Algebraic attacks for the Rank Decoding Problem

Magali Bardet

LITIS, University of Rouen Normandie, France magali.bardet@univ-rouen.fr

OpeRa 2024,
February 14th, 2024

NIST call for proposals

Post-Quantum Cryptography standardization process

- KEM + Signature.
- 4 Rounds since 2017.
- 1 KEM + 3 Signatures selected for standardization in 2022, based on Lattices and Hash functions.
- 3 code-based KEMs in the 4 th Round.

NIST call for proposals

Post-Quantum Cryptography standardization process

- KEM + Signature.
- 4 Rounds since 2017.
- 1 KEM +3 Signatures selected for standardization in 2022, based on Lattices and Hash functions.
- 3 code-based KEMs in the 4th Round.

Additional Digital Signature Schemes

- June 1, 2023. First Round ongoing.
- 40 submissions.

Post-quantum cryptography

Rank metric Code-based cryptography

- Various proposals: KEM, PKE, signatures.

Interesting underlying (hard) problems

- MinRank,
- Rank Decoding RD,
- Rank Support Learning RSL.
\Rightarrow Algebraic cryptanalysis of these problems? Complexity?

Rank metric [Del78]

General Linear code

- A linear subspace $\mathscr{C}=\left\{\boldsymbol{x} G: \boldsymbol{x} \in \mathbb{F}_{q}^{K}\right\} \subset \mathbb{F}_{q}^{N}$, dimension K, \mathbb{F}_{q} finite field.
- Generator matrix G of rank K in $\mathbb{F}_{q}^{K \times N}$.
- Parity-check matrix H of rank $N-K, G H^{\top}=0$.

Rank metric

Rank metric [Del78]

General Linear code

- A linear subspace $\mathscr{C}=\left\{\boldsymbol{x} G: \boldsymbol{x} \in \mathbb{F}_{q}^{K}\right\} \subset \mathbb{F}_{q}^{N}$, dimension K, \mathbb{F}_{q} finite field.
- Generator matrix G of rank K in $\mathbb{F}_{q}^{K \times N}$.

Rank metric

Algebraic Modeling

- Parity-check matrix H of rank $N-K, G H^{\top}=0$.
- Hamming distance $d\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right)=\#\left\{i: c_{i} \neq c_{i}^{\prime}\right\}$.

Rank metric [Del78]

General Linear code

- A linear subspace $\mathscr{C}=\left\{\boldsymbol{x} G: \boldsymbol{x} \in \mathbb{F}_{q}^{K}\right\} \subset \mathbb{F}_{q}^{N}$, dimension K, \mathbb{F}_{q} finite field.
- Generator matrix G of rank K in $\mathbb{F}_{q}^{K \times N}$.
- Parity-check matrix H of rank $N-K, G H^{\top}=0$.
- Hamming distance $d\left(\boldsymbol{c}, \boldsymbol{c}^{\prime}\right)=\#\left\{i: c_{i} \neq c_{i}^{\prime}\right\}$.

Rank metric and Matrix codes over $\mathbb{F}_{q}^{m n}$ when $N=m n$

- A word $\boldsymbol{x}=\left(x_{1}, \ldots, x_{m n}\right) \in \mathbb{F}_{q}^{m n}$ is viewed as a (column) matrix

$$
\boldsymbol{X}=\left(\begin{array}{ccc}
x_{1} & \ldots & x_{m(n-1)+1} \\
x_{2} & \vdots & \vdots \\
x_{m} & \cdots & x_{m n}
\end{array}\right) \in \mathbb{F}_{q}^{m \times n}
$$

- The rank distance $d(\boldsymbol{X}, \boldsymbol{Y})=\operatorname{Rank}(\boldsymbol{Y}-\boldsymbol{X})$.

Matrix codes and Rank distance

Example 1

- $\boldsymbol{x}=(1,0,1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,0,0,1) \in \mathbb{F}_{2}^{20}$.
- $\operatorname{Mat}(\boldsymbol{x})=\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1\end{array}\right) \in \mathbb{F}_{2}^{4 \times 5}$
- The weight of \boldsymbol{x} is 3 .

Rank metric [Gab85]

Equivalent definition for Matrix codes over $\mathbb{F}_{q}^{n m} \leftrightarrow \mathbb{F}_{q^{m}}^{n}$

- Finite field \mathbb{F}_{q}, extension $\mathbb{F}_{q^{m}}$, basis $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ as an $\mathbb{F}_{q^{-}}$-vector space.

