## The Critical Problem for Rank-Metric Codes

Gianira N. Alfarano

**OpeRa 2024 - Open Problems on Rank-Metric Codes** Università degli Studi della Campania, Luigi Vanvitelli February 16th, 2024









### Overview

1 Introduction to the Problem

### 2 Background

- Linear Codes
- Matroids and Lattices
- q-Polymatroids

The Critical Problem for Rank-Metric Codes

- The  $\mathbb{F}_{q^m}$ -Linear Case
- The MRD Case

### Contents

### 1 Introduction to the Problem

#### 2 Background

- Linear Codes
- Matroids and Lattices
- *q*-Polymatroids

### The Critical Problem for Rank-Metric Codes

- The  $\mathbb{F}_{q^m}$ -Linear Case
- The MRD Case

Definition (Crapo & Rota 1970)

Let  $S \subseteq \mathbb{F}_q^k \setminus \{0\}$ . Let  $\mathcal{F} = (f_1, \ldots, f_r)$  be a list of linear functionals  $f_i : \mathbb{F}_q^k \to \mathbb{F}_q$ . We say that  $\mathcal{F}$  distinguishes S if for all  $v \in S$ ,  $v \notin \cap_{i=1}^r \ker f_i$ , i.e.

$$\forall v \in S, \quad \exists i \in \{1, \ldots, r\}, \text{ s.t. } f_i(v) \neq 0.$$

H. Crapo, G. Rota. "On The Foundations of Combinatorial Theory: Combinatorial Geometries.", 1970.

Problem (The Critical Problem)

What is the minimum number of linear forms that distinguishes S?

### Definition (Crapo & Rota 1970)

Let  $S \subseteq PG(k-1,q)$ . Let  $\mathcal{H} = (H_1, \ldots, H_r)$  be some hyperplanes. We say that  $\mathcal{H}$  distinguishes S if for all  $P \in S$ ,  $P \notin \bigcap_{i=1}^r H_i$ .

H. Crapo, G. Rota. "On The Foundations of Combinatorial Theory: Combinatorial Geometries.", 1970.

### Problem (The Critical Problem)

What is the minimum number of hyperplanes in PG(k - 1, q) distinguishing S?

### Definition (Crapo & Rota 1970)

Let  $S \subseteq PG(k-1,q)$ . Let  $\mathcal{H} = (H_1, \ldots, H_r)$  be some hyperplanes. We say that  $\mathcal{H}$  distinguishes S if for all  $P \in S$ ,  $P \notin \cap_{i=1}^r H_i$ .

H. Crapo, G. Rota. "On The Foundations of Combinatorial Theory: Combinatorial Geometries.", 1970.

### Problem (The Critical Problem)

What is the minimum number of hyperplanes in PG(k - 1, q) distinguishing S?

- Critical Theorem: Theoretical solution to the critical problem.
- Critical Exponent: The number that we look for in the critical problem.

### Definition (Crapo & Rota 1970)

Let  $S \subseteq PG(k-1,q)$ . Let  $\mathcal{H} = (H_1, \ldots, H_r)$  be some hyperplanes. We say that  $\mathcal{H}$  distinguishes S if for all  $P \in S$ ,  $P \notin \cap_{i=1}^r H_i$ .

H. Crapo, G. Rota. "On The Foundations of Combinatorial Theory: Combinatorial Geometries.", 1970.

#### Problem (The Critical Problem)

What is the minimum number of hyperplanes in PG(k - 1, q) distinguishing S?

- Critical Theorem: Theoretical solution to the critical problem.
- Critical Exponent: The number that we look for in the critical problem.

Contributors: Britz, Dowling, Green, Gruica, Imamura, Jany, Kung, Oxley, Ravagnani, Sheekey, Shiromoto, Tutte, Welsh, White, Whittle, Zullo...

## q-Analogues

Finite set  $\longrightarrow$  finite dimensional vector space over the finite field  $\mathbb{F}_q$ .

| Classic         | q-Analogues           |
|-----------------|-----------------------|
| $\{1\ldots,n\}$ | $\mathbb{F}_q^n$      |
| element         | 1-dim subspace        |
| size            | dimension             |
| intersection    | intersection          |
| union           | sum                   |
| complement      | orthogonal complement |

## q-Analogues

Finite set  $\longrightarrow$  finite dimensional vector space over the finite field  $\mathbb{F}_q$ .

| Classic         | q-Analogues           |
|-----------------|-----------------------|
| $\{1\ldots,n\}$ | $\mathbb{F}_q^n$      |
| element         | 1-dim subspace        |
| size            | dimension             |
| intersection    | intersection          |
| union           | sum                   |
| complement      | orthogonal complement |

From *q*-analogue to "classic": let  $q \rightarrow 1$ .

## q-Analogues

Finite set  $\longrightarrow$  finite dimensional vector space over the finite field  $\mathbb{F}_q$ .

| Classic         | q-Analogues           |
|-----------------|-----------------------|
| $\{1\ldots,n\}$ | $\mathbb{F}_q^n$      |
| element         | 1-dim subspace        |
| size            | dimension             |
| intersection    | intersection          |
| union           | sum                   |
| complement      | orthogonal complement |

From *q*-analogue to "classic": let  $q \rightarrow 1$ .

Example:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
$$\binom{n}{k}_{q} = \frac{(q^{n}-1)(q^{n-1}-1)\cdots(q^{n-k+1}-1)}{(q^{k}-1)(q^{k-1}-1)\cdots(q-1)}$$

## Contents

Introduction to the Problem

### 2 Background

- Linear Codes
- Matroids and Lattices
- *q*-Polymatroids

The Critical Problem for Rank-Metric Codes

- The  $\mathbb{F}_{q^m}$ -Linear Case
- The MRD Case

- $\mathbb{F}_q$  finite field of order q.
- $E := \mathbb{F}_q^n$ .
- $[n] := \{1, \ldots, n\}.$

- $\mathbb{F}_q$  finite field of order q.
- $E := \mathbb{F}_q^n$ .
- $[n] := \{1, \ldots, n\}.$
- The Hamming distance between  $u, v \in E$  is  $d_H(u, v) := |\{i : u_i \neq v_i\}|$ .
- The support of  $u \in E$  is  $supp(u) := \{i : u_i \neq 0\}$ .
- The Hamming weight of  $u \in E$  is  $wt_H(u) := |supp(u)| = d_H(u, 0)$ .

