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The Critical Problem

Definition (Crapo & Rota 1970)

Let S C F5\ {0}. Let F = (fi,...,f;) be a list of linear functionals f; : FX — F,.
We say that F distinguishes S if for all v € S, v € N7_; ker f;, i.e.

Yves, 3Fie{l,...,r}, st fi(v)#£0.

ﬁ H. Crapo, G. Rota. “"On The Foundations of Combinatorial Theory: Combinatorial Geometries.”, 1970.

Problem (The Critical Problem)

What is the minimum number of linear forms that distinguishes S ?
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@ Critical Theorem: Theoretical solution to the critical problem.

o Critical Exponent: The number that we look for in the critical problem.



The Critical Problem

Definition (Crapo & Rota 1970)

Let S CPG(k —1,q). Let H = (Hy, ..., H,) be some hyperplanes. We say that
H distinguishes S if for all P € S, P £ N[_; H;.

@ H. Crapo, G. Rota. “On The Foundations of Combinatorial Theory: Combinatorial Geometries.”, 1970.

Problem (The Critical Problem)
What is the minimum number of hyperplanes in PG(k — 1, q) distinguishing S? J

@ Critical Theorem: Theoretical solution to the critical problem.

o Critical Exponent: The number that we look for in the critical problem.

Contributors: Britz, Dowling, Green, Gruica, Imamura, Jany, Kung, Oxley,
Ravagnani, Sheekey, Shiromoto, Tutte, Welsh, White, Whittle, Zullo...



g-Analogues

Finite set — finite dimensional vector space over the finite field IF,.

Classic g-Analogues
{1...,n} Fg
element 1-dim subspace
size dimension
intersection intersection
union sum
complement | orthogonal complement
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g-Analogues

Finite set — finite dimensional vector space over the finite field IF,.

Classic g-Analogues
{1...,n} Fg
element 1-dim subspace
size dimension
intersection intersection
union sum
complement | orthogonal complement

From g-analogue to “classic”’: let ¢ — 1.

(v) = =y

H _ (" -1)(¢" ' -1)-(¢" 1)
klq (¢*=1)(¢x*-1)---(¢-1)

Example:
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Linear Hamming-Metric Codes

Basic Notions
o I, finite field of order g.
e E:=TFj.
e [n]:={1,...,n}.
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Linear Hamming-Metric Codes

Basic Notions
o I, finite field of order g.

e E:=TFj.

e [n]:={1,...,n}.

e The Hamming distance between u,v € E is dy(u, v) := [{i : u; # v;}|.
@ The support of u € E is supp(uv) := {i : u; # 0}.

e The Hamming weight of u € E is wty(u) := |[supp(v)| = du(v, 0).

An [n, k], linear code C is a k-dimensional subspace of Fg.

e supp(C) = CLEJC supp(c).

e C is non-degenerate if supp(C) = [n].
@ For S C[n], C(S):={c € C:supp(c) C S} is called a shortened subcode
of C.

o C =rowsp(G) ={uG | ucFEL}, where G € Ff*" is a generator matrix.
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e An F4-[n x m, k, d] rank-metric code C is a k-dimensional F4-subspace
of F7xm.
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@ The minimum rank distance of C is d := min{rk(M):0# M € C}.
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Rank-Metric Codes

Basic Notions

e An F4-[n x m, k, d] rank-metric code C is a k-dimensional F4-subspace
of F7xm.
q

@ The minimum rank distance of C is d := min{rk(M):0# M € C}.
o For every M € C, supp(M) := colsp(M) < IFy.

o supp(C) := >_ supp(M).
MeC

e C is non-degenerate if supp(C) = E.

e Forevery U< E, C(U):={M e C : supp(M) < Ut} is called a
shortened subcode of C.

e Singleton-like bound: k < max{n, m}(min{n, m} +d —1).

@ Codes attaining the Singleton-like bound are called MRD.