Magali Bardet

Rank metric

- Correspondence $\boldsymbol{x} \in \mathbb{F}_{q^{m}}^{n} \leftrightarrow \operatorname{Mat}(\boldsymbol{x}) \in \mathbb{F}_{q}^{m \times n}, \boldsymbol{x}=\beta \operatorname{Mat}(\boldsymbol{x})$.
- Rank weight $|\boldsymbol{x}|=\operatorname{Rank}(\operatorname{Mat}(\boldsymbol{x}))=\operatorname{dim}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle_{\mathbb{F}_{q}}\right)$, support.

Rank metric [Gab85]

Equivalent definition for Matrix codes over $\mathbb{F}_{q}^{n m} \leftrightarrow \mathbb{F}_{q^{m}}^{n}$

- Finite field \mathbb{F}_{q}, extension $\mathbb{F}_{q^{m}}$, basis $\beta=\left(\beta_{1}, \ldots, \beta_{m}\right)$ as an $\mathbb{F}_{q^{-v e c t o r ~}}$ space.
- Correspondence $\boldsymbol{x} \in \mathbb{F}_{q^{m}}^{n} \leftrightarrow \operatorname{Mat}(\boldsymbol{x}) \in \mathbb{F}_{q}^{m \times n}, \boldsymbol{x}=\beta \operatorname{Mat}(\boldsymbol{x})$.
- Rank weight $|\boldsymbol{x}|=\operatorname{Rank}(\operatorname{Mat}(\boldsymbol{x}))=\operatorname{dim}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle_{\mathbb{F}_{q}}\right)$, support.

Example

- $\mathbb{F}_{2^{4}}$ over \mathbb{F}_{2}, basis $\left(1, \alpha, \alpha^{2}, \alpha^{3}\right)$.
- $\boldsymbol{x}=\left(1+\alpha^{2}, 1+\alpha, \alpha+\alpha^{3}, \alpha^{2}+\alpha^{3}, 1+\alpha^{3}\right) \leftrightarrow$
$\operatorname{Mat}(\boldsymbol{x})=\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1\end{array}\right) \in \mathbb{F}_{2}^{4 \times 5}$ and $\left(1, \alpha, \alpha^{2}, \alpha^{3}\right) \operatorname{Mat}(\boldsymbol{x})=\boldsymbol{x}$.
- $|\boldsymbol{x}|=3$, the support of \boldsymbol{x} is $\mathscr{V}=\left\langle 1+\alpha^{2}, 1+\alpha, \alpha+\alpha^{3}\right\rangle_{\mathbb{F}_{q}}$.

Interesting Codes in Rank metric

General Matrix codes are \mathbb{F}_{q}-linear codes (Delsart [Del78])
They are \mathbb{F}_{q}-linear subspaces of $\mathbb{F}_{q^{m}}^{n}=\mathbb{F}_{q}^{m n}=\mathbb{F}_{q}^{m \times n}$, endowed with the rank metric.

Interesting Codes in Rank metric

They are $\mathbb{F}_{q^{-}}$-linear subspaces of $\mathbb{F}_{q^{m}}^{n}=\mathbb{F}_{q}^{m n}=\mathbb{F}_{q}^{m \times n}$, endowed with the rank metric.

Particular Matrix codes specified as $\mathbb{F}_{q^{m-l i n e a r ~ c o d e s ~}}$ (Gabidulin [Gab85]) They are $\mathbb{F}_{q^{m}}$-linear subspaces of $\mathbb{F}_{q^{m}}^{n}$, endowed with the rank metric.

- $\mathbb{F}_{q^{m}}$-linear codes are particular matrix codes with a structure,
- Known families of $\mathbb{F}_{q^{m-}}$-linear codes with decoding algorithms,
- $\mathbb{F}_{q^{m}}$-linear codes have a much shorter description (save a factor m)
\Rightarrow Shorter public keys in cryptography!

