It is also used with some variants in [13],[15] and [17].

Definition 5.5 A brick decomposition D of a nonempty open set U ⊂ S2 is a
collection {Bi}i∈I of topological closed discs where I is a finite or countable set
and such that

1.
⋃
i∈I Bi = U ,

2. if i 6= j then Bi ∩Bj is either empty or an arc contained in ∂Bi ∩ ∂Bj,
3. for every point z ∈ U , the set I(z) = {i ∈ I | z ∈ Bi} contains at most three

elements and
⋃
i∈I(z)Bi is a neighbourhood of z in U .

The Bi’s are called the bricks of the decomposition. Of course the set I is finite
only for U = S2 and we will not be concerned with this situation. For a point
z ∈ U , the neighbourhood

⋃
i∈I(z)Bi is necessarily of one of the three kinds

pictured in Fig.5(up to a homeomorphism).
We have then the following property which is one of the main motivation for

the use of brick decompositions.
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z z

z

Figure 5: The neighbourhood
⋃
i∈I(z)Bi for a point z ∈ U

Property 5.6 Let D = {Bi}i∈I be a brick decomposition of an open set U ⊂ S2

and let J be a nonempty subset of I. Then
⋃
i∈J Bi is a closed subset of U .

Furthermore ∂U (
⋃
i∈J Bi) is a 1-dimensional submanifold without boundary of U .

In particular, its connected components are homeomorphic either to S1 or to R.

Proof of Property 5.6: If z ∈ ClU (
⋃
i∈J Bi) it is clear from the definition that

I(z)∩J 6= ∅ hence
⋃
i∈J Bi is closed in U . Consider now a point z ∈ ∂U (

⋃
i∈J Bi).

Its neighbourhood
⋃
i∈I(z)Bi contains necessarily two or three bricks, (at least)

one of them is in {Bi}i∈J and (at least) one of them is not this family. The result
is then obvious with Fig.5. ¤

Let D = {Bi}i∈I be a brick decomposition of an open set U ⊂ S2 and let h be a
homeomorphism of S2 such that h(U) = U . For a given brick Bi0 ∈ D, we recall
the notions of attractor and repeller associated to Bi0 (and h). We define

I0 = {i0}, A0 = R0 =
⋃

i∈I0
Bi = Bi0

and inductively, for n ∈ N,

In+1 = {i ∈ I |h(An) ∩Bi 6= ∅}, An+1 =
⋃

i∈In+1

Bi,

I−n−1 = {i ∈ I |h−1(R−n) ∩Bi 6= ∅}, R−n−1 =
⋃

i∈I−n−1

Bi.
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Definition 5.7 With the above notations, the two sets

A =
⋃

n≥1

An and R =
⋃

n≥1

R−n

are said to be respectively the attractor and the repeller associated to the brick
Bi0.

Note that, according to Property 5.6, A and R are closed subsets of U . The
following easy property is left to the reader.

Property 5.8 We have h(A∪Bi0) ⊂ Int(A). Consequently hk(∂UA)∩hl(∂UA) =
∅ for any two integers k 6= l in Z.

We will use brick decompositions with a homeomorphism of S2 which reverses
the orientation and without a 2-periodic point. The next result describes what
are the “good” brick decompositions in this setting and then gives two essential
properties for A and R.

Lemma 5.9 Let D = {Bi}i∈I be a brick decomposition of an open set U ⊂ S2 and
let h be an orientation reversing homeomorphism of S2 which has no 2-periodic
point and satisfying h(U) = U . Assume furthermore that D satisfies the two
following hypotheses:

H1: Every brick Bi satisfies Bi ∩ h(Bi) = ∅ = Bi ∩ h2(Bi),

H2: For any two bricks Bi, Bj, at most one of the two sets Bi ∩ h(Bj) or Bi ∩
h−1(Bj) is nonempty.

Then, for any brick Bi0 ∈ D, the attractor A and the repeller R associated to Bi0
are such that

(i) Int(Bi0) ∩ A = ∅,
(ii) A ∩ Int(R) = ∅.

Proof of Lemma 5.9:
(i) Observe that Int(Bi0)∩A 6= ∅ simply means that there exist an integer n ≥ 1
and a sequence of bricks Bi0 , Bi1 , . . . , Bin = Bi0 such that

∀k ∈ {0, . . . , n− 1} h(Bik) ∩Bik+1
6= ∅.

This contradicts Lemma 5.4.
(ii) If A ∩ Int(R) 6= ∅ then there exist two integers n,m ≥ 1 and two sequences
of bricks, say Bi0 , Bi1 , . . . , Bim and Bj0 , Bj1 , . . . , Bjn , such that

30



Bi0 = Bj0 and Bim = Bjn ,

∀k ∈ {0, . . . ,m− 1} h(Bik) ∩Bik+1
6= ∅,

∀l ∈ {0, . . . , n− 1} h−1(Bjl) ∩Bjl+1
6= ∅.