Matroids

A matroid M is an ordered pair ([n], r) where r: 2I"l — Z st. V A B C [n]
(r1) (Boundness) 0 < r(A) < |A|

(r2) (Monotonicity) If AC B, then r(A) < r(B).

(r3) (Submodularity) r(AUB)+ r(An B) < r(A)+ r(B).
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Matroids from Codes

A matroid M is an ordered pair ([n], r) where r: 2I"l — Z st. V A B C [n]
(rl) (Boundness) 0 < r(A) < |A].

(r2) (Monotonicity) If AC B, then r(A) < r(B).
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Example
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LetS C [n]. Let C(S):={ce C : ¢ =0forall s S}, Cs = C/C(S).
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Then M = M[C] :=([n], r) is a representable matroid.
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Matroids from Codes

e Cis an [n, k], code with generator matrix G = [G!|---|G"].

e r(S) :=dim((G°:s€S)), forall S C [n].

Example (Extended Hamming Code)
Let C be the [8,4,4], code generated by

11111111
c_|to1o01010
“lo 1100110

00011110
S| if|S| <3

r(§)=143 if S =supp(c), c#(1,1,1,1,1,1,1,1)
4 otherwise .
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and their meet a A bis in L.

o 1, =V, is the maximal element of L.

@ 0, = A,cr is the minimal element of L.
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Lattices

A lattice (£, <,V,A) is a poset such that for every a, b € L, their join aV b
and their meet a A bis in L.

o 1, =V, is the maximal element of L.

0,: = Aser is the minimal element of L.

An interval [a, b] C L is the set of all x € £ such that a < x < b.

Let ¢ € [a, b]. We say that d is a complement of ¢ in [a, b] if c Ad = a and
cVd=h.

L is called complemented if every ¢ € £ has a complement in L.

@ A finite chain from a to b is a sequence a = x; < --- < Xx41 = b with x; € L.

The height of b is the maximum length of all maximal chains from 0. to b.



Complemented Lattices

Boolean Lattice ——+ Subspace Lattice
(2", <, u,n) (L(E), <, +.N)

Matroids — g-Matroids
Polymatroids —  g-Polymatroids

{10,01} (10,01) = F2

{10} {01} (10) (11)



Matroids — g-Matroids

Definition

A matroid M is an ordered pair ([n],r) where r: 2"l — Z st. ¥V A B C [n]
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Matroids — g-Matroids

Definition

A matroid M is an ordered pair ([n],r) where r: 2"l — Z st. ¥V A B C [n]
(r1) (Boundness) 0 < r(A) < JA|.

(r2) (Monotonicity) If A C B, then r(A) < r(B).

(r3) (Submodularity) r(AUB)+ r(ANB) < r(A) + r(B).

Definition (Jurrius, Pellikaan, 2018)

A g-matroid is a pair (E, r), L(E) is the lattice of subspaces of E and r : L(E) — Z is a
rank function such that V A,B < E

(R1) (Boundness) 0 < r(A) < dim(A).
(R2) (Monotonicity) If A < B, then r(A) < r(B).
(R3) (Submodularity) r(A+ B) +r(ANB) < r(A) + r(B).

@ R. Jurrius, R. Pellikaan. * ", 2018,



Polymatroids — g-Polymatroids

Definition

An (L, r)-(integer) polymatroid is a pair M = (L, p) for which r € Ny and p is a
function p : £ — Np satisfying the following axioms for all A, B € L.

(R1) (Boundness) 0 < p(A) < r- h(A).

(R2) (Monotonicity) A < B = p(A) < p(B).

(R3) (Submodularity) p(AV B) + p(A A B) < p(A) + p(B).




Polymatroids — g-Polymatroids

Definition

An (L, r)-(integer) polymatroid is a pair M = (L, p) for which r € Ny and p is a
function p : £ — Ny satisfying the following axioms for all A, B € L.