### **Basic Notions**

- $\mathbb{F}_q$  finite field of order q.
- $E := \mathbb{F}_q^n$ .
- $[n] := \{1, \ldots, n\}.$
- The Hamming distance between  $u, v \in E$  is  $d_H(u, v) := |\{i : u_i \neq v_i\}|$ .
- The support of  $u \in E$  is  $supp(u) := \{i : u_i \neq 0\}$ .
- The Hamming weight of  $u \in E$  is  $wt_H(u) := |supp(u)| = d_H(u, 0)$ .

An  $[n, k]_q$  linear code C is a k-dimensional subspace of  $\mathbb{F}_q^n$ .

• 
$$\operatorname{supp}(C) = \bigcup_{c \in C} \operatorname{supp}(c).$$

• C is non-degenerate if supp(C) = [n].

### **Basic Notions**

- $\mathbb{F}_q$  finite field of order q.
- $E := \mathbb{F}_q^n$ .
- $[n] := \{1, \ldots, n\}.$
- The Hamming distance between  $u, v \in E$  is  $d_H(u, v) := |\{i : u_i \neq v_i\}|$ .
- The support of  $u \in E$  is  $supp(u) := \{i : u_i \neq 0\}$ .
- The Hamming weight of  $u \in E$  is  $wt_H(u) := |supp(u)| = d_H(u, 0)$ .

An  $[n, k]_q$  linear code C is a k-dimensional subspace of  $\mathbb{F}_q^n$ .

• 
$$\operatorname{supp}(C) = \bigcup_{c \in C} \operatorname{supp}(c).$$

- C is non-degenerate if supp(C) = [n].
- For S ⊆ [n], C(S) := {c ∈ C : supp(c) ⊆ S̄} is called a shortened subcode of C.
- $C = \text{rowsp}(G) = \{ uG \mid u \in \mathbb{F}_q^k \}$ , where  $G \in \mathbb{F}_q^{k \times n}$  is a generator matrix.

- An 𝔽<sub>q</sub>-[n × m, k, d] rank-metric code C is a k-dimensional 𝔽<sub>q</sub>-subspace of 𝔽<sup>n×m</sup><sub>q</sub>.
- The minimum rank distance of C is  $d := \min{\{\operatorname{rk}(M) : 0 \neq M \in C\}}$ .

- An 𝔽<sub>q</sub>-[n × m, k, d] rank-metric code C is a k-dimensional 𝔽<sub>q</sub>-subspace of 𝔽<sup>n×m</sup><sub>q</sub>.
- The minimum rank distance of C is  $d := \min{ \operatorname{rk}(M) : 0 \neq M \in C }$ .
- For every  $M \in C$ ,  $\mathrm{supp}(M) := \mathsf{colsp}(M) \leq \mathbb{F}_q^n$ .
- $\operatorname{supp}(C) := \sum_{M \in C} \operatorname{supp}(M).$
- C is non-degenerate if supp(C) = E.

- An  $\mathbb{F}_q$ - $[n \times m, k, d]$  rank-metric code *C* is a *k*-dimensional  $\mathbb{F}_q$ -subspace of  $\mathbb{F}_q^{n \times m}$ .
- The minimum rank distance of C is  $d := \min{\{\operatorname{rk}(M) : 0 \neq M \in C\}}$ .
- For every  $M \in C$ ,  $\mathrm{supp}(M) := \mathsf{colsp}(M) \leq \mathbb{F}_q^n$ .

• 
$$\operatorname{supp}(C) := \sum_{M \in C} \operatorname{supp}(M).$$

- C is non-degenerate if supp(C) = E.
- For every U ≤ E, C(U) := {M ∈ C : supp(M) ≤ U<sup>⊥</sup>} is called a shortened subcode of C.

- An  $\mathbb{F}_q$ - $[n \times m, k, d]$  rank-metric code *C* is a *k*-dimensional  $\mathbb{F}_q$ -subspace of  $\mathbb{F}_q^{n \times m}$ .
- The minimum rank distance of C is  $d := \min{\{\operatorname{rk}(M) : 0 \neq M \in C\}}$ .
- For every  $M \in C$ ,  $\operatorname{supp}(M) := \operatorname{colsp}(M) \leq \mathbb{F}_q^n$ .
- $\operatorname{supp}(C) := \sum_{M \in C} \operatorname{supp}(M).$
- C is non-degenerate if supp(C) = E.
- For every U ≤ E, C(U) := {M ∈ C : supp(M) ≤ U<sup>⊥</sup>} is called a shortened subcode of C.
- Singleton-like bound:  $k \leq \max\{n, m\}(\min\{n, m\} + d 1)$ .
- Codes attaining the Singleton-like bound are called MRD.

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

Let  $S \subseteq [n]$ .

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

Let  $S \subseteq [n]$ . Let  $C_S$  : code with generator matrix  $[G^s : s \in S]$ .

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

Let  $S \subseteq [n]$ . Let  $C_S$ : code with generator matrix  $[G^s : s \in S]$ .

Define  $r: 2^{[n]} \to \mathbb{Z}$ ,  $S \mapsto \dim(\langle G^s : s \in S \rangle)$ .

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

Let  $S \subseteq [n]$ . Let  $C_S$ : code with generator matrix  $[G^s : s \in S]$ .

Define  $r: 2^{[n]} \to \mathbb{Z}$ ,  $S \mapsto \dim(\langle G^s : s \in S \rangle)$ .

Then  $\mathcal{M} = \mathcal{M}[C] := ([n], r)$  is a **representable** matroid.

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

```
Let S \subseteq [n]. Let C_S := \{(c_s : s \in S) : c \in C\}.
```

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

Let  $S \subseteq [n]$ . Let  $C_S := \{(c_s : s \in S) : c \in C\}$ .

```
Define r: 2^{[n]} \to \mathbb{Z}, S \mapsto \dim(C_S).
```

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

Let  $S \subseteq [n]$ . Let  $C_S := \{(c_s : s \in S) : c \in C\}$ .

Define  $r: 2^{[n]} \to \mathbb{Z}$ ,  $S \mapsto \dim(C_S)$ .

Then  $\mathcal{M} = \mathcal{M}[C] := ([n], r)$  is a **representable** matroid.

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

Let  $S \subseteq [n]$ . Let  $C(S) := \{c \in C : c_s = 0 \text{ for all } s \in S\}$ ,

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

Let  $S \subseteq [n]$ . Let  $C(S) := \{c \in C : c_s = 0 \text{ for all } s \in S\}, C_S \cong C/C(S)$ .

