The Critical Problem for Rank-Metric Codes

Gianira N. Alfarano

OpeRa 2024 - Open Problems on Rank-Metric Codes Università degli Studi della Campania, Luigi Vanvitelli

February 16th, 2024

NB
VRIJE
UNIVERSITEIT
BRUSSEL

Overview

(1) Introduction to the Problem
(2) Background

- Linear Codes
- Matroids and Lattices
- q-Polymatroids
(3) The Critical Problem for Rank-Metric Codes
- The $\mathbb{F}_{q^{m}}$-Linear Case
- The MRD Case

Contents

(1) Introduction to the Problem
(2) Background

- Linear Codes
- Matroids and Lattices
- q-Polymatroids
(3) The Critical Problem for Rank-Metric Codes
- The $\mathbb{F}_{q^{m}}$-Linear Case
- The MRD Case

The Critical Problem

Definition (Crapo \& Rota 1970)

Let $S \subseteq \mathbb{F}_{q}^{k} \backslash\{0\}$. Let $\mathcal{F}=\left(f_{1}, \ldots, f_{r}\right)$ be a list of linear functionals $f_{i}: \mathbb{F}_{q}^{k} \rightarrow \mathbb{F}_{q}$. We say that \mathcal{F} distinguishes S if for all $v \in S, v \notin \cap_{i=1}^{r}$ ker f_{i}, i.e.

$$
\forall v \in S, \quad \exists i \in\{1, \ldots, r\}, \text { s.t. } f_{i}(v) \neq 0 .
$$

\square H. Crapo, G. Rota. "On The Foundations of Combinatorial Theory: Combinatorial Geometries.", 1970.

Problem (The Critical Problem)

What is the minimum number of linear forms that distinguishes S?

The Critical Problem

Definition (Crapo \& Rota 1970)
 Let $S \subseteq \operatorname{PG}(k-1, q)$. Let $\mathcal{H}=\left(H_{1}, \ldots, H_{r}\right)$ be some hyperplanes. We say that \mathcal{H} distinguishes S if for all $P \in S, P \notin \cap_{i=1}^{r} H_{i}$.

\square H. Crapo, G. Rota. "On The Foundations of Combinatorial Theory: Combinatorial Geometries.", 1970.

Problem (The Critical Problem)

What is the minimum number of hyperplanes in $\operatorname{PG}(k-1, q)$ distinguishing S ?

The Critical Problem

```
Definition (Crapo & Rota 1970)
Let S\subseteqPG(k-1,q). Let }\mathcal{H}=(\mp@subsup{H}{1}{},\ldots,\mp@subsup{H}{r}{})\mathrm{ be some hyperplanes. We say that
H}\mathrm{ distinguishes S if for all }P\inS,P\not\in\cap\mp@subsup{\cap}{i=1}{r}\mp@subsup{H}{i}{}\mathrm{ .
```

H. Crapo, G. Rota. "On The Foundations of Combinatorial Theory: Combinatorial Geometries.", 1970.

Problem (The Critical Problem)

What is the minimum number of hyperplanes in $\operatorname{PG}(k-1, q)$ distinguishing S ?

- Critical Theorem: Theoretical solution to the critical problem.
- Critical Exponent: The number that we look for in the critical problem.

The Critical Problem

```
Definition (Crapo & Rota 1970)
Let S\subseteqPG(k-1,q). Let }\mathcal{H}=(\mp@subsup{H}{1}{},\ldots,\mp@subsup{H}{r}{})\mathrm{ be some hyperplanes. We say that
H}\mathrm{ distinguishes S if for all }P\inS,P\not\in\cap\mp@subsup{\cap}{i=1}{r}\mp@subsup{H}{i}{}\mathrm{ .
```

\square H. Crapo, G. Rota. "On The Foundations of Combinatorial Theory: Combinatorial Geometries.", 1970.

Problem (The Critical Problem)

What is the minimum number of hyperplanes in $\operatorname{PG}(k-1, q)$ distinguishing S ?

- Critical Theorem: Theoretical solution to the critical problem.
- Critical Exponent: The number that we look for in the critical problem.

Contributors: Britz, Dowling, Green, Gruica, Imamura, Jany, Kung, Oxley, Ravagnani, Sheekey, Shiromoto, Tutte, Welsh, White, Whittle, Zullo...

q-Analogues

Finite set \longrightarrow finite dimensional vector space over the finite field \mathbb{F}_{q}.

Classic	q-Analogues
$\{1 \ldots, n\}$	\mathbb{F}_{q}^{n}
element	1 -dim subspace
size	dimension
intersection	intersection
union	sum
complement	orthogonal complement

q-Analogues

Finite set \longrightarrow finite dimensional vector space over the finite field \mathbb{F}_{q}.

Classic	q-Analogues
$\{1 \ldots, n\}$	\mathbb{F}_{q}^{n}
element	1 -dim subspace
size	dimension
intersection	intersection
union	sum
complement	orthogonal complement

From q-analogue to "classic": let $q \rightarrow 1$.

q-Analogues

Finite set \longrightarrow finite dimensional vector space over the finite field \mathbb{F}_{q}.

Classic	q-Analogues
$\{1 \ldots, n\}$	\mathbb{F}_{q}^{n}
element	1 -dim subspace
size	dimension
intersection	intersection
union	sum
complement	orthogonal complement

From q-analogue to "classic": let $q \rightarrow 1$.

Example:

$$
\begin{aligned}
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \\
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)}}
\end{aligned}
$$

Contents

(1) Introduction to the Problem

(2) Background

- Linear Codes
- Matroids and Lattices
- q-Polymatroids

3 The Critical Problem for Rank-Metric Codes

- The $\mathbb{F}_{a^{m} \text {-Linear Case }}$
- The MRD Case

Linear Hamming-Metric Codes

Basic Notions

- \mathbb{F}_{q} finite field of order q.
- $E:=\mathbb{F}_{q}^{n}$.
- $[n]:=\{1, \ldots, n\}$.

Linear Hamming-Metric Codes

Basic Notions

- \mathbb{F}_{q} finite field of order q.
- $E:=\mathbb{F}_{q}^{n}$.
- $[n]:=\{1, \ldots, n\}$.
- The Hamming distance between $u, v \in E$ is $d_{\mathrm{H}}(u, v):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right|$.
- The support of $u \in E$ is $\operatorname{supp}(u):=\left\{i: u_{i} \neq 0\right\}$.
- The Hamming weight of $u \in E$ is $\operatorname{wt}_{\mathrm{H}}(u):=|\operatorname{supp}(u)|=d_{\mathrm{H}}(u, 0)$.

Linear Hamming-Metric Codes

Basic Notions

- \mathbb{F}_{q} finite field of order q.
- $E:=\mathbb{F}_{q}^{n}$.
- $[n]:=\{1, \ldots, n\}$.
- The Hamming distance between $u, v \in E$ is $d_{\mathrm{H}}(u, v):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right|$.
- The support of $u \in E$ is $\operatorname{supp}(u):=\left\{i: u_{i} \neq 0\right\}$.
- The Hamming weight of $u \in E$ is $\operatorname{wt}_{\mathrm{H}}(u):=|\operatorname{supp}(u)|=d_{\mathrm{H}}(u, 0)$.