As an immediate consequence, each brick in the sequence

Bjn , . . . , Bj1 , Bj0 = Bi0 , . . . , Bim−1

has its image by h which meets the next brick. This contradicts again Lemma
5.4 since h(Bim−1) meets Bim = Bjn . ¤

5.3 Proof of Theorem 5.1

Let h and m be as in Theorem 5.1. We define U = S2 \ Fix(h) = S2 \ Fix(h2).
Of course we have h(U) = U 6= ∅ and, according to the Lefschetz-Hopf Theorem,
U 6= S2. Let us remark that there is a situation where our result is easily seen.
According to a theorem of Epstein, a connected component K of Fix(h) is either
a point or an arc or a Jordan curve and, in the last two cases, h interchanges
locally the two sides of K: see [6][Theorem 2.5]. If one can choose K to be a
Jordan curve then S2 \ K has exactly two connected components, say U1 and
U2 with m ∈ U1, which are interchanged by h (this implies also K = Fix(h)).
Since the Ui’s are homeomorphic to R2 we can use the Brouwer plane translation
theorem with h2|U1 to find a proper topological embedding ϕ : {(x, y) ∈ R2 | y >
0} → U1 such that ϕ(0, 1) = m and h2 ◦ ϕ(x, y) = ϕ ◦ τ(x, y) for y > 0 ,
where τ(x, y) = (x+ 2, y) = G2(x, y). We obtain a proper topological embedding
ϕ : O = {(x, y) ∈ R2 | y 6= 0} → U such that h ◦ ϕ = ϕ ◦G|O defining

∀ y < 0 ϕ(x, y) = h ◦ ϕ ◦G−1(x, y) ∈ U2.

Thus we can suppose that S2 \ K is connected for every connected component
K of Fix(h) and this implies that U = S2 \ Fix(h) is connected (see for example
[18][Theorem 14.3 page 123]). According to Lemma 2.8, Propositions 3.2 and 3.7,
at least one of the two following properties is true:

P1: There exists a translation arc α for h containing the point m and such that⋃
k∈Z h

k(α) is a simple curve contained in U .

P2: There exists a translation arc β for h2 containing the point m and such that⋃
k∈Z h

2k(β) and
⋃
k∈Z h

2k+1(β) are two disjoint simple curves contained in
U .
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5.3.1 Proof when P1 is true

Up to conjugacy in S2, we can suppose that

h−1(α) = [−1, 0]× {0},
h(x, y) = (x+ 1,−y) for every (x, y) ∈ h−1(α) ∪ α = [−1, 1]× {0},
m = (3

4 , 0).

For ε > 0 we consider the three rectangles (see Fig. 7)

D−1 = {(x, y) ∈ R2 | − 1
4
≤ x ≤ 1

4
and − ε ≤ y ≤ ε},

D0 = {(x, y) ∈ R2 | 1
4
≤ x ≤ 3

4
and − ε ≤ y ≤ ε},

D1 = {(x, y) ∈ R2 | 3
4
≤ x ≤ 5

4
and − ε ≤ y ≤ ε}.

Lemma 5.10 (adapted from [19]) There exist ε > 0 and a brick decomposi-
tion D = {Bi}i∈N of U such that:

1. D−1, D0 and D1 are bricks of D,

2. D satisfies the hypotheses H1 and H2 in Lemma 5.9.

Proof of Lemma 5.10: Clearly one can choose ε > 0 so small that, for k, l in
{0,±1}, we have

• Dk ∩ h(Dk) = ∅ = Dk ∩ h2(Dk),

• Dk ∩ h(Dl) = ∅ or Dk ∩ h−1(Dl) = ∅.
Let us denote V = U \ Int(D−1 ∪ D0 ∪ D1). This is a non compact bordered
surface with only one boundary component, namely ∂(D−1 ∪D0 ∪D1), so there
exists a countable triangulation T of V . Let T ′ be (for example) the barycentric
subdivision of T . If the middle p of some edge E of T is a vertex of a rectangle
Dk (k = 0,±1), we slightly alter T ′ remplacing p with a close point q ∈ E.
Remark that this requires only finitely many modifications since there are only
finitely triangles of T meeting ∂(D−1 ∪ D0 ∪ D1). We continue to write T ′ for
this “perturbation” of T ′. Then we define