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1| \cdots |G^n]$ .

Let  $S \subseteq [n]$ . Let  $C(S) := \{c \in C : c_s = 0 \text{ for all } s \in S\}, C_S \cong C/C(S)$ .

Define  $r: 2^{[n]} \to \mathbb{Z}$ ,  $S \mapsto k - \dim(C(S))$ .

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Example

Let C be an  $[n, k]_q$  code with generator matrix  $G := [G^1 | \cdots | G^n]$ .

Let  $S \subseteq [n]$ . Let  $C(S) := \{c \in C : c_s = 0 \text{ for all } s \in S\}, C_S \cong C/C(S)$ .

Define  $r: 2^{[n]} \to \mathbb{Z}, S \mapsto k - \dim(C(S)).$ 

Then  $\mathcal{M} = \mathcal{M}[C] := ([n], r)$  is a **representable** matroid.

- C is an  $[n, k]_q$  code with generator matrix  $G = [G^1 | \cdots | G^n]$ .
- $r(S) := \dim(\langle G^s : s \in S \rangle)$ , for all  $S \subseteq [n]$ .

- C is an  $[n, k]_q$  code with generator matrix  $G = [G^1 | \cdots | G^n]$ .
- $r(S) := \dim(\langle G^s : s \in S \rangle)$ , for all  $S \subseteq [n]$ .

### Example (Extended Hamming Code)

Let C be the  $[8, 4, 4]_2$  code generated by

$$G := \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}.$$
  
$$r(S) = \begin{cases} |S| & \text{if } |S| \le 3 \\ 3 & \text{if } S = \text{supp}(c), \ c \ne (1, 1, 1, 1, 1, 1, 1) \\ 4 & \text{otherwise} . \end{cases}$$

### Lattices

- A lattice (L, ≤, ∨, ∧) is a poset such that for every a, b ∈ L, their join a ∨ b and their meet a ∧ b is in L.
- $\mathbf{1}_{\mathcal{L}} = \vee_{a \in \mathcal{L}}$  is the maximal element of  $\mathcal{L}$ .
- $\mathbf{0}_{\mathcal{L}} = \wedge_{a \in \mathcal{L}}$  is the minimal element of  $\mathcal{L}$ .

### Lattices

- A lattice (L, ≤, ∨, ∧) is a poset such that for every a, b ∈ L, their join a ∨ b and their meet a ∧ b is in L.
- $\mathbf{1}_{\mathcal{L}} = \vee_{a \in \mathcal{L}}$  is the maximal element of  $\mathcal{L}$ .
- $\mathbf{0}_{\mathcal{L}} = \wedge_{a \in \mathcal{L}}$  is the minimal element of  $\mathcal{L}$ .
- An interval  $[a, b] \subseteq \mathcal{L}$  is the set of all  $x \in \mathcal{L}$  such that  $a \leq x \leq b$ .

### Lattices

- A lattice (L, ≤, ∨, ∧) is a poset such that for every a, b ∈ L, their join a ∨ b and their meet a ∧ b is in L.
- $\mathbf{1}_{\mathcal{L}} = \vee_{a \in \mathcal{L}}$  is the maximal element of  $\mathcal{L}$ .
- $\mathbf{0}_{\mathcal{L}} = \wedge_{a \in \mathcal{L}}$  is the minimal element of  $\mathcal{L}$ .
- An interval  $[a, b] \subseteq \mathcal{L}$  is the set of all  $x \in \mathcal{L}$  such that  $a \leq x \leq b$ .
- Let  $c \in [a, b]$ . We say that d is a **complement** of c in [a, b] if  $c \wedge d = a$  and  $c \vee d = b$ .
- $\mathcal{L}$  is called **complemented** if every  $c \in \mathcal{L}$  has a complement in  $\mathcal{L}$ .

### Lattices

- A lattice (L, ≤, ∨, ∧) is a poset such that for every a, b ∈ L, their join a ∨ b and their meet a ∧ b is in L.
- $\mathbf{1}_{\mathcal{L}} = \vee_{a \in \mathcal{L}}$  is the maximal element of  $\mathcal{L}$ .
- $\mathbf{0}_{\mathcal{L}} = \wedge_{a \in \mathcal{L}}$  is the minimal element of  $\mathcal{L}$ .
- An interval  $[a, b] \subseteq \mathcal{L}$  is the set of all  $x \in \mathcal{L}$  such that  $a \leq x \leq b$ .
- Let  $c \in [a, b]$ . We say that d is a **complement** of c in [a, b] if  $c \wedge d = a$  and  $c \vee d = b$ .
- $\mathcal{L}$  is called **complemented** if every  $c \in \mathcal{L}$  has a complement in  $\mathcal{L}$ .
- A finite **chain** from *a* to *b* is a sequence  $a = x_1 < \cdots < x_{k+1} = b$  with  $x_j \in \mathcal{L}$ .
- The **height** of *b* is the maximum length of all maximal chains from  $\mathbf{0}_{\mathcal{L}}$  to *b*.

## **Complemented Lattices**

| Boolean Lattice $(2^{[n]}, \subseteq, \cup, \cap)$ | $\longrightarrow$ | Subspace Lattice $(\mathcal{L}(E), \leq, +, \cap)$ |
|----------------------------------------------------|-------------------|----------------------------------------------------|
| Matroids<br>Polymatroids                           |                   | <i>q</i> -Matroids<br><i>q</i> -Polymatroids       |



# $\mathsf{Matroids} \to q\operatorname{-Matroids}$

### Definition

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

# $\mathsf{Matroids} \to q\operatorname{-Matroids}$

### Definition

A matroid  $\mathcal{M}$  is an ordered pair ([n], r) where  $r : 2^{[n]} \to \mathbb{Z}$  s.t.  $\forall A, B \subseteq [n]$ 

- (r1) (Boundness)  $0 \le r(A) \le |A|$ .
- (r2) (Monotonicity) If  $A \subseteq B$ , then  $r(A) \leq r(B)$ .
- (r3) (Submodularity)  $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ .

### Definition (Jurrius, Pellikaan, 2018)

A *q*-matroid is a pair (E, r),  $\mathcal{L}(E)$  is the lattice of subspaces of E and  $r : \mathcal{L}(E) \to \mathbb{Z}$  is a rank function such that  $\forall A, B \leq E$ 

- (R1) (Boundness)  $0 \le r(A) \le \dim(A)$ .
- (R2) (Monotonicity) If  $A \leq B$ , then  $r(A) \leq r(B)$ .
- (R3) (Submodularity)  $r(A+B) + r(A \cap B) \le r(A) + r(B)$ .

# $Polymatroids \rightarrow q$ -Polymatroids

### Definition

An  $(\mathcal{L}, r)$ -(integer) polymatroid is a pair  $\mathcal{M} = (\mathcal{L}, \rho)$  for which  $r \in \mathbb{N}_0$  and  $\rho$  is a function  $\rho : \mathcal{L} \longrightarrow \mathbb{N}_0$  satisfying the following axioms for all  $A, B \in \mathcal{L}$ .

- (R1) (Boundness)  $0 \le \rho(A) \le r \cdot h(A)$ .
- (R2) (Monotonicity)  $A \leq B \Rightarrow \rho(A) \leq \rho(B)$ .
- (R3) (Submodularity)  $\rho(A \lor B) + \rho(A \land B) \le \rho(A) + \rho(B)$ .

# $\mathsf{Polymatroids} \to q\operatorname{-Polymatroids}$

### Definition

An  $(\mathcal{L}, r)$ -(integer) polymatroid is a pair  $\mathcal{M} = (\mathcal{L}, \rho)$  for which  $r \in \mathbb{N}_0$  and  $\rho$  is a function  $\rho : \mathcal{L} \longrightarrow \mathbb{N}_0$  satisfying the following axioms for all  $A, B \in \mathcal{L}$ .

- (R1) (Boundness)  $0 \le \rho(A) \le r \cdot h(A)$ .
- (R2) (Monotonicity)  $A \leq B \Rightarrow \rho(A) \leq \rho(B)$ .
- (R3) (Submodularity)  $\rho(A \lor B) + \rho(A \land B) \le \rho(A) + \rho(B)$ .
  - $\mathcal{L}$  Boolean lattice:
    - $\mathcal{M}$  is an  $(\mathcal{L}, r)$  polymatroid.
    - r = 1,  $\mathcal{M}$  is a matroid.
  - $\mathcal{L} = \mathcal{L}(E)$  Subspace lattice:
    - $\mathcal{M}$  is a (q, r)-polymatroid [Gorla+ 2019, Shiromoto 2019].
    - r = 1, M is a *q*-matroid [Jurrius, Pellikaan 2016].

R. Jurrius, R. Pellikaan. "Defining the q-analogue of a matroid.", 2016.

E. Gorla, R. Jurrius, H. López, A. Ravagnani. "Rank-Metric Codes and q-Polymatroids", 2019.

K. Shiromoto. "Matroids and Codes with the Rank Metric", 2019.

## Restriction and Contraction

Let  $\mathcal{M} = (\mathcal{L}, \rho)$  be a  $(\mathcal{L}, r)$ -polymatroid and let [X, Y] be an interval of  $\mathcal{L}$ .

$$egin{aligned} & 
ho_{[X,Y]} : \mathcal{L}(E) o \mathbb{N}_0 \ & & \mathcal{T} \mapsto 
ho(\mathcal{T}) - 
ho(X) \end{aligned}$$

 $\mathcal{M}([X, Y]) = ([X, Y], \rho_{[X, Y]})$  is a **minor** of  $\mathcal{M}$ .

- **(**) We write  $\mathcal{M}|_Y := \mathcal{M}([0, Y])$ , which is called the **restriction** of  $\mathcal{M}$  to Y.
- **2** We write  $\mathcal{M}/X := \mathcal{M}([X, \mathbf{1}])$ , which is called the **contraction** of  $\mathcal{M}$  by X.

Restriction and Contraction: Example Let  $E = \mathbb{F}_2^3$  and  $X = \langle (1,1,1) \rangle$ ,  $Y = \langle (1,0,0), (0,1,0) \rangle$ .







## Representable q-Polymatroids

Theorem (Gorla+ 2019, Shiromoto 2019)

Let C be an  $\mathbb{F}_q$ -[n  $\times$  m, k, d] rank-metric code. For each subspace U  $\leq$  E, define

$$C(U) := \{ M \in C : \operatorname{supp}(M) \le U^{\perp} \}.$$

Define

$$\rho: \mathcal{L}(E) \to \mathbb{Z}, \ \rho(U) := k - \dim(\mathcal{C}(U)).$$

 $\mathcal{M}[C] = (E, \rho)$  is a (q, m)-polymatroid.

• For every  $U \leq E$ ,  $\mathcal{M}[C]/U \sim \mathcal{M}[C(U)]$ . [Gluesing-Luerssen, Jany, 2022]



- K. Shiromoto. "Matroids and Codes with the Rank Metric", 2019.
- H. Gluesing-Luerssen, B. Jany, "q-polymatroids and their relation to rank-metric codes, 2022.

## Contents

Introduction to the Problem

#### 2 Background

- Linear Codes
- Matroids and Lattices
- *q*-Polymatroids

#### The Critical Problem for Rank-Metric Codes

- The  $\mathbb{F}_{q^m}$ -Linear Case
- The MRD Case

#### Definition:

•  $U \leq E$ .

• **B** =  $(b_1, \ldots, b_r)$  list of bilinear forms  $b_i : \mathbb{F}_q^n \times \mathbb{F}_q^m \to \mathbb{F}_q$ . **B** distinguishes the space U if

$$\bigcap_{i=1}^r \operatorname{lker}(b_i) \leq U^{\perp},$$

where lker(b) denotes the left kernel of the bilinear form b.

#### Definition:

•  $U \leq E$ .

• **B** =  $(b_1, \ldots, b_r)$  list of bilinear forms  $b_i : \mathbb{F}_q^n \times \mathbb{F}_q^m \to \mathbb{F}_q$ . **B** distinguishes the space U if

$$\bigcap_{i=1}^r \operatorname{lker}(b_i) \leq U^{\perp},$$

where lker(b) denotes the left kernel of the bilinear form b.

#### Problem ((q-Analogue of the) Critical Problem)

Find the minimum number c of bilinear forms  $b_i$ , such that  $(b_1, \ldots, b_c)$  distinguishes a fixed space  $U \leq E$ .