An $[n, k]_{q}$ linear code C is a k-dimensional subspace of \mathbb{F}_{q}^{n}.

- $\operatorname{supp}(C)=\bigcup_{c \in C} \operatorname{supp}(c)$.
- C is non-degenerate if $\operatorname{supp}(C)=[n]$.

Linear Hamming-Metric Codes

Basic Notions

- \mathbb{F}_{q} finite field of order q.
- $E:=\mathbb{F}_{q}^{n}$.
- $[n]:=\{1, \ldots, n\}$.
- The Hamming distance between $u, v \in E$ is $d_{\mathrm{H}}(u, v):=\left|\left\{i: u_{i} \neq v_{i}\right\}\right|$.
- The support of $u \in E$ is $\operatorname{supp}(u):=\left\{i: u_{i} \neq 0\right\}$.
- The Hamming weight of $u \in E$ is $\operatorname{wt}_{\mathrm{H}}(u):=|\operatorname{supp}(u)|=d_{\mathrm{H}}(u, 0)$.

An $[n, k]_{q}$ linear code C is a k-dimensional subspace of \mathbb{F}_{q}^{n}.

- $\operatorname{supp}(C)=\bigcup_{c \in C} \operatorname{supp}(c)$.
- C is non-degenerate if $\operatorname{supp}(C)=[n]$.
- For $S \subseteq[n], C(S):=\{c \in C: \operatorname{supp}(c) \subseteq \bar{S}\}$ is called a shortened subcode of C.
- $C=\operatorname{rowsp}(G)=\left\{u G \mid u \in \mathbb{F}_{q}^{k}\right\}$, where $G \in \mathbb{F}_{q}^{k \times n}$ is a generator matrix.

Rank-Metric Codes

Basic Notions

- An $\mathbb{F}_{q^{-}}[n \times m, k, d]$ rank-metric code C is a k-dimensional $\mathbb{F}_{q^{\prime}}$-subspace of $\mathbb{F}_{q}^{n \times m}$.
- The minimum rank distance of C is $d:=\min \{\operatorname{rk}(M): 0 \neq M \in C\}$.

Rank-Metric Codes

Basic Notions

- An $\mathbb{F}_{q^{-}}[n \times m, k, d]$ rank-metric code C is a k-dimensional $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q}^{n \times m}$.
- The minimum rank distance of C is $d:=\min \{\operatorname{rk}(M): 0 \neq M \in C\}$.
- For every $M \in C, \operatorname{supp}(M):=\operatorname{colsp}(M) \leq \mathbb{F}_{q}^{n}$.
- $\operatorname{supp}(C):=\sum_{M \in C} \operatorname{supp}(M)$.
- C is non-degenerate if $\operatorname{supp}(C)=E$.

Rank-Metric Codes

Basic Notions

- An $\mathbb{F}_{q^{-}}[n \times m, k, d]$ rank-metric code C is a k-dimensional $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q}^{n \times m}$.
- The minimum rank distance of C is $d:=\min \{\operatorname{rk}(M): 0 \neq M \in C\}$.
- For every $M \in C, \operatorname{supp}(M):=\operatorname{colsp}(M) \leq \mathbb{F}_{q}^{n}$.
- $\operatorname{supp}(C):=\sum_{M \in C} \operatorname{supp}(M)$.
- C is non-degenerate if $\operatorname{supp}(C)=E$.
- For every $U \leq E, C(U):=\left\{M \in C\right.$: $\left.\operatorname{supp}(M) \leq U^{\perp}\right\}$ is called a shortened subcode of C.

Rank-Metric Codes

Basic Notions

- An $\mathbb{F}_{q^{-}}[n \times m, k, d]$ rank-metric code C is a k-dimensional $\mathbb{F}_{q^{-}}$-subspace of $\mathbb{F}_{q}^{n \times m}$.
- The minimum rank distance of C is $d:=\min \{\operatorname{rk}(M): 0 \neq M \in C\}$.
- For every $M \in C, \operatorname{supp}(M):=\operatorname{colsp}(M) \leq \mathbb{F}_{q}^{n}$.
- $\operatorname{supp}(C):=\sum_{M \in C} \operatorname{supp}(M)$.
- C is non-degenerate if $\operatorname{supp}(C)=E$.
- For every $U \leq E, C(U):=\left\{M \in C: \operatorname{supp}(M) \leq U^{\perp}\right\}$ is called a shortened subcode of C.
- Singleton-like bound: $k \leq \max \{n, m\}(\min \{n, m\}+d-1)$.
- Codes attaining the Singleton-like bound are called MRD.

Matroids

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Matroids

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$.

Matroids

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let C_{S} : code with generator matrix $\left[G^{s}: s \in S\right]$.

Matroids

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let C_{S} : code with generator matrix $\left[G^{s}: s \in S\right]$.
Define $r: 2^{[n]} \rightarrow \mathbb{Z}, \quad S \mapsto \operatorname{dim}\left(\left\langle G^{s}: s \in S\right\rangle\right)$.

Matroids

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let C_{S} : code with generator matrix $\left[G^{s}: s \in S\right]$.
Define $r: 2^{[n]} \rightarrow \mathbb{Z}, \quad S \mapsto \operatorname{dim}\left(\left\langle G^{s}: s \in S\right\rangle\right)$.
Then $\mathcal{M}=\mathcal{M}[C]:=([n], r)$ is a representable matroid.

Matroids from Codes

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.

Matroids from Codes

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let $C_{s}:=\left\{\left(c_{s}: s \in S\right): c \in C\right\}$.

Matroids from Codes

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let $C_{s}:=\left\{\left(c_{s}: s \in S\right): c \in C\right\}$.
Define $r: 2^{[n]} \rightarrow \mathbb{Z}, \quad S \mapsto \operatorname{dim}\left(C_{S}\right)$.

Matroids from Codes

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let $C_{s}:=\left\{\left(c_{s}: s \in S\right): c \in C\right\}$.
Define $r: 2^{[n]} \rightarrow \mathbb{Z}, \quad S \mapsto \operatorname{dim}\left(C_{S}\right)$.
Then $\mathcal{M}=\mathcal{M}[C]:=([n], r)$ is a representable matroid.

Matroids from Codes

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let $C(S):=\left\{c \in C: c_{s}=0\right.$ for all $\left.s \in S\right\}$,

Matroids from Codes

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let $C(S):=\left\{c \in C: c_{s}=0\right.$ for all $\left.s \in S\right\}, C_{S} \cong C / C(S)$.

Matroids from Codes

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let $C(S):=\left\{c \in C: c_{s}=0\right.$ for all $\left.s \in S\right\}, C_{S} \cong C / C(S)$.
Define $r: 2^{[n]} \rightarrow \mathbb{Z}, \quad S \mapsto k-\operatorname{dim}(C(S))$.