D1 = {D−1, D0, D1} ∪ {Star(v, T ′) | v vertex of T },
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where Star(v, T ′) is the union of the triangles of T ′ containing v. It is left to
the reader that D1 is a brick decomposition of U and in particular that, for any
vertex v of T , the set Star(v, T ′) ∩Dk is either empty or an arc (k = 0,±1). If
the condition H1 does not hold with D1, we can achieve it as follows; the bricks
B ∈ D1 such that B∩(h(B)∪h2(B)) 6= ∅ can be numbered B1, B2, . . . andD0, D±1

are not in this (finite or countable) sequence because of the choice of ε. Up to
a homeomorphism, we can suppose that B1 is a rectangle. It can be subdivided
into finitely many sub-rectangles B1,1, B1,2, . . . , B1,n1 disjoint from their images
by h and h2; it suffices that all these B1,j have diameter less than the infimum of
d(z, h(z)) and d(z, h2(z)), z lying in B1, where d(·, ·) is any distance defining the
topology of S2. Furthermore, since B1 meets only finitely many bricks of D1, this
can be done in such a way that we have still a brick decomposition of U replacing
B1 with B1,1, B1,2, . . . , B1,n1 in D1 (see Fig. 6). We write D1,1 for this new brick
decomposition of U . Now construct similarly a brick decomposition of U

Not  allowed Not  allowed 

Allowed

Figure 6: Subdivision of a brick

D1,2 = (D1,1 \ {B2}) ∪ {B2,1, B2,2, . . . , B2,n2}
where B2,1, B2,2, . . . , B2,n2 come from a suitable subdivision of B2, and so on.
Then D2 = (D1 \ {B1, B2, . . .})

⋃
i,j{Bi,j} is a brick decomposition satisfying H1

and possessing D0, D±1 as bricks.
Suppose now that H2 is not satisfied with D2, i.e. the set

{B ∈ D2 | ∃B′ ∈ D2 such that B ∩ h−1(B′) 6= ∅ and B ∩ h(B′) 6= ∅}
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is nonempty. The bricks in this latter set and other than D0, D±1 are numbered
B1, B2, . . .. Since h(B1) ∪ h−1(B1) is compact, there are only finitely many cor-
responding B′, say B′1, . . . , B

′
n. Each B′k is disjoint from its image by h2 so there

exists δ > 0 such that

∀k ∈ {1, . . . , n} dist(h−1(B′k), h(B
′
k)) > δ,

where dist(X,Y ) is the distance between two subsets X,Y of S2. As above we
can subdivide B1 into “sub-bricks” with diameter less than δ and so carefully that
we have still a brick decomposition of U , say D2,1, when B1 is replaced with its
sub-bricks in D2. Afterwards, define D2,2 replacing B2 with suitable sub-bricks in
D2,1, etc. It is easily seen that, replacing in D2 the bricks B1, B2, . . . with their
sub-bricks, we obtain a brick decomposition of U which satisfies the hypotheses
H1,H2 and which possesses D0, D±1 as bricks. ¤

Let us consider the attractor A and the repeller R associated to Bi0 = D0. We
remark that

D1 ⊂ A1 ⊂ A and D−1 ⊂ R−1 ⊂ R
since respectively (5

4 , 0) ∈ h(D0) ∩D1 and (−1
4 , 0) ∈ h−1(D0) ∩D−1.

According to Lemma 5.9 (i), the vertical segment {3
4} × [−ε, ε] is contained in a

connected component ∆ of ∂UA. Furthermore we know from Property 5.6 that
∆ is either a Jordan curve or homeomorphic to R. Before to deal with these
two situations, we give the following notations and an elementary but important
lemma.

Notations 5.11

γ− = {(x, 0) | − 1
4
< x <

3
4
},

γ+ = {(x, 0) | 3
4
< x <

7
4
} = h(γ−),

γ = {(x, 0) | − 1
4
< x <

7
4
} = γ− ∪ {(34 , 0)} ∪ γ+.

Lemma 5.12 The set h−1(∆)∪γ− (resp. γ+∪h(∆)) is connected and contained
in U \ A (resp. in Int(A)).

Proof of Lemma 5.12: These sets are obviously contained in U . For the con-
nectedness, it is enough to remark that

(−1
4
, 0) ∈ h−1(∆) ∩ Cl(γ−) and (

7
4
, 0) ∈ Cl(γ+) ∩ h(∆).
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−1
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Figure 7: The bricks D0, D±1 and ∆, h±1(∆) close to these bricks

Property 5.8 gives h(∆) ⊂ h(A) ⊂ Int(A) and also

h−1(∆) ∩ A = h−1(∆ ∩ h(A)) ⊂ h−1(∂UA ∩ Int(A)) = ∅.