Specific family of codes

$\mathbb{F}_{q^{m}}$-linear codes in rank metric: $\mathscr{C} \subset \mathbb{F}_{q^{m}}^{n}$ has an additional structure

	$\mathbb{F}_{q^{m}}^{n}$-linear code	Matrix code in $\mathbb{F}_{q}^{n m}$
Field	$\mathbb{F}_{q^{m}}$	\mathbb{F}_{q}
Length	n	$n m$
Dimension	k	$k m$
Codeword	$\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$	matrix $\boldsymbol{X} \in \mathbb{F}_{q}^{m \times n}$
Size of a basis	$k n m \log (q)$	$k m n m \log (q)$

Application of the rank metric

Examples of $\mathbb{F}_{q^{m-l i n e a r ~ c o d e s ~}}$ with decoding algorithms

- Gabidulin codes [Gab85] (rank-metric analogue of Reed-Solomon codes),
- Low Rank Parity Check codes [Ara+19a] (rank-metric analogue of MDPC codes)

The Rank Decoding Problem (RD)

Rank Decoding Problem (RD)

- Input: an integer $r \in \mathbb{N}$, an $\mathbb{F}_{q^{m}}$-basis $G \in \mathbb{F}_{q^{m}}^{k \times n}$ of a subspace $\mathscr{C} \subset \mathbb{F}_{q^{m}}^{n}$, and a vector $y \in \mathbb{F}_{q^{m}}^{n}$ such that $d(y, \mathscr{C}) \leq r$.

Rank metric

- Output: $\boldsymbol{e} \in \mathbb{F}_{q^{m}}^{n}$ such that

$$
y=x G+e \text { and } \operatorname{Rank}(e) \leq r .
$$

${ }^{1} \boldsymbol{s}=\boldsymbol{y} \boldsymbol{H}^{\top}, \boldsymbol{y}$ one solution of $\boldsymbol{y} \boldsymbol{H}^{\top}=\boldsymbol{s}$ without constraints on the weight of \boldsymbol{y}.

The Rank Decoding Problem (RD)

Rank Decoding Problem (RD)

- Input: an integer $r \in \mathbb{N}$, an $\mathbb{F}_{q^{m}}$-basis $G \in \mathbb{F}_{q^{m}}^{k \times n}$ of a subspace $\mathscr{C} \subset \mathbb{F}_{q^{m}}^{n}$, and a vector $y \in \mathbb{F}_{q^{m}}^{n}$ such that $d(y, \mathscr{C}) \leq r$.

Algebraic

- Output: $\boldsymbol{e} \in \mathbb{F}_{q^{m}}^{n}$ such that

$$
y=x G+e \text { and } \operatorname{Rank}(e) \leq r .
$$

Syndrome formulation ${ }^{1}$
Given $s \in \mathbb{F}_{q^{m}}^{n-k}$ and $H \in \mathbb{F}_{q^{m}}^{(n-k) \times n}$, find $\boldsymbol{e} \in \mathbb{F}_{q^{m}}^{n}$ such that

$$
s=e \boldsymbol{H}^{\top} \text { and } \operatorname{Rank}(e) \leq r
$$

${ }^{1} \boldsymbol{s}=\boldsymbol{y} \boldsymbol{H}^{\top}, \boldsymbol{y}$ one solution of $\boldsymbol{y} \boldsymbol{H}^{\top}=\boldsymbol{s}$ without constraints on the weight of \boldsymbol{y}.

The MinRank Problem

Computational MinRank (affine)

- Input: integers $r, m, n \in \mathbb{N}$, and $K=k+1$ matrices $Y, M_{1}, \ldots, M_{k} \in \mathbb{F}_{q}^{m \times n}$
- Output: $\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{F}_{q}$, such that

$$
\operatorname{Rank}\left(Y+\sum_{i=1}^{k} x_{i} M_{i}\right) \leq r
$$

Hardness of MinRank and RD

Hardness of the decoding for \mathbb{F}_{q}-linear matrix codes

- MinRank is an NP-complete problem (Buss, Frandsen, Shallit 1999),
- used to cryptanalyse various multivariate and code-based cryptosystems.
- This is exactly the decoding problem for matrix codes,

Hardness of MinRank and RD

Hardness of the decoding for \mathbb{F}_{q}-linear matrix codes

- MinRank is an NP-complete problem (Buss, Frandsen, Shallit 1999),
- used to cryptanalyse various multivariate and code-based cryptosystems.
- This is exactly the decoding problem for matrix codes,

Hardness of the decoding for $\mathbb{F}_{q^{m-l i n e a r ~ c o d e s ~}}$

- RD is not "a priori" NP-hard.
- DP (Decoding problem, Hamming metric) $\leq_{\text {randomized }}$ RD $\left(m>n^{2}\right)$ [GZ16]
- RD \leq MinRank [FLP08].