### Problem ((q-Analogue of the) Critical Problem)

Let C be an  $\mathbb{F}_q$ -[ $n \times m, k$ ] rank-metric codes. Let  $U \leq E$ . Find the minimum number c of codewords  $M_i$  of C, such that

$$\sum_{i=1}^{c} \operatorname{supp}(M_i) = U.$$

### Problem ((*q*-Analogue of the) Critical Problem)

Let C be an  $\mathbb{F}_q$ -[n  $\times$  m, k] rank-metric codes. Let  $U \leq E$ . Find the minimum number c of codewords  $M_i$  of C, such that

$$\sum_{i=1}^{c} \operatorname{supp}(M_i) = U.$$

#### Definition: the Critical Exponent of $\ensuremath{\mathcal{C}}$

 $\operatorname{crit}(C)$ : least number t of codewords of C, whose supports span  $\operatorname{supp}(C)$ .

### Problem ((q-Analogue of the) Critical Problem)

Let C be an  $\mathbb{F}_q$ -[n  $\times$  m, k] rank-metric codes. Let  $U \leq E$ . Find the minimum number c of codewords  $M_i$  of C, such that

$$\sum_{i=1}^{c} \operatorname{supp}(M_i) = U.$$

#### Definition: the Critical Exponent of C

 $\operatorname{crit}(\mathcal{M}[C])$ : least number t of codewords of C, whose supports span  $\operatorname{supp}(C)$ .

## Möbius Function on a Poset

Let  $(P, \leq)$  be a partially ordered set. The Möbius Function on P is defined by

$$\mu(x,y) := egin{cases} 1 & ext{if } x = y, \ -\sum\limits_{x \leq z < y} \mu(x,z) & ext{if } x < y, \ 0 & ext{otherwise.} \end{cases}$$

### Lemma (Möbius Inversion formula)

Let 
$$f, g: P \to \mathbb{Z}$$
 be two functions on a poset  $P$ . Then  
•  $f(x) = \sum_{x \le y} g(y)$  if and only if  $g(x) = \sum_{x \le y} \mu(x, y) f(y)$ .  
•  $f(x) = \sum_{x \ge y} g(y)$  if and only if  $g(x) = \sum_{x \ge y} \mu(y, x) f(y)$ .

| L       | Boolean lattice | Subspace lattice                       |
|---------|-----------------|----------------------------------------|
| μ(0, U) | $(-1)^{ U }$    | $(-1)^{\dim(U)}q^{\binom{\dim(U)}{2}}$ |

Let  $\mathcal{M} = (E, \rho)$  be a *q*-polymatroid.

**Definition:** The characteristic polynomial of  $\mathcal{M}$  is the polynomial in  $\mathbb{Z}[z]$  defined by

$$p(\mathcal{M};z) := \sum_{0 \le A \le E} \mu(0,A) z^{\rho(E)-\rho(A)}.$$

Let  $\mathcal{M} = (E, \rho)$  be a *q*-polymatroid.

**Definition:** The characteristic polynomial of  $\mathcal{M}$  is the polynomial in  $\mathbb{Z}[z]$  defined by

$$p(\mathcal{M};z) := \sum_{0 \le A \le E} \mu(0,A) z^{\rho(E)-\rho(A)}.$$

**Properties:** 

• 
$$p(\mathcal{M}/U;z) = \sum_{U \leq A \leq E} \mu(U,A) z^{\rho(E)-\rho(A)}.$$

Let  $\mathcal{M} = (E, \rho)$  be a *q*-polymatroid.

**Definition:** The characteristic polynomial of  $\mathcal{M}$  is the polynomial in  $\mathbb{Z}[z]$  defined by

$$p(\mathcal{M};z) := \sum_{0 \le A \le E} \mu(0,A) z^{\rho(E)-\rho(A)}.$$

**Properties:** 

• 
$$p(\mathcal{M}/U; z) = \sum_{U \le A \le E} \mu(U, A) z^{\rho(E) - \rho(A)}.$$
  
•  $z^{\rho(E) - \rho(U)} = \sum_{U \le A \le E} p(\mathcal{M}/A; z)$  (by Möbius Inversion).

Let  $\mathcal{M} = (E, \rho)$  be a *q*-polymatroid.

**Definition:** The characteristic polynomial of  $\mathcal{M}$  is the polynomial in  $\mathbb{Z}[z]$  defined by

$$p(\mathcal{M};z) := \sum_{0 \le A \le E} \mu(0,A) z^{\rho(E)-\rho(A)}.$$

**Properties:** 

• 
$$p(\mathcal{M}/U; z) = \sum_{U \le A \le E} \mu(U, A) z^{\rho(E) - \rho(A)}$$
.  
•  $z^{\rho(E) - \rho(U)} = \sum_{U \le A \le E} p(\mathcal{M}/A; z)$  (by Möbius Inversion)  
• If  $\mathcal{M} = \mathcal{M}[C]$  then  $|C(U)| = \sum_{U \le A \le E} p(\mathcal{M}/A; q)$ .

Theorem (A., Byrne (2022))

Let C be an  $\mathbb{F}_q$ -[n  $\times$  m, k] rank-metric code,  $\mathcal{M} = \mathcal{M}[C]$  and let  $U \leq E$ .

 $|\{(X_1,\ldots,X_t) : X_i \in \mathcal{C}, \operatorname{supp}(X_1) + \cdots + \operatorname{supp}(X_t) = U\}| = p(\mathcal{M}/U^{\perp}; q^t).$ 

### Theorem (A., Byrne (2022))

Let C be an  $\mathbb{F}_q$ -[n  $\times$  m, k] rank-metric code,  $\mathcal{M} = \mathcal{M}[C]$  and let  $U \leq E$ .

 $|\{(X_1,\ldots,X_t) : X_i \in C, \operatorname{supp}(X_1) + \cdots + \operatorname{supp}(X_t) = U\}| = p(\mathcal{M}/U^{\perp}; q^t).$ 

Proof:

$$f(W) := |\{(X_1, \dots, X_t) \in C^t : \sum_{i=1}^t \operatorname{colsp}(X_i) = W^{\perp}\}|,$$
  
 $g(W) := |\{(X_1, \dots, X_t) \in C^t : \sum_{i=1}^t \operatorname{colsp}(X_i) \le W^{\perp}\}|.$ 

Theorem (A., Byrne (2022))

Let C be an  $\mathbb{F}_q$ - $[n \times m, k]$  rank-metric code,  $\mathcal{M} = \mathcal{M}[C]$  and let  $U \leq E$ .