According to Lemma 5.9 we have

Int(D−1) ∩ A ⊂ Int(R) ∩ A = ∅ and Int(D0) ∩ A = ∅

hence γ− ∩ A = ∅.
It remains to be checked that γ+ ⊂ Int(A). This follows from

{(x, 0) | 3
4
< x <

5
4
} ⊂ Int(D1) ⊂ Int(A)

and, with Property 5.8, from

{(x, 0) | 5
4
≤ x <

7
4
} ⊂ h(D0) ⊂ Int(A).

¤
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First case: The set ∆ is a Jordan curve.
Claim 1: The set ∆ separates h−1(∆) and h(∆) in S2.
Proof: If this was not true, Lemma 5.12 would show that the segment γ intersects
∆ transversely and meets only one connected component of S2 \ ∆, which is
absurd. ¤

Let us write V+ for the connected component of S2 \∆ containing h(∆). We have
∂h(V+) = h(∆) ⊂ V+ so h(V+) ∩ V+ 6= ∅ and actually h(Cl(V+)) ⊂ V+ since,
according to the above claim,

h(V+) ∩ ∂V+ = h(V+) ∩∆ = h(V+ ∩ h−1(∆)) = ∅.

It is now a routine to construct a topological embedding ϕ defined on O =
R2 \ {(0, 0)} and conjugating h and H. We just sketch such a construction;
defining Ω = V+ \ h(Cl(V+)), we have clearly Cl(Ω) = ∆ ∪ Ω ∪ h(∆) ⊂ U . Let
ϕ : S1 → ∆ be a homeomorphism. It can be extended to a homeomorphism

ϕ : S1 ∪H(S1) → ∆ ∪ h(∆)

defining ϕ|H(S1) = h◦ϕ◦H−1|H(S1). Using suitably the Schoenflies Theorem, one
can extend again ϕ to a homeomorphism from the compact annulus A = {z ∈
C | 1

2 ≤ |z| ≤ 1} onto Cl(Ω). Finally, for any point z ∈ R2 \ {(0, 0)}, there exists
a unique k ∈ Z such that z ∈ Hk(A \ ∂−A), where ∂−A = {z ∈ C | |z| = 1

2}, and
we define

ϕ(z) = hk ◦ ϕ ◦H−k(z) ∈ hk(Cl(Ω)).

One can easily check that ϕ : O = R2 \ {(0, 0)} → U is a well-defined one-to-one
continuous map such that h ◦ ϕ = ϕ ◦H|O and ϕ(O) =

⋃
k∈Z h

k(Cl(Ω)).

Second case: The set ∆ is homeomorphic to R.
Since ∆ is a closed subset of U we have

∅ 6= Cl(∆) \∆ ⊂ Fix(h).

Moreover, Cl(∆) \ ∆ has at most two connected components, say L1 and L2

with possibly L1 = L2, and each Li is contained in a connected component Ki of
Fix(h). It will be convenient to compactify S2 \(K1∪K2) as follows; let us choose
a1 and a2 in S2 with the convention that a1 = a2 if and only if K1 = K2. Since
U has been assumed to be connected, we have the same for S2 \ (K1 ∪K2) and it
is then very classical that this latter set is homeomorphic to S2 \ {a1, a2} (see for
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example [18]Chapter VI). Now, if ψ is any homeomorphism from S2 \ (K1 ∪K2)
onto S2 \ {a1, a2}, we define ĥ : S2 → S2 by

ĥ(z) =
{

z if z ∈ {a1, a2},
ψ ◦ h ◦ ψ−1(z) if z 6∈ {a1, a2}.

One can check that ĥ is a homeomorphism and that Cl(ψ(∆)) \ψ(∆) = {a1, a2}.
Furthermore, since we are looking for a (proper) topological embedding ϕ taking
its values in U ⊂ S2 \ (K1 ∪K2), it is enough to prove our theorem for ĥ instead
of h. In other words, there is no loss in supposing that Ki (and so Li) is reduced
to one point (i ∈ {1, 2}). This will be assumed from now on.
Claim 2: We have necessarily K1 = K2.
Proof: Suppose this is not true and define

C = Cl(∆ ∪ h(∆)) = ∆ ∪ h(∆) ∪K1 ∪K2.

Thus C is a Jordan curve. Let us remark that the sets h−1(∆) ∪ γ− and γ+ are
both connected and contained in U \ (∆ ∪ h(∆)) ⊂ S2 \C; for h−1(∆) ∪ γ−, this
is contained in Lemma 5.12 since we know from Property 5.8 that ∆∪h(∆) ⊂ A.
Lemma 5.12 gives also

γ+ ∩∆ ⊂ Int(A) ∩ ∂UA = ∅

and
γ+ ∩ h(∆) = h(γ− ∩∆) ⊂ h(γ− ∩ A) = ∅.