The Rank Support Learning Problem (RSL) [Gab+16]

Generalization of RD to multiple syndromes with the same support.
Rank Support Learning Problem (RSL)

- Input:
- an integer $r \in \mathbb{N}$,
- an $\mathbb{F}_{q^{m}}$-basis $G \in \mathbb{F}_{q^{m}}^{k \times n}$ of a subspace $\mathscr{C} \subset \mathbb{F}_{q^{m}}^{n}$,
- a set of syndromes $\boldsymbol{s}_{i}=\boldsymbol{e}_{i} \boldsymbol{H}^{\top} \in \mathbb{F}_{\boldsymbol{q}^{m}}^{n}(1 \leq i \leq \ell)$ such that the errors $\boldsymbol{e}_{\boldsymbol{i}}$ share the same support $\mathscr{V}=\left\langle e_{i, j}\right\rangle_{\mathbb{F}_{q}}$ of dimension r,
- Output: The secret subspace \mathscr{V}.

The Rank Support Learning Problem (RSL) [Gab+16]

Generalization of RD to multiple syndromes with the same support.
Rank Support Learning Problem (RSL)

- Input:
- an integer $r \in \mathbb{N}$,
- an $\mathbb{F}_{q^{m} \text {-basis }} G \in \mathbb{F}_{q^{m}}^{k \times n}$ of a subspace $\mathscr{C} \subset \mathbb{F}_{q^{m}}^{n}$,
- a set of syndromes $\boldsymbol{s}_{i}=\boldsymbol{e}_{i} \boldsymbol{H}^{\top} \in \mathbb{F}_{q^{m}}^{n}(1 \leq i \leq \ell)$ such that the errors \boldsymbol{e}_{i} share the same support $\mathscr{V}=\left\langle e_{i, j}\right\rangle_{\mathbb{F}_{q}}$ of dimension r,
- Output: The secret subspace \mathscr{V}.

Hardness of RSL

- RSL \leq RD.

Code-Based cryptography

First rank-metric code-based cryptosystem

- GPT cryptosystem based on Gabidulin codes (Eurocrypt'91, [GPT91]),
- broken by the Overbeck attack [Ove05],

Recent proposals

- ROLLO: Analogue of the NTRU cryptosystem, secret Ideal LRPC codes ([Ara+19b], NIST ROUND-2),
- RQC: RD for Ideal codes, LWE structure, public Gabidulin code + random ideal code ([Agu+20], NIST ROUND-2)
- family of rank metric trapdoor functions: RSL, trapdoor based on secret LRPC code ([Bur+23])

Code-Based cryptography

Signature schemes (authentication protocoles)

- Durandal (Eurocrypt'19): RSL + Ideal structure.
- RYDE (NIST signature submission): RD.
- MIRA and MiRitH (NIST signature submission): MinRank.

Complexity of solving RD, MinRank, RSL

How can we solve those problems?

- Algebraic approach: solve an algebraic system.
\rightarrow how to estimate the complexity?

Complexity of solving RD, MinRank, RSL

How can we solve those problems?

- Combinatorial approach: try "all possible solutions" efficiently; \rightarrow the complexity is easy to estimate.
- Algebraic approach: solve an algebraic system. \rightarrow how to estimate the complexity?

Hybrid approach

- Reduce the resolution of one big instance to the resolution of smaller instances.
- Works for any approach, any algorithm.
- Efficient if the small instances are easier.
- cf [BFP09; Bar+23]

Algebraic Modeling

Principle: write a Polynomial System

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right.
$$

such that finding the set of solutions

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{K}}^{n}: f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \forall i \in\{1 . . m\}\right\}
$$

gives (part of) the secret.
Ideally: any solution is related to the secret!

Algebraic Modeling

Principle: write a Polynomial System

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right.
$$

such that finding the set of solutions

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{K}}^{n}: f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \forall i \in\{1 . . m\}\right\}
$$

gives (part of) the secret.
Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions.

Algebraic Modeling

Principle: write a Polynomial System

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

such that finding the set of solutions

$$
V\left(f_{1}, \ldots, f_{m}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \overline{\mathbb{K}}^{n}: f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \forall i \in\{1 . . m\}\right\}
$$

gives (part of) the secret.
Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions.
- Solutions in \mathbb{F}_{q} : algebraic constraint! add the field equations $x_{i}^{q}-x_{i}$.