Matroids from Codes

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Example

Let C be an $[n, k]_{q}$ code with generator matrix $G:=\left[G^{1}|\cdots| G^{n}\right]$.
Let $S \subseteq[n]$. Let $C(S):=\left\{c \in C: c_{s}=0\right.$ for all $\left.s \in S\right\}, C_{S} \cong C / C(S)$.
Define $r: 2^{[n]} \rightarrow \mathbb{Z}, \quad S \mapsto k-\operatorname{dim}(C(S))$.
Then $\mathcal{M}=\mathcal{M}[C]:=([n], r)$ is a representable matroid.

Matroids from Codes

- C is an $[n, k]_{q}$ code with generator matrix $G=\left[G^{1}|\cdots| G^{n}\right]$.
- $r(S):=\operatorname{dim}\left(\left\langle G^{s}: s \in S\right\rangle\right)$, for all $S \subseteq[n]$.

Matroids from Codes

- C is an $[n, k]_{q}$ code with generator matrix $G=\left[G^{1}|\cdots| G^{n}\right]$.
- $r(S):=\operatorname{dim}\left(\left\langle G^{s}: s \in S\right\rangle\right)$, for all $S \subseteq[n]$.

Example (Extended Hamming Code)

Let C be the $[8,4,4]_{2}$ code generated by

$$
\begin{gathered}
G:=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right) . \\
r(S)= \begin{cases}|S| & \text { if }|S| \leq 3 \\
3 & \text { if } S=\operatorname{supp}(c), c \neq(1,1,1,1,1,1,1,1) \\
4 & \text { otherwise } .\end{cases}
\end{gathered}
$$

Lattices

- A lattice $(\mathcal{L}, \leq, \vee, \wedge)$ is a poset such that for every $a, b \in \mathcal{L}$, their join $a \vee b$ and their meet $a \wedge b$ is in \mathcal{L}.
- $\mathbf{1}_{\mathcal{L}}=V_{a \in \mathcal{L}}$ is the maximal element of \mathcal{L}.
- $\mathbf{0}_{\mathcal{L}}=\wedge_{a \in \mathcal{L}}$ is the minimal element of \mathcal{L}.

Lattices

- A lattice $(\mathcal{L}, \leq, \vee, \wedge)$ is a poset such that for every $a, b \in \mathcal{L}$, their join $a \vee b$ and their meet $a \wedge b$ is in \mathcal{L}.
- $\mathbf{1}_{\mathcal{L}}=V_{a \in \mathcal{L}}$ is the maximal element of \mathcal{L}.
- $\mathbf{0}_{\mathcal{L}}=\wedge_{a \in \mathcal{L}}$ is the minimal element of \mathcal{L}.
- An interval $[a, b] \subseteq \mathcal{L}$ is the set of all $x \in \mathcal{L}$ such that $a \leq x \leq b$.

Lattices

- A lattice $(\mathcal{L}, \leq, \vee, \wedge)$ is a poset such that for every $a, b \in \mathcal{L}$, their join $a \vee b$ and their meet $a \wedge b$ is in \mathcal{L}.
- $\mathbf{1}_{\mathcal{L}}=V_{a \in \mathcal{L}}$ is the maximal element of \mathcal{L}.
- $\mathbf{0}_{\mathcal{L}}=\wedge_{a \in \mathcal{L}}$ is the minimal element of \mathcal{L}.
- An interval $[a, b] \subseteq \mathcal{L}$ is the set of all $x \in \mathcal{L}$ such that $a \leq x \leq b$.
- Let $c \in[a, b]$. We say that d is a complement of c in $[a, b]$ if $c \wedge d=a$ and $c \vee d=b$.
- \mathcal{L} is called complemented if every $c \in \mathcal{L}$ has a complement in \mathcal{L}.

Lattices

- A lattice $(\mathcal{L}, \leq, \vee, \wedge)$ is a poset such that for every $a, b \in \mathcal{L}$, their join $a \vee b$ and their meet $a \wedge b$ is in \mathcal{L}.
- $\mathbf{1}_{\mathcal{L}}=V_{a \in \mathcal{L}}$ is the maximal element of \mathcal{L}.
- $\mathbf{0}_{\mathcal{L}}=\wedge_{a \in \mathcal{L}}$ is the minimal element of \mathcal{L}.
- An interval $[a, b] \subseteq \mathcal{L}$ is the set of all $x \in \mathcal{L}$ such that $a \leq x \leq b$.
- Let $c \in[a, b]$. We say that d is a complement of c in $[a, b]$ if $c \wedge d=a$ and $c \vee d=b$.
- \mathcal{L} is called complemented if every $c \in \mathcal{L}$ has a complement in \mathcal{L}.
- A finite chain from a to b is a sequence $a=x_{1}<\cdots<x_{k+1}=b$ with $x_{j} \in \mathcal{L}$.
- The height of b is the maximum length of all maximal chains from $\mathbf{0}_{\mathcal{L}}$ to b.

Complemented Lattices

Boolean Lattice $\left(2^{[n]}, \subseteq, \cup, \cap\right)$	\longrightarrow	Subspace Lattice
		$(\mathcal{L}(E), \leq,+, \cap)$
Matroids	\longrightarrow	q-Matroids
Polymatroids	\longrightarrow	q-Polymatroids

Matroids $\rightarrow q$-Matroids

Definition

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Matroids $\rightarrow q$-Matroids

Definition

A matroid \mathcal{M} is an ordered pair $([n], r)$ where $r: 2^{[n]} \rightarrow \mathbb{Z}$ s.t. $\forall A, B \subseteq[n]$
(r1) (Boundness) $0 \leq r(A) \leq|A|$.
(r2) (Monotonicity) If $A \subseteq B$, then $r(A) \leq r(B)$.
(r3) (Submodularity) $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

Definition (Jurrius, Pellikaan, 2018)

A q-matroid is a pair $(E, r), \mathcal{L}(E)$ is the lattice of subspaces of E and $r: \mathcal{L}(E) \rightarrow \mathbb{Z}$ is a rank function such that $\forall A, B \leq E$
(R1) (Boundness) $0 \leq r(A) \leq \operatorname{dim}(A)$.
(R2) (Monotonicity) If $A \leq B$, then $r(A) \leq r(B)$.
(R3) (Submodularity) $r(A+B)+r(A \cap B) \leq r(A)+r(B)$.

Polymatroids $\rightarrow q$-Polymatroids

Definition

An (\mathcal{L}, r)-(integer) polymatroid is a pair $\mathcal{M}=(\mathcal{L}, \rho)$ for which $r \in \mathbb{N}_{0}$ and ρ is a function $\rho: \mathcal{L} \longrightarrow \mathbb{N}_{0}$ satisfying the following axioms for all $A, B \in \mathcal{L}$.
(R1) (Boundness) $0 \leq \rho(A) \leq r \cdot h(A)$.
(R2) (Monotonicity) $A \leq B \Rightarrow \rho(A) \leq \rho(B)$.
(R3) (Submodularity) $\rho(A \vee B)+\rho(A \wedge B) \leq \rho(A)+\rho(B)$.