(R1) (Boundness) 0 < p(A) < r- h(A).

(R2) (Monotonicity) A < B = p(A) < p(B).

(R3) (Submodularity) p(AV B) + p(A A B) < p(A) + p(B).

@ L Boolean lattice:
» M is an (£, r) polymatroid.

» r=1, M is a matroid.

@ L = L(E) Subspace lattice:
» M is a (g, r)-polymatroid [Gorla+ 2019, Shiromoto 2019].
» r=1, M is a g-matroid [Jurrius, Pellikaan 2016].

D R. Jurrius, R. Pellikaan. ", 2016.

D E. Gorla, R. Jurrius, H. Lépez, A. Ravagnani. ", 2019.

D K. Shiromoto. * ", 2019,



Restriction and Contraction

Let M = (L, p) be a (L, r)-polymatroid and let [X, Y] be an interval of L.
pix,v) - L(E) = No
T = p(T) = p(X)
M([X, Y]) = (X, Y], pix,v]) is a minor of M.
Q@ We write M|y := M(]0, Y]), which is called the restriction of M to Y.

@ We write M/X := M([X,1]), which is called the contraction of M by X.



Restriction and Contraction: Example

(1,1,1)), Y = ((1,0,0), (0, 1,0)).

F3 and X =

Let E

1

2 S

001

101

0

X

010

100

100

001

101

011

111

110

010

101 001

011

111

110

100



Representable g-Polymatroids

Theorem (Gorla+ 2019, Shiromoto 2019)
Let C be an Fy-[n x m, k, d] rank-metric code. For each subspace U < E, define
C(U) :={M € C : supp(M) < U*}.

Define
p: L(E) = Z, p(U) :=k —dim(C(V)).
MIC] = (E, p) is a (g, m)-polymatroid.

o For every U < E, M[C]/U ~ M[C(U)]. [Gluesing-Luerssen, Jany, 2022]

@ E. Gorla, R. Jurrius, H. Lépez, A. Ravagnani. “Rank-Metric Codes and g-Polymatroids”, 2019.
@ K. Shiromoto. “Matroids and Codes with the Rank Metric”, 2019.

@ H. Gluesing-Luerssen, B. Jany, “g-polymatroids and their relation to rank-metric codes, 2022
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Distinguish Spaces

Definition:
e UKE.

e B=(by,...,b,) list of bilinear forms b; : Fg x Fg — Fq.
B distinguishes the space U if

,
() Iker(b;) < U,
i=1

where lker(b) denotes the left kernel of the bilinear form b.



Distinguish Spaces

Definition:

e UKE.

® B = (by,...,b) list of bilinear forms b; : Ty x Fy' — FF,.
B distinguishes the space U if

,
() Iker(b;) < U,
i=1

where lker(b) denotes the left kernel of the bilinear form b.

Problem ((g-Analogue of the) Critical Problem)

Find the minimum number c of bilinear forms b;, such that (by,...

distinguishes a fixed space U < E.
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Distinguish Spaces

Problem ((g-Analogue of the) Critical Problem)

Let C be an F4-[n x m, k] rank-metric codes. Let U < E. Find the minimum
number ¢ of codewords M; of C, such that

> supp(M) = U.
i=1

Definition: the Critical Exponent of C

crit(M|C]): least number t of codewords of C, whose supports span supp(C).



Mobius Function on a Poset

Let (P, <) be a partially ordered set. The Mdbius Function on P is defined by

1 if x =y,
pxy) = = 5 nxa) fx<y,
0 otherwise.