Now, since the segment γ intersects ∆ ⊂ C transversely, we deduce that the
connected components V−, V+, of S2 \C containing respectively h−1(∆)∪γ− and
γ+ are different. It follows that

∂h−1(V+) ∩ V+ = h−1(C) ∩ V+ = h−1(∆) ∩ V+ = ∅

so we have either V+ ⊂ h−1(V+) or V+ ∩h−1(V+) = ∅. We remark now that none
of these two situations is possible. The first one would imply

γ+ ∪ γ− = γ+ ∪ h−1(γ+) ⊂ h−1(V+)

which is absurd because the segment γ intersects ∆ ⊂ h−1(C) transversely.
Suppose now that h−1(V+) ∩ V+ = ∅. We first remark that we cannot have
h−1(Cl(V+))∪Cl(V+) = S2 since this would imply h−1(∆) = h(∆) which contra-
dicts Property 5.8. So the set h−1(Cl(V+)) ∪ Cl(V+) is contained in the domain
of a single chart of S2 and can be represented as in Fig 8. Keeping in mind
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Figure 8: V+ ∩ h−1(V+) = ∅ is not possible

that K1,K2 are fixed points of h, this contradicts the fact that h reverses the
orientation. ¤

Thus Cl(∆) = ∆ ∪ K1 is a Jordan curve. Again, γ intersects ∆ ⊂ Cl(∆)
transversely so we can write with Lemma 5.12:
Claim 3: The set Cl(∆) separates h−1(∆) and h(∆) in S2.
Now, let V+ be the connected component of S2 \ Cl(∆) containing h(∆). Since
h(∆) ⊂ ∂h(V+)∩V+ we have h(V+)∩V+ 6= ∅ and in fact h(V+∪∆) ⊂ V+ because
the third claim implies

h(V+) ∩ ∂V+ = h(V+) ∩ Cl(∆) = h(V+) ∩∆ = h(V+ ∩ h−1(∆)) = ∅.
We conclude as follows. Let us define Ω = V+ \ h(Cl(V+)). We have obviously
Cl(Ω)\K1 = ∆∪Ω∪h(∆) ⊂ U . Using the Schoenflies Theorem, one can construct
a homeomorphism

ϕ : {(x, y) ∈ R2 | 0 ≤ x ≤ 1} ∪ {∞} → Cl(Ω)

such that ϕ(∞) = K1, ϕ({0} ×R) = ∆ and

∀y ∈ R ϕ(1, y) = h ◦ ϕ ◦G−1(1, y) ∈ h(∆).

Now, if k ≤ x < k + 1 (k ∈ Z) we let

ϕ(x, y) = hk ◦ ϕ ◦G−k(x, y) ∈ hk(∆ ∪ Ω).

It is easily seen that ϕ : O = R2 → U defined in this way is a proper topological
embedding, with image ϕ(O) =

⋃
k∈Z h

k(∆∪Ω), such that h ◦ϕ = ϕ ◦G|O. This
completes the proof of Theorem 5.1 when Property P1 is true.
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5.3.2 Proof when P2 is true

Up to conjugacy in S2, we can suppose that

h−2(β) = [−2, 0]× {−1},

h(x, y) = (x+ 1,−y) if (x, y) ∈
1⋃

k=−2

hk(β) = [−2, 2]× {−1} ∪ [−1, 3]× {1},

m = (
3
2
,−1).

For ε > 0, let us consider the five rectangles (see Fig. 9)

Di = {(x, y) | i+ 1
2

≤ x ≤ i+ 3
2

and − 1− ε ≤ y ≤ −1 + ε} for i ∈ {0,±2},

Di = {(x, y) | i+ 1
2

≤ x ≤ i+ 3
2

and 1− ε ≤ y ≤ 1 + ε} for i = ±1.

The proof of the next lemma is similar to the one of Lemma 5.10 and will be
omitted.

Lemma 5.13 There exist ε > 0 and a brick decomposition D = {Bi}i∈N of U
such that:

1. D0, D±1 and D±2 are bricks of D,

2. D satisfies the hypotheses H1 and H2 of Lemma 5.9.

We consider the attractor A and the repeller R associated to the brick Bi0 = D0.
First we remark that

D1 ∪D2 ⊂ A and D−1 ∪D−2 ⊂ R
since, on one hand, (2, 1) ∈ h(D0)∩D1 and (2,−1) ∈ h(D1)∩D2, and on the other
hand, (0, 1) ∈ h−1(D0) ∩D−1 and (0,−1) ∈ h−1(D−1) ∩D−2. Using Lemma 5.9,
we see that the vertical segment {3

2}× [−1− ε,−1+ ε] is contained in a connected
component ∆ of ∂UA. As in Section 5.3.1 we give some convenient notations
and a basic lemma before to study the situation where ∆ is homeomorphic to S1

(resp. to R).