Polymatroids $\rightarrow q$-Polymatroids

Definition

An (\mathcal{L}, r)-(integer) polymatroid is a pair $\mathcal{M}=(\mathcal{L}, \rho)$ for which $r \in \mathbb{N}_{0}$ and ρ is a function $\rho: \mathcal{L} \longrightarrow \mathbb{N}_{0}$ satisfying the following axioms for all $A, B \in \mathcal{L}$.
(R1) (Boundness) $0 \leq \rho(A) \leq r \cdot h(A)$.
(R2) (Monotonicity) $A \leq B \Rightarrow \rho(A) \leq \rho(B)$.
(R3) (Submodularity) $\rho(A \vee B)+\rho(A \wedge B) \leq \rho(A)+\rho(B)$.

- \mathcal{L} Boolean lattice:
- \mathcal{M} is an (\mathcal{L}, r) polymatroid.
- $r=1, \mathcal{M}$ is a matroid.
- $\mathcal{L}=\mathcal{L}(E)$ Subspace lattice:
- \mathcal{M} is a (q, r)-polymatroid [Gorla+ 2019, Shiromoto 2019].
- $r=1, \mathcal{M}$ is a q-matroid [Jurrius, Pellikaan 2016].R. Jurrius, R. Pellikaan. "Defining the q-analogue of a matroid.", 2016.
E. Gorla, R. Jurrius, H. López, A. Ravagnani. "Rank-Metric Codes and q-Polymatroids", 2019.

Restriction and Contraction

Let $\mathcal{M}=(\mathcal{L}, \rho)$ be a (\mathcal{L}, r)-polymatroid and let $[X, Y]$ be an interval of \mathcal{L}.

$$
\begin{aligned}
\rho_{[X, Y]}: \mathcal{L}(E) & \rightarrow \mathbb{N}_{0} \\
T & \mapsto \rho(T)-\rho(X)
\end{aligned}
$$

$\mathcal{M}([X, Y])=\left([X, Y], \rho_{[X, Y]}\right)$ is a minor of \mathcal{M}.
(1) We write $\left.\mathcal{M}\right|_{Y}:=\mathcal{M}([0, Y])$, which is called the restriction of \mathcal{M} to Y.
(2) We write $\mathcal{M} / X:=\mathcal{M}([X, 1])$, which is called the contraction of \mathcal{M} by X.

Restriction and Contraction: Example

Let $E=\mathbb{F}_{2}^{3}$ and $X=\langle(1,1,1)\rangle, Y=\langle(1,0,0),(0,1,0)\rangle$.

Representable q-Polymatroids

Theorem (Gorla+ 2019, Shiromoto 2019)

Let C be an $\mathbb{F}_{q}-[n \times m, k, d]$ rank-metric code. For each subspace $U \leq E$, define

$$
C(U):=\left\{M \in C: \operatorname{supp}(M) \leq U^{\perp}\right\} .
$$

Define

$$
\rho: \mathcal{L}(E) \rightarrow \mathbb{Z}, \rho(U):=k-\operatorname{dim}(C(U)) .
$$

$\mathcal{M}[C]=(E, \rho)$ is a (q, m)-polymatroid.

- For every $U \leq E, \mathcal{M}[C] / U \sim \mathcal{M}[C(U)]$. [Gluesing-Luerssen, Jany, 2022]
E. Gorla, R. Jurrius, H. López, A. Ravagnani. "Rank-Metric Codes and q-Polymatroids", 2019.
K. Shiromoto. "Matroids and Codes with the Rank Metric", 2019.
H. Gluesing-Luerssen, B. Jany, " q-polymatroids and their relation to rank-metric codes, 2022.

Contents

(1) Introduction to the Problem
(2) Background

- Linear Codes
- Matroids and Lattices
- q-Polymatroids
(3) The Critical Problem for Rank-Metric Codes
- The $\mathbb{F}_{q^{m}}$-Linear Case
- The MRD Case

Distinguish Spaces

Definition:

- $U \leq E$.
- $\mathbf{B}=\left(b_{1}, \ldots, b_{r}\right)$ list of bilinear forms $b_{i}: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}$. B distinguishes the space U if

$$
\bigcap_{i=1}^{r} \operatorname{lker}\left(b_{i}\right) \leq U^{\perp}
$$

where $\operatorname{lker}(b)$ denotes the left kernel of the bilinear form b.

Distinguish Spaces

Definition:

- $U \leq E$.
- $\mathbf{B}=\left(b_{1}, \ldots, b_{r}\right)$ list of bilinear forms $b_{i}: \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{m} \rightarrow \mathbb{F}_{q}$.
B distinguishes the space U if

$$
\bigcap_{i=1}^{r} \operatorname{lker}\left(b_{i}\right) \leq U^{\perp},
$$

where $\operatorname{lker}(b)$ denotes the left kernel of the bilinear form b.

Problem ((q-Analogue of the) Critical Problem)

Find the minimum number c of bilinear forms b_{i}, such that $\left(b_{1}, \ldots, b_{c}\right)$ distinguishes a fixed space $U \leq E$.

Distinguish Spaces

Problem ((q-Analogue of the) Critical Problem)

Let C be an $\mathbb{F}_{q}-[n \times m, k]$ rank-metric codes. Let $U \leq E$. Find the minimum number c of codewords M_{i} of C, such that

$$
\sum_{i=1}^{c} \operatorname{supp}\left(M_{i}\right)=U
$$

Distinguish Spaces

Problem ((q-Analogue of the) Critical Problem)

Let C be an $\mathbb{F}_{q}-[n \times m, k]$ rank-metric codes. Let $U \leq E$. Find the minimum number c of codewords M_{i} of C, such that

$$
\sum_{i=1}^{c} \operatorname{supp}\left(M_{i}\right)=U
$$

Definition: the Critical Exponent of C $\operatorname{crit}(C)$: least number t of codewords of C, whose supports span $\operatorname{supp}(C)$.

Distinguish Spaces

Problem ((q-Analogue of the) Critical Problem)

Let C be an $\mathbb{F}_{q}-[n \times m, k]$ rank-metric codes. Let $U \leq E$. Find the minimum number c of codewords M_{i} of C, such that

$$
\sum_{i=1}^{c} \operatorname{supp}\left(M_{i}\right)=U
$$

Definition: the Critical Exponent of C $\operatorname{crit}(\mathcal{M}[C])$: least number t of codewords of C, whose supports span $\operatorname{supp}(C)$.

Möbius Function on a Poset

Let (P, \leq) be a partially ordered set. The Möbius Function on P is defined by

$$
\mu(x, y):= \begin{cases}1 & \text { if } x=y \\ -\sum_{x \leq z<y} \mu(x, z) & \text { if } x<y \\ 0 & \text { otherwise }\end{cases}
$$

Lemma (Möbius Inversion formula)

Let $f, g: P \rightarrow \mathbb{Z}$ be two functions on a poset P. Then
(1) $f(x)=\sum_{x \leq y} g(y)$ if and only if $g(x)=\sum_{x \leq y} \mu(x, y) f(y)$.
(2) $f(x)=\sum_{x \geq y} g(y)$ if and only if $g(x)=\sum_{x \geq y} \mu(y, x) f(y)$.