Lemma (Mobius Inversion formula)

Let f,g : P — Z be two functions on a poset P. Then
Q f(x)= X &ly) ifand only if g(x) = > u(x,y)f(y)-

x<y x<y
Q f(x) = > g(y) if and only if g(x) = 3 p(y,x)f(y).
x>y x>y
L Boolean lattice | Subspace lattice

1(0, V) (—1)Yl (_1)dim(U)q(di"‘2(U))




The Characteristic Polynomial

Let M = (E, p) be a g-polymatroid.
Definition: The characteristic polynomial of M is the polynomial in Z[z]
defined by

p(M;z) = Z (0, A)zP(E)=P(A)
0<A<E
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The Characteristic Polynomial

Let M = (E, p) be a g-polymatroid.

Definition: The characteristic polynomial of M is the polynomial in Z[z]
defined by

p(M;z) = Z (0, A)zP(E)=P(A)

0<A<E

Properties:

e p(M/U;z) = U<ZA:<EM(U’ A)ZP(E)—P(A)_

o z7(E)=r(U) — S~ p(M/A;z) (by Mébius Inversion).
U<LA<E

o If M = M[C] then |C(U)| = 3 p(M/A;q).

U<A<E



The Critical Theorem for g-Polymatroids
o p(M/U;z) = > (U, A)z"E=7H,

Theorem (A., Byrne (2022))
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o p(M/U;z) = > (U, A)z"E=7H,

Theorem (A., Byrne (2022))
Let C be an Fq-[n x m, k] rank-metric code, M = M|[C] and let U < E.

H(Xi,...,X:) : Xi € C,supp(X1) + - - - + supp(Xe) = U} = p(M/U"; q").

roof: t
P FW) = {(X,..., %) € C": > colsp(Xi) = W},

g(W) = [{(X1,...,X:) € C": > colsp(X;) < W}

i=1

gw)y= > (V).

vel[w,E]

g(W) = [{(Xi,...,X;) € C' : colsp(X;)) < W Vi € []}] = [C(W)]".



The Critical Theorem for g-Polymatroids
o p(M/U;z) = > (U, A)z"E=7H,

Theorem (A., Byrne (2022))
Let C be an Fq-[n x m, k] rank-metric code, M = M|[C] and let U < E.

H(Xi,...,X:) : Xi € C,supp(X1) + - - - + supp(Xe) = U} = p(M/U"; q").

Proof: t
FW) = {(X,..., %) € C": > colsp(Xi) = W},
i=1
t
g(W) = [{(X1,...,X:) € C": > colsp(X;) < W}
i=1
gW)= > f(Vv)
Ve[W,E]
g(W) = [{(X1,...,X:) € C": colsp(X;) < WV iel[t]} =|C(W)|".
= 3w,V = Y awovicmit = S ww, gtk TP — patywi o).

Ve[W,E] Ve([Ww,E] Ve[W,E]

@ G. Alfarano, E. Byrne. “The Critical Theorem for g-Polymatroids.”, 2023.



Critical Exponent

Corollary

If C is a non-degenerate Fq-[n x m, k] code, then

H(X1, ..., Xe) © X; € C,supp(X1) + - - + supp(X;) = Fg}| = p(M; q).




Critical Exponent

Corollary

If C is a non-degenerate Fq-[n x m, k] code, then

H(X1, ..., Xe) © X; € C,supp(X1) + - - + supp(X;) = Fg}| = p(M; q).

00 if C is degenerate,

crit(M([C]) = {min{r :p(M; g") >0} otherwise.

@ Ben Jany (2022) gave an alternative proof for the g-matroid case.

@ Imamura and Shiromoto, independently showed a similar result (2023).