Notations 5.14

γ− = {(x,−1) | − 1
2
< x <

3
2
},

γ+ = {(x,−1) | 3
2
< x <

7
2
} = h2(γ−),

γ = {(x,−1) | − 1
2
< x <

7
2
} = γ− ∪ {(32 ,−1)} ∪ γ+.
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Lemma 5.15 The set h−2(∆)∪γ− (resp. γ+∪h2(∆)) is connected and contained
in U \ A (resp. in Int(A)).

The proof is similar to the one of Lemma 5.12 and is left to the reader.

(x=1/2) (x=3/2) (x=5/2) (x=7/2)

D−1 D1

D0

(x=−1/2)

(x=0) (x=1) (x=2)

D−2 D2

(y=−1)

(y=1)

∆
−2

h (  )
∆

h (  )
2

∆

Figure 9: The bricks D0, D±1, D±2 and ∆, h±2(∆) close to these bricks

First case: The set ∆ is a Jordan curve.
Claim 4: The set ∆ separates h−1(∆) and h(∆) in S2.
Proof: First we remark that ∆ separates h−2(∆) and h2(∆) in S2: this follows
from Lemma 5.15 and from the fact that γ intersects ∆ transversely. Let us
denote V−, V+ the connected components of S2\∆ containing respectively h−2(∆)
and h2(∆). As in Section 5.3.1 (with h2 in the place of h), one can check that
h2(Cl(V+)) ⊂ V+ or equivalently Cl(V−) ⊂ h2(V−). According to the Brouwer
fixed point Theorem, h2 possesses two fixed points z− ∈ V− and z+ ∈ V+ and
these points are also fixed points of h since h has no 2-periodic point. In particular
we have

V+ ∩ h(V+) 6= ∅ 6= V− ∩ h−1(V−).

We deduce now from h(∆) ∩ ∆ = ∅ that h(∆) ⊂ V+: otherwise we would have
h(∆) ⊂ V− and consequently

V+ ∩ ∂h(V+) = V+ ∩ h(∆) = ∅
so V+ ⊂ h(V+) ⊂ h2(V+) which contradicts h2(Cl(V+)) ⊂ V+. We get similarly
h−1(∆) ⊂ V− replacing h,V+ with h−1,V−. ¤
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Defining Ω = V+ \ h(Cl(V+)), we proceed now exactly as in Section 5.3.1 to
construct a topological embedding

ϕ : O = R2 \ {(0, 0)} → U

with image ϕ(O) =
⋃
k∈Z h

k(Cl(Ω)) such that h ◦ ϕ = ϕ ◦H|O.

Second case: The set ∆ is homeomorphic to R.
We denote again L1, L2 the connected components of the nonempty set Cl(∆) \
∆ ⊂ Fix(h), with possibly L1 = L2. Each Li is contained in a connected compo-
nent Ki of Fix(h) and, as explained in Section 5.3.1, there is no loss in supposing
that Ki (and so Li) is reduced to one point.

For convenience we will use the following notations for the two half-planes on
both sides of the x-axis:

P+ = {(x, y) ∈ R2 | y > 0} and P− = {(x, y) ∈ R2 | y < 0}.

We first suppose K1 = K2.

Then Cl(∆) = ∆ ∪ K1 is a Jordan curve. Using again Lemma 5.15 and since
γ ∩∆ is a transverse intersection, one can write:
Claim 5: The set Cl(∆) separates h−2(∆) and h2(∆) in S2.
We consider now the two connected components V−, V+ of S2 \ Cl(∆), with
h2(∆) ⊂ V+ and h−2(∆) ⊂ V−. One can easily derive from the claim above
that h2(V+ ∪∆) ⊂ V+, i.e. V− ∪∆ ⊂ h2(V−).
Claim 6: There are three possible situations:

S1: h(V+ ∪∆) ⊂ V+,

S2: h(V+ ∪∆) ⊂ V−,

S3: h(V− ∪∆) ⊂ V+.