\mathcal{L}	Boolean lattice	Subspace lattice
$\mu(0, U)$	$(-1)^{\|U\|}$	$\left.(-1)^{\operatorname{dim}(U)} q^{\left({ }^{\text {dimm }}(\underset{U}{2})\right.}\right)$

The Characteristic Polynomial

Let $\mathcal{M}=(E, \rho)$ be a q-polymatroid.
Definition: The characteristic polynomial of \mathcal{M} is the polynomial in $\mathbb{Z}[z]$ defined by

$$
p(\mathcal{M} ; z):=\sum_{0 \leq A \leq E} \mu(0, A) z^{\rho(E)-\rho(A)} .
$$

The Characteristic Polynomial

Let $\mathcal{M}=(E, \rho)$ be a q-polymatroid.
Definition: The characteristic polynomial of \mathcal{M} is the polynomial in $\mathbb{Z}[z]$ defined by

$$
p(\mathcal{M} ; z):=\sum_{0 \leq A \leq E} \mu(0, A) z^{\rho(E)-\rho(A)} .
$$

Properties:

- $p(\mathcal{M} / U ; z)=\sum_{U \leq A \leq E} \mu(U, A) z^{\rho(E)-\rho(A)}$.

The Characteristic Polynomial

Let $\mathcal{M}=(E, \rho)$ be a q-polymatroid.
Definition: The characteristic polynomial of \mathcal{M} is the polynomial in $\mathbb{Z}[z]$ defined by

$$
p(\mathcal{M} ; z):=\sum_{0 \leq A \leq E} \mu(0, A) z^{\rho(E)-\rho(A)} .
$$

Properties:

- $p(\mathcal{M} / U ; z)=\sum_{U \leq A \leq E} \mu(U, A) z^{\rho(E)-\rho(A)}$.
- $z^{\rho(E)-\rho(U)}=\sum_{U \leq A \leq E} p(\mathcal{M} / A ; z)$ (by Möbius Inversion).

The Characteristic Polynomial

Let $\mathcal{M}=(E, \rho)$ be a q-polymatroid.
Definition: The characteristic polynomial of \mathcal{M} is the polynomial in $\mathbb{Z}[z]$ defined by

$$
p(\mathcal{M} ; z):=\sum_{0 \leq A \leq E} \mu(0, A) z^{\rho(E)-\rho(A)} .
$$

Properties:

- $p(\mathcal{M} / U ; z)=\sum_{U \leq A \leq E} \mu(U, A) z^{\rho(E)-\rho(A)}$.
- $z^{\rho(E)-\rho(U)}=\sum_{U \leq A \leq E} p(\mathcal{M} / A ; z)$ (by Möbius Inversion).
- If $\mathcal{M}=\mathcal{M}[C]$ then $|C(U)|=\sum_{U \leq A \leq E} p(\mathcal{M} / A ; q)$.

The Critical Theorem for q-Polymatroids

- $p(\mathcal{M} / U ; z)=\sum_{U \leq A \leq E} \mu(U, A) z^{\rho(E)-\rho(A)}$.

Theorem (A., Byrne (2022))
Let C be an $\mathbb{F}_{q-}-[n \times m, k]$ rank-metric code, $\mathcal{M}=\mathcal{M}[C]$ and let $U \leq E$.

$$
\left|\left\{\left(X_{1}, \ldots, X_{t}\right): X_{i} \in C, \operatorname{supp}\left(X_{1}\right)+\cdots+\operatorname{supp}\left(X_{t}\right)=U\right\}\right|=p\left(\mathcal{M} / U^{\perp} ; q^{t}\right) .
$$

The Critical Theorem for q-Polymatroids

- $p(\mathcal{M} / U ; z)=\sum_{U \leq A \leq E} \mu(U, A) z^{\rho(E)-\rho(A)}$.

Theorem (A., Byrne (2022))

Let C be an $\mathbb{F}_{q-}-[n \times m, k]$ rank-metric code, $\mathcal{M}=\mathcal{M}[C]$ and let $U \leq E$.

$$
\left|\left\{\left(X_{1}, \ldots, X_{t}\right): X_{i} \in C, \operatorname{supp}\left(X_{1}\right)+\cdots+\operatorname{supp}\left(X_{t}\right)=U\right\}\right|=p\left(\mathcal{M} / U^{\perp} ; q^{t}\right) .
$$

Proof:

$$
\begin{aligned}
& f(W):=\left|\left\{\left(X_{1}, \ldots, X_{t}\right) \in C^{t}: \sum_{i=1}^{t} \operatorname{colsp}\left(X_{i}\right)=W^{\perp}\right\}\right|, \\
& g(W):=\left|\left\{\left(X_{1}, \ldots, X_{t}\right) \in C^{t}: \sum_{i=1}^{t} \operatorname{colsp}\left(X_{i}\right) \leq W^{\perp}\right\}\right| .
\end{aligned}
$$

The Critical Theorem for q-Polymatroids

- $p(\mathcal{M} / U ; z)=\sum_{U \leq A \leq E} \mu(U, A) z^{\rho(E)-\rho(A)}$.

Theorem (A., Byrne (2022))

Let C be an $\mathbb{F}_{q-}-[n \times m, k]$ rank-metric code, $\mathcal{M}=\mathcal{M}[C]$ and let $U \leq E$.

$$
\left|\left\{\left(X_{1}, \ldots, X_{t}\right): X_{i} \in C, \operatorname{supp}\left(X_{1}\right)+\cdots+\operatorname{supp}\left(X_{t}\right)=U\right\}\right|=p\left(\mathcal{M} / U^{\perp} ; q^{t}\right) .
$$

Proof:

$$
\begin{gathered}
f(W):=\left|\left\{\left(X_{1}, \ldots, X_{t}\right) \in C^{t}: \sum_{i=1}^{t} \operatorname{colsp}\left(X_{i}\right)=W^{\perp}\right\}\right|, \\
g(W):=\left|\left\{\left(X_{1}, \ldots, X_{t}\right) \in C^{t}: \sum_{i=1}^{t} \operatorname{colsp}\left(X_{i}\right) \leq W^{\perp}\right\}\right| . \\
g(W)=\sum_{V \in[W, E]} f(V) . \\
g(W)=\left|\left\{\left(X_{1}, \ldots, X_{t}\right) \in C^{t}: \operatorname{colsp}\left(X_{i}\right) \leq W^{\perp} \forall i \in[t]\right\}\right|=|C(W)|^{t} .
\end{gathered}
$$

The Critical Theorem for q-Polymatroids

- $p(\mathcal{M} / U ; z)=\sum_{U \leq A \leq E} \mu(U, A) z^{\rho(E)-\rho(A)}$.