Example
Let C be the Fp-[5 X 3,6, 1] rank-metric code generated by the matrices

1 0 0 0 0o 1 0 1 0o 1 1
0 0 0 0 0 1 1 1 11 1
0 of, , o 1], |o o .ol i, |1 1 1.
0 0 0 1 0o o 1 1 0 1 o0
0 0 0 0 1 0 0 0 1 0 0

Let M = (I3, p) be the (g, 3)-polymatroid induced by C. We calculate the
characteristic polynomial of M,

coocoo
coocoo
coooo
coocoo
)
HHOoOoR

0
1
0
0
0

p(M; z) == Z u(O,X)z"(Fg)*"(X) =...=2% 4z —257% + 447% 40z — 56.
X<F}

o p(M;1) = p(M;2)=0.
e p(M;22) = 2280 > 0.
Hence crit(M) = 2. Indeed

0

X1 and X

Il

o o
OO O R M
= =)

Il
R Or R~k O
[ e o
OO R KRR

[y



First Bound

Proposition

Let C be a non-degenerate Fy-[n x m, k] code and let M = M|C] be the
g-polymatroid associated to C. Then

[%—I < crit(M) < k.




First Bound

Proposition

Let C be a non-degenerate Fy-[n x m, k] code and let M = M|C] be the
g-polymatroid associated to C. Then

[%—‘ < crit(M) < k.

Proof.
If crit(M) = t, then there are Xi,..., X; € C such that

t
Z supp(X;) = Fg.
i=1

Then,

t
n = dimg, (Z supp(X,-)) < mt.

i=1




Rank-Metric Codes Linear over [Fn

@ Fym/F, finite extension field

@ k, n positive integers, with kK < n

Definition

An [n, k]gm/q rank-metric code is an I n-linear subspace C < ..
@ n is the length of C.
@ k is the dimension of C.

Let v € Fyn and fix a basis T = {71,...,ym} of Fgn/Fq. Let T(v) € FZ*" be the
matrix defined by

m

Vi = Z F(v)ivi-

i=1

Definition
The I-support of a vector v € Fy. is the rowspace of ['(v). It is denoted by
Ur(v) - ]Fg




Rank-Metric Codes

o Fym/Fq finite extension field

@ k, n positive integers, with kK < n

Definition

An [n, k]gm/q rank-metric code is an I n-linear subspace C < T,
@ n is the length of C.
@ k is the dimension of C.

o Forany v € Fg., o(v) = rowsp(l'(v))< Fy.

@ The rank weight of v € Fy., is rk(v) = dimg, (o (v)).

o C possesses a generator matrix G € IE‘S?":
C={vG |veFi},

i.e. the rows of G form a basis of C.

C is non-degenerate if the columns of G are F4-independent.



The Geometry of Rank-Metric Codes (g-systems)

Consider an [n, k]gm/q non-degenerate rank-metric code C with generator matrix
G = (gij)- A basis for C is given by the rows of G.

- 811 812 --- 8in
— 821 822 --- 82.n

— gki1 Bk2 --- 8kn



The Geometry of Rank-Metric Codes (g-systems)

We can instead consider the columns of G.

Lo 3
811 812 .. Bin

821 822 ... 82n

8k1 8k2 -+ Bkn



The Geometry of Rank-Metric Codes (g-systems)

We can instead consider the Fg-span U of the columns of G.

4 4 b
811 812 .- 8in

<g2,1 822 ... gz.n>

8kl Bk2 .- Bkn g
4



The Geometry of Rank-Metric Codes (g-systems)

We can instead consider the Fg-span U of the columns of G.

4 {
811 812 .- Ein
821 82 .- 8o
8k1 8k2 -+ Bkon

Fq

Definition

U is called [n, k]gm/q system associated to G.




The Geometry of Rank-Metric Codes (g-systems)

We can instead consider the Fg-span U of the columns of G.

4 !
811 812 .- Bin
< 821 82 .- 8o
8kl 8k2 -+ Ekn

Definition

U is called [n, k]gm/q system associated to G.

Fq

Corollary
Let M be the g-matroid induced by C. Then

crit(M) = min{r € N | 3 Fgm-hyperplanes Hi,
unHlﬂ...ﬂH,:O}.

..., H, such that
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A non-degenerate [n, k]qn/q code contains a codeword of rank equal to min{m, n}.

Lemma (A., Borello, Neri, Ravagnani 2022) J
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@ There exists a codeword ¢ = (x1,...,Xm,0,...,0), with rank equal to m.