Proof: Suppose that we are neither in the situation S1 nor in the situation S2.
Then h(V+ ∪∆) meets ∂V+ = ∂V− = Cl(∆). Since h(∆) ∩∆ = ∅, this implies
h(V+) ∩ ∆ 6= ∅ and then ∆ ⊂ h(V+). Consequently h(V− ∪ ∆) is a connected
subset of S2 \Cl(∆) and we get either h(V− ∪∆) ⊂ V+ or h(V− ∪∆) ⊂ V−. The
latter is actually not possible because of V− ∪∆ ⊂ h2(V−). ¤

We construct now a proper topological embedding ϕ : O → U conjugating h and
G which will be defined on O = R2 in the first situation and on O = {(x, y) ∈
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R2 | y 6= 0} in the last two ones.
• In the situation S1 we proceed exactly as in Section 5.3.1.
• Remark now that

h(V− ∪∆) ⊂ V+ ⇐⇒ V− ∪∆ ⊂ h(V+) ⇐⇒ h−1(V− ∪∆) ⊂ V+

which shows that the situation S3 can be reduced to the situation S2 replacing h
with h−1. Since it is equivalent to prove Theorem 5.1 for h or for h−1, it suffices
to consider S2. In this case, let us denote Ω = V+ \ h2(Cl(V+)). We have then
Cl(Ω) \ K1 = ∆ ∪ Ω ∪ h2(∆) ⊂ U . We construct the required embedding ϕ as
follows. We consider for example the set D = {(x, 1

x) |x > 0} and we write B
for the domain between D and G2(D) in the upper half-plane P+. Using the
Schoenflies Theorem, one can construct a homeomorphism

ϕ : Cl(B) = ClR2(B) ∪ {∞} → Cl(Ω)

such that ϕ(∞) = K1, ϕ(D) = ∆ and ϕ ◦ G2|D = h2 ◦ ϕ|D. Then we define the
map ϕ on the half-plane P+ observing that for every point z ∈ P+ there exists a
unique even integer 2k ∈ Z such that z ∈ G2k(D ∪B) and then defining

ϕ(z) = h2k ◦ ϕ ◦G−2k(z) ∈ h2k(∆ ∪ Ω).

In particular we have at this stage

h2 ◦ ϕ = ϕ ◦G2|P+ .

Afterwards we extend ϕ on P− by

∀y < 0 ϕ(x, y) = h ◦ ϕ ◦G−1(x, y) ∈
⋃

k∈Z
h2k+1(∆ ∪ Ω).

It is easily seen that we have obtained in this way a continuous map

ϕ : O = {(x, y) ∈ R2 | y 6= 0} → U

satisfying h ◦ ϕ = ϕ ◦ G|O and such that, for every x ∈ R, ϕ(({x} × R) ∩ O) is
a closed subset of U . It is not totally obvious that this map ϕ is one-to-one (in
contrast to the previously constructed embeddings). To check this property, it is
enough to see that the sets hk(∆ ∪ Ω), k ∈ Z, are pairwise disjoint. This turns
out to be true because hk(∆) ∩ hl(∆) = ∅ for k 6= l (Property 5.8) and because

Ω ∩ h(Ω) ⊂ V+ ∩ h(V+) = ∅, Ω ∩ h2(Ω) ⊂ Ω ∩ h2(V+) = ∅

which implies, according to Lemma 5.2, hk(Ω) ∩ hl(Ω) = ∅ for k 6= l.
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We suppose now K1 6= K2.

Let us define C = Cl(∆ ∪ h2(∆)) = ∆ ∪ h2(∆) ∪K1 ∪K2. Thus C is a Jordan
curve.
Claim 7: The set C separates h−2(∆) and γ+ in S2.
Proof: Property 5.8 gives ∆ ∪ h2(∆) ⊂ A so, with Lemma 5.15, h−2(∆) ∪ γ−
is contained in a connected component V− of S2 \ C. This lemma also gives
γ+ ∩ ∆ ⊂ γ+ ∩ ∂UA = ∅ and γ+ ∩ h2(∆) ⊂ h2(γ− ∩ A) = ∅ hence γ+ is also
contained in a connected component V+ of S2 \C. We have necessarily V− 6= V+

since the segment γ intersects ∆ ⊂ C transversely. ¤

We keep the notations V−, V+ of the proof above, that is V− (resp. V+) is the
connected component of S2 \ C containing h−2(∆) (resp. γ+). In particular we
have ∂V− = ∂V+ = C.
Claim 8: We have h2(V+) ∩ V+ = ∅ = h(V+) ∩ V+.
Proof: According to the previous claim we have

∂h−2(V+) ∩ V+ = (h−2(∆) ∪∆) ∩ V+ = ∅

so we have either h−2(V+) ∩ V+ = ∅ or V+ ⊂ h−2(V+). The latter would imply
that γ is contained in h−2(V+) except for the point (3

2 ,−1) which is absurd since
this segment intersects ∆ ⊂ h−2(C) transversely. This proves h2(V+) ∩ V+ = ∅.
For the other equality, we first observe that the situations h±1(V+) ⊂ V+ are not
possible since they contradict h2(V+) ∩ V+ = ∅. Suppose now V+ ∩ h(V+) 6= ∅.
Then we have

h(V+) ∩ C 6= ∅ and V+ ∩ h(C) 6= ∅,
that is

h(V+) ∩ (∆ ∪ h2(∆)) 6= ∅ and V+ ∩ (h(∆) ∪ h3(∆)) 6= ∅.