 $|\{(X_1,\ldots,X_t) : X_i \in \mathcal{C}, \operatorname{supp}(X_1) + \cdots + \operatorname{supp}(X_t) = U\}| = p(\mathcal{M}/U^{\perp}; q^t).$ 

Proof:

$$egin{aligned} f(W) &:= |\{(X_1,\ldots,X_t) \in C^t : \sum_{i=1}^t ext{colsp}(X_i) = W^{\perp}\}|, \ g(W) &:= |\{(X_1,\ldots,X_t) \in C^t : \sum_{i=1}^t ext{colsp}(X_i) \leq W^{\perp}\}|. \ g(W) &= \sum_{V \in [W,E]} f(V). \end{aligned}$$

 $g(W) = |\{(X_1,\ldots,X_t) \in C^t : \operatorname{colsp}(X_i) \le W^{\perp} \, \forall \, i \in [t]\}| = |C(W)|^t.$ 

Theorem (A., Byrne (2022))

Let C be an  $\mathbb{F}_{q}$ - $[n \times m, k]$  rank-metric code,  $\mathcal{M} = \mathcal{M}[C]$  and let  $U \leq E$ .

 $|\{(X_1,\ldots,X_t) : X_i \in \mathcal{C}, \operatorname{supp}(X_1) + \cdots + \operatorname{supp}(X_t) = U\}| = p(\mathcal{M}/U^{\perp}; q^t).$ 

Proof:

$$egin{aligned} f(W) &:= |\{(X_1,\ldots,X_t) \in C^t : \sum_{i=1}^t ext{colsp}(X_i) = W^{\perp}\}|, \ g(W) &:= |\{(X_1,\ldots,X_t) \in C^t : \sum_{i=1}^t ext{colsp}(X_i) \leq W^{\perp}\}|. \ g(W) &= \sum_{V \in [W,E]} f(V). \end{aligned}$$

 $g(W) = |\{(X_1,\ldots,X_t) \in C^t : \operatorname{colsp}(X_i) \le W^{\perp} \forall i \in [t]\}| = |C(W)|^t.$ 

$$f(W) = \sum_{V \in [W, E]} \mu(W, V)g(V) = \sum_{V \in [W, E]} \mu(W, V)|C(V)|^t = \sum_{V \in [W, E]} \mu(W, V)q^{t(k-\rho(V))} = P(\mathcal{M}/W; q^t).$$

G. Alfarano, E. Byrne. "The Critical Theorem for q-Polymatroids.", 2023.

# Critical Exponent

### Corollary

If C is a non-degenerate  $\mathbb{F}_q$ -[n  $\times$  m, k] code, then

 $|\{(X_1,\ldots,X_t) : X_i \in \mathcal{C}, \operatorname{supp}(X_1) + \cdots + \operatorname{supp}(X_t) = \mathbb{F}_q^n\}| = \rho(\mathcal{M};q^t).$ 

# Critical Exponent

#### Corollary

If C is a non-degenerate  $\mathbb{F}_q\text{-}[n\times m,k]$  code, then

 $|\{(X_1,\ldots,X_t) : X_i \in \mathcal{C}, \operatorname{supp}(X_1) + \cdots + \operatorname{supp}(X_t) = \mathbb{F}_q^n\}| = p(\mathcal{M};q^t).$ 

$$\operatorname{crit}(\mathcal{M}[\mathcal{C}]) = \begin{cases} \infty & \text{if } \mathcal{C} \text{ is degenerate,} \\ \min\{r : p(\mathcal{M}; q^r) > 0\} & \text{otherwise.} \end{cases}$$

• Ben Jany (2022) gave an alternative proof for the q-matroid case.

• Imamura and Shiromoto, independently showed a similar result (2023).

### Example

Let C be the  $\mathbb{F}_{2}\text{-}[5\times3,6,1]$  rank-metric code generated by the matrices

Let  $\mathcal{M} = (\mathbb{F}_2^5, \rho)$  be the (q, 3)-polymatroid induced by C. We calculate the characteristic polynomial of  $\mathcal{M}$ ,

$$p(\mathcal{M};z) := \sum_{X \leq \mathbb{F}_2^5} \mu(0,X) z^{\rho(\mathbb{F}_2^5) - \rho(X)} = \cdots = z^6 - 4z^4 - 25z^3 + 44z^2 + 40z - 56z^6$$

• 
$$p(\mathcal{M}; 1) = p(\mathcal{M}; 2) = 0.$$
  
•  $p(\mathcal{M}; 2^2) = 2280 > 0.$ 

Hence  $\operatorname{crit}(\mathcal{M}) = 2$ . Indeed

$$X_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \text{and} \quad X_2 = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

# First Bound

### Proposition

Let C be a non-degenerate  $\mathbb{F}_q$ - $[n \times m, k]$  code and let  $\mathcal{M} = \mathcal{M}[C]$  be the q-polymatroid associated to C. Then

$$\left\lceil \frac{n}{m} \right\rceil \leq \operatorname{crit}(\mathcal{M}) \leq k.$$

## First Bound

### Proposition

Let C be a non-degenerate  $\mathbb{F}_q$ -[ $n \times m, k$ ] code and let  $\mathcal{M} = \mathcal{M}[C]$  be the q-polymatroid associated to C. Then

$$\left\lceil \frac{n}{m} \right\rceil \leq \operatorname{crit}(\mathcal{M}) \leq k.$$

#### Proof.

If  $\operatorname{crit}(\mathcal{M}) = t$ , then there are  $X_1, \ldots, X_t \in C$  such that

$$\sum_{i=1}^t \operatorname{supp}(X_i) = \mathbb{F}_q^n.$$

Then,

$$n = \dim_{\mathbb{F}_q}\left(\sum_{i=1}^t \operatorname{supp}(X_i)\right) \leq mt.$$

# Rank-Metric Codes Linear over $\mathbb{F}_{q^m}$

- $\mathbb{F}_{q^m}/\mathbb{F}_q$  finite extension field
- k, n positive integers, with  $k \leq n$

### Definition

An  $[n,k]_{q^m/q}$  rank-metric code is an  $\mathbb{F}_{q^m}$ -linear subspace  $C \leq \mathbb{F}_{q^m}^n$ .

- n is the length of C.
- k is the **dimension** of C.