Theorem (A., Byrne (2022))

Let C be an $\mathbb{F}_{q-}-[n \times m, k]$ rank-metric code, $\mathcal{M}=\mathcal{M}[C]$ and let $U \leq E$.

$$
\left|\left\{\left(X_{1}, \ldots, X_{t}\right): X_{i} \in C, \operatorname{supp}\left(X_{1}\right)+\cdots+\operatorname{supp}\left(X_{t}\right)=U\right\}\right|=p\left(\mathcal{M} / U^{\perp} ; q^{t}\right) .
$$

Proof:

$$
\begin{gathered}
f(W):=\left|\left\{\left(X_{1}, \ldots, X_{t}\right) \in C^{t}: \sum_{i=1}^{t} \operatorname{colsp}\left(X_{i}\right)=W^{\perp}\right\}\right|, \\
g(W):=\left|\left\{\left(X_{1}, \ldots, X_{t}\right) \in C^{t}: \sum_{i=1}^{t} \operatorname{colsp}\left(X_{i}\right) \leq W^{\perp}\right\}\right| . \\
g(W)=\sum_{V \in[W, E]} f(V) .
\end{gathered}
$$

$$
\begin{gathered}
g(W)=\left|\left\{\left(X_{1}, \ldots, X_{t}\right) \in C^{t}: \operatorname{colsp}\left(X_{i}\right) \leq W^{\perp} \forall i \in[t]\right\}\right|=|C(W)|^{t} . \\
f(W)=\sum_{v \in[W, E]} \mu(W, V) g(V)=\sum_{V \in[W, E]} \mu(W, V)|C(V)|^{t}=\sum_{V \in[W, E]} \mu\left(W, V, V q^{t(k-\rho(V))}=P\left(\mathcal{M} / W ; q^{t}\right) .\right.
\end{gathered}
$$

\square

Critical Exponent

Corollary

If C is a non-degenerate $\mathbb{F}_{q}-[n \times m, k]$ code, then

$$
\left|\left\{\left(X_{1}, \ldots, X_{t}\right): X_{i} \in C, \operatorname{supp}\left(X_{1}\right)+\cdots+\operatorname{supp}\left(X_{t}\right)=\mathbb{F}_{q}^{n}\right\}\right|=p\left(\mathcal{M} ; q^{t}\right)
$$

Critical Exponent

Corollary

If C is a non-degenerate $\mathbb{F}_{q}-[n \times m, k]$ code, then

$$
\left|\left\{\left(X_{1}, \ldots, X_{t}\right): X_{i} \in C, \operatorname{supp}\left(X_{1}\right)+\cdots+\operatorname{supp}\left(X_{t}\right)=\mathbb{F}_{q}^{n}\right\}\right|=p\left(\mathcal{M} ; q^{t}\right)
$$

$$
\operatorname{crit}(\mathcal{M}[C])= \begin{cases}\infty & \text { if } C \text { is degenerate }, \\ \min \left\{r: p\left(\mathcal{M} ; q^{r}\right)>0\right\} & \text { otherwise }\end{cases}
$$

- Ben Jany (2022) gave an alternative proof for the q-matroid case.
- Imamura and Shiromoto, independently showed a similar result (2023).

Example

Let C be the $\mathbb{F}_{2}-[5 \times 3,6,1]$ rank-metric code generated by the matrices

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0 \\
0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

Let $\mathcal{M}=\left(\mathbb{F}_{2}^{5}, \rho\right)$ be the $(q, 3)$-polymatroid induced by C. We calculate the characteristic polynomial of \mathcal{M},

$$
p(\mathcal{M} ; z):=\sum_{X \leq \mathbb{F}_{2}^{5}} \mu(0, X) z^{\rho\left(\mathbb{F}_{2}^{5}\right)-\rho(X)}=\cdots=z^{6}-4 z^{4}-25 z^{3}+44 z^{2}+40 z-56 .
$$

- $p(\mathcal{M} ; 1)=p(\mathcal{M} ; 2)=0$.
- $p\left(\mathcal{M} ; 2^{2}\right)=2280>0$.

Hence $\operatorname{crit}(\mathcal{M})=2$. Indeed

$$
X_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right) \quad \text { and } \quad X_{2}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

First Bound

Proposition

Let C be a non-degenerate $\mathbb{F}_{q}-[n \times m, k]$ code and let $\mathcal{M}=\mathcal{M}[C]$ be the q-polymatroid associated to C. Then

$$
\left\lceil\frac{n}{m}\right\rceil \leq \operatorname{crit}(\mathcal{M}) \leq k
$$

First Bound

Proposition

Let C be a non-degenerate $\mathbb{F}_{q}-[n \times m, k]$ code and let $\mathcal{M}=\mathcal{M}[C]$ be the q-polymatroid associated to C. Then

$$
\left\lceil\frac{n}{m}\right\rceil \leq \operatorname{crit}(\mathcal{M}) \leq k
$$

Proof.

If $\operatorname{crit}(\mathcal{M})=t$, then there are $X_{1}, \ldots, X_{t} \in C$ such that

$$
\sum_{i=1}^{t} \operatorname{supp}\left(X_{i}\right)=\mathbb{F}_{q}^{n}
$$

Then,

$$
n=\operatorname{dim}_{\mathbb{F}_{q}}\left(\sum_{i=1}^{t} \operatorname{supp}\left(X_{i}\right)\right) \leq m t .
$$

Rank-Metric Codes Linear over $\mathbb{F}_{q^{m}}$

- $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ finite extension field
- k, n positive integers, with $k \leq n$

Definition

An $[n, k]_{q^{m} / q}$ rank-metric code is an $\mathbb{F}_{q^{m}}$-linear subspace $C \leq \mathbb{F}_{q^{m}}^{n}$.

- n is the length of C.
- k is the dimension of C.

Let $v \in \mathbb{F}_{q^{m}}^{n}$ and fix a basis $\Gamma=\left\{\gamma_{1}, \ldots, \gamma_{m}\right\}$ of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$. Let $\Gamma(v) \in \mathbb{F}_{q}^{m \times n}$ be the matrix defined by

$$
v_{j}=\sum_{i=1}^{m} \Gamma(v)_{i j} \gamma_{i} .
$$

Definition

The Γ-support of a vector $v \in \mathbb{F}_{q^{m}}^{n}$ is the rowspace of $\Gamma(v)$. It is denoted by $\sigma_{\Gamma}(v) \subseteq \mathbb{F}_{q}^{n}$.

Rank-Metric Codes

- $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ finite extension field
- k, n positive integers, with $k \leq n$

Definition

An $[n, k]_{q^{m} / q}$ rank-metric code is an $\mathbb{F}_{q^{m-l}}$ linear subspace $C \leq \mathbb{F}_{q^{m}}^{n}$.

- n is the length of C.
- k is the dimension of C.
- For any $v \in \mathbb{F}_{q^{m}}^{n}, \sigma(v)=\operatorname{rowsp}(\Gamma(v)) \leq \mathbb{F}_{q}^{n}$.
- The rank weight of $v \in \mathbb{F}_{q^{m}}^{n}$ is $\operatorname{rk}(v)=\operatorname{dim}_{\mathbb{F}_{q}}(\sigma(v))$.
- C possesses a generator matrix $G \in \mathbb{F}_{q^{m}}^{k \times n}$:

$$
C=\left\{v G \mid v \in \mathbb{F}_{q^{m}}^{k}\right\}
$$

i.e. the rows of G form a basis of C.