For convenience we define four sets E1, . . . , E4 by

E1 = h(V+) ∩∆, E2 = h(V+) ∩ h2(∆), E3 = V+ ∩ h(∆), E4 = V+ ∩ h3(∆).

Since hk(∆) ∩ hl(∆) = ∅ for k 6= l we see that Ei is either empty or equal, for
respectively i = 1, 2, 3, 4, to the whole set ∆, h2(∆), h(∆), h3(∆).

It turns out that necessarily E1 = ∅, hence E2 = h2(∆). Otherwise we would
have ∆ ⊂ h(V+), i.e. h−1(∆) ⊂ V+, and h−1(Cl(∆)) would be a connected set
joining K1 and K2 in Cl(V+). Moreover, Cl(γ+) is an arc contained in V+ except
one endpoint on ∆ and the other one on h2(∆) so it separates K1 and K2 in
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Cl(V+). This implies h−1(∆)∩ γ+ 6= ∅. On the other hand, since γ+ ⊂ A, we get
with Property 5.8

h−1(∆) ∩ γ+ = h−1(∆ ∩ h(γ+)) ⊂ h−1(∂UA ∩ Int(A)) = ∅,

a contradiction.
We observe also that the two setsE2 and E4 cannot be simultaneously nonempty

since this would give h3(∆) ⊂ h2(V+) ∩ V+ = ∅. It remains to be studied the
situation h(∆) ⊂ V+, i.e. h2(∆) ⊂ h(V+). We first observe that we cannot
have Cl(V+) ∪ h(Cl(V+)) = S2 because this would imply ∆ ⊂ h(V+) and then
h(∆) ⊂ h2(V+) ∩ V+ = ∅. Thus the whole set Cl(V+) ∪ h(Cl(V+) is contained in
the domain of a single chart of S2. In such a chart, the situation is as in Fig. 10
and, K1 and K2 being fixed points, we obtain a contradiction with the fact that
h reverses the orientation. The claim is proved. ¤

V+

h (  )∆2

h(V )+

∆

K 2

K 1

h (  )∆3

h(  )∆

Figure 10: The situation h(∆) ⊂ V+ is not possible

We consider now a new “model” homeomorphism G1 defined by

∀ (x, y) ∈ R2 G1(x, y) = (x+ |y|,−y).

Let D = {(0, y) ∈ R2 | y > 0} and let B be the domain between D and G2
1(D)

in the half-plane P+. Using again the Schoenflies Theorem, one can construct a
homeomorphism ϕ1 : Cl(B) → Cl(V+) such that ϕ1(0, 0) = K1, ϕ1(∞) = K2,
ϕ1(D) = ∆ and ϕ1 ◦ G2

1|D = h2 ◦ ϕ1|D. For every point z ∈ P+ there exists a
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unique even integer 2k ∈ Z such that z ∈ G2k
1 (D ∪B) and we set

ϕ1(z) = h2k ◦ ϕ1 ◦G−2k
1 (z) ∈ h2k(∆ ∪ V+).

We have in this way h2 ◦ ϕ1 = ϕ1 ◦G2
1|P+ . Extending ϕ1 on P− by

∀ y < 0 ϕ1(x, y) = h ◦ ϕ1 ◦G−1
1 (x, y) ∈

⋃

k∈Z
h2k+1(∆ ∪ V+),

we obtain a continuous map ϕ1 defined on O = {(x, y) ∈ R2 | y 6= 0} and such
that h ◦ ϕ1 = ϕ1 ◦ G1|O. Using the eighth claim and Lemma 5.2 we get hk(∆ ∪
V+) ∩ hl(∆ ∪ V+) = ∅ for k 6= l which ensures that ϕ1 is one-to-one. Finally, it is
easy to construct a homeomorphism ψ : O → O such that G1 ◦ ψ = ψ ◦G|O and
such that

∀x ∈ R Cl
(
ψ

(
({x} ×R) ∩ O)) \ ψ(

({x} ×R) ∩ O)
= {(0, 0),∞}.

Then ϕ = ϕ1 ◦ ψ is a proper topological embedding such that h ◦ ϕ = ϕ ◦ G|O,
with ϕ(O) =

⋃
k∈Z h

k(∆ ∪ V+). The proof of Theorem 5.1 is completed. ¤
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