Let  $v \in \mathbb{F}_{q^m}^n$  and fix a basis  $\Gamma = \{\gamma_1, \ldots, \gamma_m\}$  of  $\mathbb{F}_{q^m}/\mathbb{F}_q$ . Let  $\Gamma(v) \in \mathbb{F}_q^{m \times n}$  be the matrix defined by

$$v_j = \sum_{i=1}^m \Gamma(v)_{ij} \gamma_i$$

#### Definition

The  $\Gamma$ -support of a vector  $v \in \mathbb{F}_{q^m}^n$  is the rowspace of  $\Gamma(v)$ . It is denoted by  $\sigma_{\Gamma}(v) \subseteq \mathbb{F}_q^n$ .

# Rank-Metric Codes

- $\mathbb{F}_{q^m}/\mathbb{F}_q$  finite extension field
- k, n positive integers, with  $k \leq n$

### Definition

An  $[n,k]_{q^m/q}$  rank-metric code is an  $\mathbb{F}_{q^m}$ -linear subspace  $C \leq \mathbb{F}_{q^m}^n$ .

- *n* is the **length** of *C*.
- k is the **dimension** of C.

• For any 
$$v \in \mathbb{F}_{q^m}^n$$
,  $\sigma(v) = \operatorname{rowsp}(\Gamma(v)) \leq \mathbb{F}_q^n$ .

• The rank weight of  $v \in \mathbb{F}_{q^m}^n$  is  $\operatorname{rk}(v) = \dim_{\mathbb{F}_q}(\sigma(v))$ .

• *C* possesses a generator matrix  $G \in \mathbb{F}_{q^m}^{k \times n}$ :

$$C = \{ vG \mid v \in \mathbb{F}_{q^m}^k \},\$$

i.e. the rows of G form a **basis** of C.

• C is **non-degenerate** if the columns of G are  $\mathbb{F}_{q}$ -independent.

Consider an  $[n, k]_{q^m/q}$  non-degenerate rank-metric code C with generator matrix  $G = (g_{i,i})$ . A basis for C is given by the rows of G.

$$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \begin{pmatrix} g_{1,1} & g_{1,2} & \cdots & g_{1,n} \\ g_{2,1} & g_{2,2} & \cdots & g_{2,n} \\ \vdots & \vdots & & \vdots \\ g_{k,1} & g_{k,2} & \cdots & g_{k,n} \end{pmatrix}$$

We can instead consider the columns of G.

We can instead consider the  $\mathbb{F}_q$ -span  $\mathcal{U}$  of the columns of G.

We can instead consider the  $\mathbb{F}_q$ -span  $\mathcal{U}$  of the columns of G.

Definition

 $\mathcal{U}$  is called  $[n, k]_{q^m/q}$  system associated to G.

## The Geometry of Rank-Metric Codes (q-systems)

We can instead consider the  $\mathbb{F}_q$ -span  $\mathcal{U}$  of the columns of G.

### Definition

 $\mathcal{U}$  is called  $[n,k]_{q^m/q}$  system associated to G.

### Corollary

Let  $\mathcal M$  be the q-matroid induced by C. Then

 $\operatorname{crit}(\mathcal{M}) = \min\{r \in \mathbb{N} \mid \exists \mathbb{F}_{q^m} \text{-hyperplanes } H_1, \dots, H_r \text{ such that} \\ \mathcal{U} \cap H_1 \cap \dots \cap H_r = 0\}.$ 

### Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate  $[n, k]_{q^m/q}$  code contains a codeword of rank equal to min $\{m, n\}$ .

### Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate  $[n, k]_{q^m/q}$  code contains a codeword of rank equal to min $\{m, n\}$ .

Theorem (A., Byrne 2023)

Let  $\mathcal{M} = \mathcal{M}[C]$ . Then  $\operatorname{crit}(\mathcal{M}) = \left\lceil \frac{n}{m} \right\rceil$ .

### Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate  $[n, k]_{q^m/q}$  code contains a codeword of rank equal to min $\{m, n\}$ .

Theorem (A., Byrne 2023)

Let  $\mathcal{M} = \mathcal{M}[C]$ . Then  $\operatorname{crit}(\mathcal{M}) = \left\lceil \frac{n}{m} \right\rceil$ .

#### Sketch of the Proof:

• Write n = am + b, with  $a, b \in \mathbb{N}_0$  and  $0 \le b < m$ .

### Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate  $[n, k]_{q^m/q}$  code contains a codeword of rank equal to min $\{m, n\}$ .

Theorem (A., Byrne 2023)

Let 
$$\mathcal{M} = \mathcal{M}[C]$$
. Then  $\operatorname{crit}(\mathcal{M}) = \left\lceil \frac{n}{m} \right\rceil$ 

- Write n = am + b, with  $a, b \in \mathbb{N}_0$  and  $0 \le b < m$ .
- If a = 0, then n < m. By Lemma  $\operatorname{crit}(\mathcal{M}) = 1 = \left\lceil \frac{n}{m} \right\rceil$ .

### Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate  $[n, k]_{q^m/q}$  code contains a codeword of rank equal to min $\{m, n\}$ .

Theorem (A., Byrne 2023)

Let  $\mathcal{M} = \mathcal{M}[C]$ . Then  $\operatorname{crit}(\mathcal{M}) = \left\lceil \frac{n}{m} \right\rceil$ .

- Write n = am + b, with  $a, b \in \mathbb{N}_0$  and  $0 \le b < m$ .
- If a = 0, then n < m. By Lemma  $\operatorname{crit}(\mathcal{M}) = 1 = \left\lceil \frac{n}{m} \right\rceil$ .
- Assume that an  $[n', k]_{q^m/q}$  non-degenerate code s.t. n' = a'm + b', with a' < a, has critical exponent  $\left\lceil \frac{n'}{m} \right\rceil$ .

### Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate  $[n, k]_{q^m/q}$  code contains a codeword of rank equal to min $\{m, n\}$ .

### Theorem (A., Byrne 2023)

Let  $\mathcal{M} = \mathcal{M}[C]$ . Then  $\operatorname{crit}(\mathcal{M}) = \left\lceil \frac{n}{m} \right\rceil$ .

- Write n = am + b, with  $a, b \in \mathbb{N}_0$  and  $0 \le b < m$ .
- If a = 0, then n < m. By Lemma  $\operatorname{crit}(\mathcal{M}) = 1 = \left\lceil \frac{n}{m} \right\rceil$ .
- Assume that an  $[n', k]_{q^m/q}$  non-degenerate code s.t. n' = a'm + b', with a' < a, has critical exponent  $\left\lceil \frac{n'}{m} \right\rceil$ .
- There exists a codeword  $c = (x_1, \ldots, x_m, 0, \ldots, 0)$ , with rank equal to m.

### Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate  $[n, k]_{q^m/q}$  code contains a codeword of rank equal to min $\{m, n\}$ .

### Theorem (A., Byrne 2023)

Let 
$$\mathcal{M} = \mathcal{M}[C]$$
. Then  $\operatorname{crit}(\mathcal{M}) = \left\lceil \frac{n}{m} \right\rceil$ 

- Write n = am + b, with  $a, b \in \mathbb{N}_0$  and  $0 \le b < m$ .
- If a = 0, then n < m. By Lemma  $\operatorname{crit}(\mathcal{M}) = 1 = \left\lceil \frac{n}{m} \right\rceil$ .
- Assume that an  $[n', k]_{q^m/q}$  non-degenerate code s.t. n' = a'm + b', with a' < a, has critical exponent  $\left\lceil \frac{n'}{m} \right\rceil$ .
- There exists a codeword  $c = (x_1, \ldots, x_m, 0, \ldots, 0)$ , with rank equal to m.
- Construct  $C_1 = \leq \mathbb{F}_{q^m}^{n-m}$ . Since n' = n m = (a 1)m + b, by the induction hypothesis, the critical exponent of  $\mathcal{M}[C_1]$  is  $\lceil \frac{n-m}{m} \rceil$ .

### Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate  $[n, k]_{q^m/q}$  code contains a codeword of rank equal to min $\{m, n\}$ .

### Theorem (A., Byrne 2023)

Let 
$$\mathcal{M} = \mathcal{M}[C]$$
. Then  $\operatorname{crit}(\mathcal{M}) = \left\lceil \frac{n}{m} \right\rceil$ 

- Write n = am + b, with  $a, b \in \mathbb{N}_0$  and  $0 \le b < m$ .
- If a = 0, then n < m. By Lemma  $\operatorname{crit}(\mathcal{M}) = 1 = \left\lceil \frac{n}{m} \right\rceil$ .
- Assume that an  $[n', k]_{q^m/q}$  non-degenerate code s.t. n' = a'm + b', with a' < a, has critical exponent  $\left\lceil \frac{n'}{m} \right\rceil$ .
- There exists a codeword  $c = (x_1, \ldots, x_m, 0, \ldots, 0)$ , with rank equal to m.
- Construct  $C_1 = \leq \mathbb{F}_{q^m}^{n-m}$ . Since n' = n m = (a 1)m + b, by the induction hypothesis, the critical exponent of  $\mathcal{M}[C_1]$  is  $\lceil \frac{n-m}{m} \rceil$ .
- Observe that these words are now enough to show the full result.

### Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate  $[n, k]_{q^m/q}$  code contains a codeword of rank equal to min $\{m, n\}$ .

### Theorem (A., Byrne 2023)

Let 
$$\mathcal{M} = \mathcal{M}[C]$$
. Then  $\operatorname{crit}(\mathcal{M}) = \left\lceil \frac{n}{m} \right\rceil$ 

- Write n = am + b, with  $a, b \in \mathbb{N}_0$  and  $0 \le b < m$ .
- If a = 0, then n < m. By Lemma  $\operatorname{crit}(\mathcal{M}) = 1 = \left\lceil \frac{n}{m} \right\rceil$ .
- Assume that an  $[n', k]_{q^m/q}$  non-degenerate code s.t. n' = a'm + b', with a' < a, has critical exponent  $\left\lceil \frac{n'}{m} \right\rceil$ .
- There exists a codeword  $c = (x_1, \ldots, x_m, 0, \ldots, 0)$ , with rank equal to m.
- Construct C<sub>1</sub> =≤ ℝ<sup>n-m</sup><sub>q<sup>m</sup></sub>. Since n' = n m = (a 1)m + b, by the induction hypothesis, the critical exponent of M[C<sub>1</sub>] is [<sup>n-m</sup>/<sub>m</sub>].
- Observe that these words are now enough to show the full result.

• If C is non-degenerate and  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

• If C is non-degenerate and  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

Are there other "families" of codes for which we can compute the critical exponent?

• If C is non-degenerate and  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

• If C is non-degenerate and  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an  $\mathbb{F}_{q}$ - $[n \times m, k, d]$  MRD code.

• If C is non-degenerate and  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an  $\mathbb{F}_{q^{-}}[n \times m, k, d]$  MRD code.

• If C is  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \lceil \frac{n}{m} \rceil$ .

• If C is non-degenerate and  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an  $\mathbb{F}_{q^{-}}[n \times m, k, d]$  MRD code.

- If C is  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .
- $n \le m, \text{ then } \operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil.$

• If C is non-degenerate and  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an  $\mathbb{F}_{q^{-}}[n \times m, k, d]$  MRD code.

- If C is  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \lceil \frac{n}{m} \rceil$ .
- $n \le m, \text{ then } \operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil.$
- $m < n \le 2m d, \text{ then } \operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil.$

• If C is non-degenerate and  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an  $\mathbb{F}_{q^{-}}[n \times m, k, d]$  MRD code.

• If C is 
$$\mathbb{F}_{q^m}$$
-linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

$$\ \, \bullet \ \, n \leq m, \ \, {\rm then} \ \, {\rm crit}(\mathcal{C}) = \left\lceil \frac{n}{m} \right\rceil.$$

 $m < n \le 2m - d, \text{ then } \operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil.$ 

• m = n - 1, d = n - 1, then  $\operatorname{crit}(C) = \lfloor \frac{n}{m} \rfloor$ .

• If C is non-degenerate and  $\mathbb{F}_{q^m}$ -linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an  $\mathbb{F}_{q^{-}}[n \times m, k, d]$  MRD code.

• If C is 
$$\mathbb{F}_{q^m}$$
-linear then  $\operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil$ .

$$on \leq m, \text{ then } \operatorname{crit}(C) = \left\lceil \frac{n}{m} \right\rceil.$$

•  $m < n \le 2m - d$ , then  $\operatorname{crit}(C) = \lfloor \frac{n}{m} \rfloor$ .

• 
$$m = n - 1$$
,  $d = n - 1$ , then  $\operatorname{crit}(C) = \lfloor \frac{n}{m} \rfloor$ .

#### What about the other cases?

# Thank you for the attention! Grazie per l'attenzione!