Critical Problem for [F m-Linear Codes
Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate [n, k]qn/q code contains a codeword of rank equal to min{m, n}.
v

Theorem (A., Byrne 2023)
Let M = M(C]. Then crit(M) = [L].

Sketch of the Proof:
@ Write n=am+ b, with a,beNgand 0 < b < m.
@ If =0, then n < m. By Lemma crit(M) =1=[Z].
@ Assume that an [n’, k]gm/q non-degenerate code s.t. n’ = a’'m+ b', with a’ < a, has

critical exponent [”—n;—‘ .

@ There exists a codeword ¢ = (x1,...,Xm,0,...,0), with rank equal to m.
@ Construct G; =< F,™. Since n’ = n— m = (a—1)m + b, by the induction
hypothesis, the critical exponent of M[G] is [2="].
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Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate [n, k]qn/q code contains a codeword of rank equal to min{m, n}.
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Theorem (A., Byrne 2023)
Let M = M(C]. Then crit(M) = [L].

m

Sketch of the Proof:
@ Write n=am+ b, with a,beNgand 0 < b < m.
@ If =0, then n < m. By Lemma crit(M) =1=[Z].
@ Assume that an [n’, k]gm/q non-degenerate code s.t. n’ = a’'m+ b', with a’ < a, has
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@ There exists a codeword ¢ = (x1,...,Xm,0,...,0), with rank equal to m.
@ Construct G; =< F,™. Since n’ = n— m = (a—1)m + b, by the induction
hypothesis, the critical exponent of M[G] is [2="].

@ Observe that these words are now enough to show the full result.



Critical Problem for [F m-Linear Codes
Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate [n, k]qn/q code contains a codeword of rank equal to min{m, n}.
v

Theorem (A., Byrne 2023)
Let M = M(C]. Then crit(M) = [L].

Sketch of the Proof:
@ Write n=am+ b, with a,beNgand 0 < b < m.
@ If =0, then n < m. By Lemma crit(M) =1=[Z].
@ Assume that an [n’, k]gm/q non-degenerate code s.t. n’ = a’'m+ b', with a’ < a, has

critical exponent [”—n;—‘ .

@ There exists a codeword ¢ = (x1,...,Xm,0,...,0), with rank equal to m.
@ Construct G; =< F,™. Since n’ = n— m = (a—1)m + b, by the induction
hypothesis, the critical exponent of M[G] is [2="].

@ Observe that these words are now enough to show the full result.

@ O. Polverino, P. Santonastaso, J. Sheekey, F. Zullo. * ", 2023.
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m



The General Case

e If C is non-degenerate and Fgn-linear then crit(C) = [2]

=[L].
Are there other “families” of codes for which we can compute the critical
exponent?

What about MRD codes?
Let C be an Fg-[n x m, k, d] MRD code.

Q If C is Fgn-linear then crit(C) = [2].
@ n < m, then crit(C) = [ 2]

ml-

@ m < n<2m—d, then crit(C) = [2].

m



The General Case

e If C is non-degenerate and Fgn-linear then crit(C) = [2]

-1
Are there other “families” of codes for which we can compute the critical
exponent?

What about MRD codes?
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@ m < n<2m—d, then crit(C) = [ 2]

ml-
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The General Case

e If C is non-degenerate and Fgn-linear then crit(C) = [2]
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Are there other “families” of codes for which we can compute the critical
exponent?

What about MRD codes?

Let C be an Fg-[n x m, k, d] MRD code.
Q If C is Fgn-linear then crit(C) = [2].
@ n < m, then crit(C) = [ 2]

ml-

@ m < n<2m—d, then crit(C) = [ 2]

ml-

@ m=n—-1,d=n—1, then crit(C) = [2].

m

What about the other cases?



Thank you for the attention!

Grazie per |'attenzione!
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