- C is non-degenerate if the columns of G are \mathbb{F}_{q}-independent.

The Geometry of Rank-Metric Codes (q-systems)

Consider an $[n, k]_{q^{m} / q}$ non-degenerate rank-metric code C with generator matrix $G=\left(g_{i, j}\right)$. A basis for C is given by the rows of G.

$$
\rightarrow\left(\begin{array}{cccc}
g_{1,1} & g_{1,2} & \ldots & g_{1, n} \\
g_{2,1} & g_{2,2} & \ldots & g_{2, n} \\
\vdots & \vdots & & \vdots \\
g_{k, 1} & g_{k, 2} & \ldots & g_{k, n}
\end{array}\right)
$$

The Geometry of Rank-Metric Codes (q-systems)

We can instead consider the columns of G.

$$
\left(\begin{array}{cccc}
g_{1,1} & g_{1,2} & \cdots & g_{1, n} \\
g_{2,1} & g_{2,2} & \cdots & g_{2, n} \\
\vdots & \vdots & & \vdots \\
g_{k, 1} & g_{k, 2} & \cdots & g_{k, n}
\end{array}\right)
$$

The Geometry of Rank-Metric Codes (q-systems)

We can instead consider the \mathbb{F}_{q}-span \mathcal{U} of the columns of G.

$$
\left\langle\begin{array}{cccc}
g_{1,1} & g_{1,2} & \cdots & g_{1, n} \\
g_{2,1} & g_{2,2} & \cdots & g_{2, n} \\
\vdots & \vdots & & \vdots \\
g_{k, 1} & g_{k, 2} & \cdots & g_{k, n}
\end{array}\right\rangle
$$

The Geometry of Rank-Metric Codes (q-systems)

We can instead consider the $\mathbb{F}_{q^{-}}$-span \mathcal{U} of the columns of G.

$$
\left\langle\begin{array}{cccc}
g_{1,1} & g_{1,2} & \cdots & g_{1, n} \\
g_{2,1} & g_{2,2} & \cdots & g_{2, n} \\
\vdots & \vdots & & \vdots \\
g_{k, 1} & g_{k, 2} & \cdots & g_{k, n}
\end{array}\right\rangle
$$

Definition

\mathcal{U} is called $[n, k]_{q^{m} / q}$ system associated to G.

The Geometry of Rank-Metric Codes (q-systems)

We can instead consider the \mathbb{F}_{q}-span \mathcal{U} of the columns of G.

$$
\left\langle\begin{array}{cccc}
g_{1,1} & g_{1,2} & \cdots & g_{1, n} \\
g_{2,1} & g_{2,2} & \cdots & g_{2, n} \\
\vdots & \vdots & & \vdots \\
g_{k, 1} & g_{k, 2} & \cdots & g_{k, n}
\end{array}\right\rangle
$$

Definition

\mathcal{U} is called $[n, k]_{q^{m} / q}$ system associated to G.

Corollary

Let \mathcal{M} be the q-matroid induced by C. Then

$$
\begin{gathered}
\operatorname{crit}(\mathcal{M})=\min \left\{r \in \mathbb{N} \mid \exists \mathbb{F}_{q^{m}} \text {-hyperplanes } H_{1}, \ldots, H_{r}\right. \text { such that } \\
\left.\mathcal{U} \cap H_{1} \cap \ldots \cap H_{r}=0\right\} .
\end{gathered}
$$

Critical Problem for $\mathbb{F}_{q^{m-L}}$ Linear Codes

Lemma (A., Borello, Neri, Ravagnani 2022)
A non-degenerate $[n, k]_{q^{m} / q}$ code contains a codeword of rank equal to $\min \{m, n\}$.

Critical Problem for $\mathbb{F}_{q^{m-L}}$ Linear Codes

Lemma (A., Borello, Neri, Ravagnani 2022)
A non-degenerate $[n, k]_{q^{m} / q}$ code contains a codeword of rank equal to $\min \{m, n\}$.

Theorem (A., Byrne 2023)
Let $\mathcal{M}=\mathcal{M}[C]$. Then $\operatorname{crit}(\mathcal{M})=\left\lceil\frac{n}{m}\right\rceil$.

Critical Problem for $\mathbb{F}_{q^{m-L}}$ Linear Codes

Lemma (A., Borello, Neri, Ravagnani 2022)
A non-degenerate $[n, k]_{q^{m} / q}$ code contains a codeword of rank equal to $\min \{m, n\}$.
Theorem (A., Byrne 2023)
Let $\mathcal{M}=\mathcal{M}[C]$. Then $\operatorname{crit}(\mathcal{M})=\left\lceil\frac{n}{m}\right\rceil$.
Sketch of the Proof:

- Write $n=a m+b$, with $a, b \in \mathbb{N}_{0}$ and $0 \leq b<m$.

Critical Problem for $\mathbb{F}_{q^{m-L}}$ Linear Codes

Lemma (A., Borello, Neri, Ravagnani 2022)
A non-degenerate $[n, k]_{q^{m} / q}$ code contains a codeword of rank equal to $\min \{m, n\}$.

Theorem (A., Byrne 2023)
Let $\mathcal{M}=\mathcal{M}[C]$. Then $\operatorname{crit}(\mathcal{M})=\left\lceil\frac{n}{m}\right\rceil$.
Sketch of the Proof:

- Write $n=a m+b$, with $a, b \in \mathbb{N}_{0}$ and $0 \leq b<m$.
- If $a=0$, then $n<m$. By Lemma $\operatorname{crit}(\mathcal{M})=1=\left\lceil\frac{n}{m}\right\rceil$.

Critical Problem for $\mathbb{F}_{q^{m} \text {-Linear Codes }}$

Lemma (A., Borello, Neri, Ravagnani 2022)
A non-degenerate $[n, k]_{q^{m} / q}$ code contains a codeword of rank equal to $\min \{m, n\}$.
Theorem (A., Byrne 2023)
Let $\mathcal{M}=\mathcal{M}[C]$. Then $\operatorname{crit}(\mathcal{M})=\left\lceil\frac{n}{m}\right\rceil$.

Sketch of the Proof:

- Write $n=a m+b$, with $a, b \in \mathbb{N}_{0}$ and $0 \leq b<m$.
- If $a=0$, then $n<m$. By Lemma $\operatorname{crit}(\mathcal{M})=1=\left\lceil\frac{n}{m}\right\rceil$.
- Assume that an $\left[n^{\prime}, k\right]_{q^{m} / q}$ non-degenerate code s.t. $n^{\prime}=a^{\prime} m+b^{\prime}$, with $a^{\prime}<a$, has critical exponent $\left\lceil\frac{n^{\prime}}{m}\right\rceil$.

Critical Problem for $\mathbb{F}_{q^{m-L i n e a r ~}}$ Codes

Lemma (A., Borello, Neri, Ravagnani 2022)
A non-degenerate $[n, k]_{q^{m} / q}$ code contains a codeword of rank equal to $\min \{m, n\}$.
Theorem (A., Byrne 2023)
Let $\mathcal{M}=\mathcal{M}[C]$. Then $\operatorname{crit}(\mathcal{M})=\left\lceil\frac{n}{m}\right\rceil$.

Sketch of the Proof:

- Write $n=a m+b$, with $a, b \in \mathbb{N}_{0}$ and $0 \leq b<m$.
- If $a=0$, then $n<m$. By Lemma $\operatorname{crit}(\mathcal{M})=1=\left\lceil\frac{n}{m}\right\rceil$.
- Assume that an $\left[n^{\prime}, k\right]_{q^{m} / q}$ non-degenerate code s.t. $n^{\prime}=a^{\prime} m+b^{\prime}$, with $a^{\prime}<a$, has critical exponent $\left\lceil\frac{n^{\prime}}{m}\right\rceil$.
- There exists a codeword $c=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)$, with rank equal to m.

Critical Problem for $\mathbb{F}_{q^{m} \text {-Linear Codes }}$

Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate $[n, k]_{q^{m} / q}$ code contains a codeword of rank equal to $\min \{m, n\}$.

Theorem (A., Byrne 2023)

Let $\mathcal{M}=\mathcal{M}[C]$. Then $\operatorname{crit}(\mathcal{M})=\left\lceil\frac{n}{m}\right\rceil$.

Sketch of the Proof:

- Write $n=a m+b$, with $a, b \in \mathbb{N}_{0}$ and $0 \leq b<m$.
- If $a=0$, then $n<m$. By Lemma $\operatorname{crit}(\mathcal{M})=1=\left\lceil\frac{n}{m}\right\rceil$.
- Assume that an $\left[n^{\prime}, k\right]_{q^{m} / q}$ non-degenerate code s.t. $n^{\prime}=a^{\prime} m+b^{\prime}$, with $a^{\prime}<a$, has critical exponent $\left\lceil\frac{n^{\prime}}{m}\right\rceil$.
- There exists a codeword $c=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)$, with rank equal to m.
- Construct $C_{1}=\leq \mathbb{F}_{q^{m}}^{n-m}$. Since $n^{\prime}=n-m=(a-1) m+b$, by the induction hypothesis, the critical exponent of $\mathcal{M}\left[C_{1}\right]$ is $\left\lceil\frac{n-m}{m}\right\rceil$.

Critical Problem for $\mathbb{F}_{q^{m} \text {-Linear Codes }}$

Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate $[n, k]_{q^{m} / q}$ code contains a codeword of rank equal to $\min \{m, n\}$.

Theorem (A., Byrne 2023)

Let $\mathcal{M}=\mathcal{M}[C]$. Then $\operatorname{crit}(\mathcal{M})=\left\lceil\frac{n}{m}\right\rceil$.

Sketch of the Proof:

- Write $n=a m+b$, with $a, b \in \mathbb{N}_{0}$ and $0 \leq b<m$.
- If $a=0$, then $n<m$. By Lemma $\operatorname{crit}(\mathcal{M})=1=\left\lceil\frac{n}{m}\right\rceil$.
- Assume that an $\left[n^{\prime}, k\right]_{q^{m} / q}$ non-degenerate code s.t. $n^{\prime}=a^{\prime} m+b^{\prime}$, with $a^{\prime}<a$, has critical exponent $\left\lceil\frac{n^{\prime}}{m}\right\rceil$.
- There exists a codeword $c=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)$, with rank equal to m.
- Construct $C_{1}=\leq \mathbb{F}_{q^{m}}^{n-m}$. Since $n^{\prime}=n-m=(a-1) m+b$, by the induction hypothesis, the critical exponent of $\mathcal{M}\left[C_{1}\right]$ is $\left\lceil\frac{n-m}{m}\right\rceil$.
- Observe that these words are now enough to show the full result.

Critical Problem for $\mathbb{F}_{q^{m} \text {-Linear Codes }}$

Lemma (A., Borello, Neri, Ravagnani 2022)

A non-degenerate $[n, k]_{q^{m} / q}$ code contains a codeword of rank equal to $\min \{m, n\}$.

Theorem (A., Byrne 2023)

Let $\mathcal{M}=\mathcal{M}[C]$. Then $\operatorname{crit}(\mathcal{M})=\left\lceil\frac{n}{m}\right\rceil$.

Sketch of the Proof:

- Write $n=a m+b$, with $a, b \in \mathbb{N}_{0}$ and $0 \leq b<m$.
- If $a=0$, then $n<m$. By Lemma $\operatorname{crit}(\mathcal{M})=1=\left\lceil\frac{n}{m}\right\rceil$.
- Assume that an $\left[n^{\prime}, k\right]_{q^{m} / q}$ non-degenerate code s.t. $n^{\prime}=a^{\prime} m+b^{\prime}$, with $a^{\prime}<a$, has critical exponent $\left\lceil\frac{n^{\prime}}{m}\right\rceil$.
- There exists a codeword $c=\left(x_{1}, \ldots, x_{m}, 0, \ldots, 0\right)$, with rank equal to m.
- Construct $C_{1}=\leq \mathbb{F}_{q^{m}}^{n-m}$. Since $n^{\prime}=n-m=(a-1) m+b$, by the induction hypothesis, the critical exponent of $\mathcal{M}\left[C_{1}\right]$ is $\left\lceil\frac{n-m}{m}\right\rceil$.
- Observe that these words are now enough to show the full result.

The General Case

- If C is non-degenerate and $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

The General Case

- If C is non-degenerate and $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

Are there other "families" of codes for which we can compute the critical exponent?

The General Case

- If C is non-degenerate and $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

The General Case

- If C is non-degenerate and $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an $\mathbb{F}_{q^{-}}[n \times m, k, d]$ MRD code.

The General Case

- If C is non-degenerate and $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an $\mathbb{F}_{q^{-}}[n \times m, k, d]$ MRD code.
(1) If C is $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

The General Case

- If C is non-degenerate and $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an $\mathbb{F}_{q^{-}}[n \times m, k, d]$ MRD code.
(1) If C is $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.
(2) $n \leq m$, then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

The General Case

- If C is non-degenerate and $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an $\mathbb{F}_{q^{-}}[n \times m, k, d]$ MRD code.
(1) If C is $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.
(2) $n \leq m$, then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.
(3) $m<n \leq 2 m-d$, then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

The General Case

- If C is non-degenerate and $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an $\mathbb{F}_{q^{-}}[n \times m, k, d]$ MRD code.
(1) If C is $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.
(2) $n \leq m$, then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.
(3) $m<n \leq 2 m-d$, then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.
(0) $m=n-1, d=n-1$, then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

The General Case

- If C is non-degenerate and $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

Are there other "families" of codes for which we can compute the critical exponent?

What about MRD codes?

Let C be an $\mathbb{F}_{q^{-}}[n \times m, k, d]$ MRD code.
(1) If C is $\mathbb{F}_{q^{m}}$-linear then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.
(2) $n \leq m$, then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.
(3) $m<n \leq 2 m-d$, then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.
(1) $m=n-1, d=n-1$, then $\operatorname{crit}(C)=\left\lceil\frac{n}{m}\right\rceil$.

What about the other cases?

Thank you for the attention!
 Grazie per l'attenzione!