Algebraic Modeling

Solving the algebraic system using Gröbner bases (object)

- A particular basis of the ideal

$$
I\left(f_{1}, \ldots, f_{m}\right)=\left\langle f_{1}, \ldots, f_{m}\right\rangle
$$

that solves the ideal-membership problem.

- Depends on the choice of a monomial ordering.

Algebraic Modeling

Solving the algebraic system using Gröbner bases (object)

- A particular basis of the ideal

$$
I\left(f_{1}, \ldots, f_{m}\right)=\left\langle f_{1}, \ldots, f_{m}\right\rangle
$$

that solves the ideal-membership problem.

- Depends on the choice of a monomial ordering.

A hard problem

- Ideal Membership testing is EXPSPACE-complete,
- Existence of solutions to a system of polynomial equations over a finite field is NP-complete ([FY79]),

Monomial ordering examples

Lexicographical ordering $x_{1}>\cdots>x_{n}$

$$
x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \text { iff }\left\{\begin{array}{l}
\alpha_{j}=\beta_{j} \\
\alpha_{i}>\beta_{i} .
\end{array} \quad \forall j<i,\right.
$$

Graded Reverse Lexicographical ordering $x_{1}>\cdots>x_{n}$

$$
x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}} \text { iff }\left\{\begin{array}{l}
\alpha_{j}=\beta_{j} \\
\alpha_{i}<\beta_{i}
\end{array} \quad \forall j>i\right.
$$

Elimination Ordering $x>y$

$$
\mathrm{x}^{\alpha} \mathrm{y}^{\beta}>\mathrm{x}^{\alpha^{\prime}} \mathrm{y}^{\beta^{\prime}} \text { iff }\left\{\begin{array}{l}
\alpha>_{1} \alpha^{\prime} \\
\text { or } \alpha=\alpha^{\prime} \text { and } \beta>_{2} \beta^{\prime}
\end{array}\right.
$$

Properties of monomial orderings

Different monomial orderings have different properties

- the lex order (Lexicographical): in Shape Position, for a zero-dimension ideal, the lex basis is

$$
\left\{\begin{array}{c}
x_{1}-g_{1}\left(x_{n}\right) \\
\vdots \\
x_{n-1}-g_{n-1}\left(x_{n}\right), \\
g_{n}\left(x_{n}\right)
\end{array}\right.
$$

with $\operatorname{deg}\left(g_{n}\right)=D$ the number of solutions to the system.

- the grevlex order (Graded Reverse Lexicographical): usually the best one w.r.t. the complexity.
- the elim order (Elimination): two blocks of variables $x>y$.

Systems with 0 or 1 solution

The grevlex and lex bases are the same:

- If the system has 1 solution:

Algebraic
Modeling
where $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ is the solution.

- If the system has no solution:

Change of ordering FGLM for zero-dimensional systems

- The FGLM ([Fau+93]) Algorithm performs a change of ordering in complexity

$$
O\left(n D^{3}\right)
$$

Rank metric
Algebraic Modeling
n number of variables, $n \rightarrow \infty, D$ degree of the ideal (number of solutions).

Change of ordering FGLM for zero-dimensional systems

- The FGLM ([Fau+93]) Algorithm performs a change of ordering in

Rank metric

$$
O\left(n D^{3}\right)
$$

n number of variables, $n \rightarrow \infty, D$ degree of the ideal (number of solutions).

- Complexity for grevlex to lex (Shape position) ([Fau+14]):

$$
O\left(\log _{2}(D)\left(D^{\omega}+n \log _{2}(D) D\right)\right)
$$

Change of ordering FGLM for zero-dimensional systems

- The FGLM ([Fau+93]) Algorithm performs a change of ordering in complexity

$$
O\left(n D^{3}\right)
$$

n number of variables, $n \rightarrow \infty, D$ degree of the ideal (number of solutions).

- Complexity for grevlex to lex (Shape position) ([Fau+14]):

$$
O\left(\log _{2}(D)\left(D^{\omega}+n \log _{2}(D) D\right)\right)
$$

- Sparse versions for generic systems grevlex to lex ([FM17]) in

$$
O\left(\sqrt{\frac{6}{n \pi}} D^{2+\frac{n-1}{n}}\right)
$$

Gröbner basis algorithms

General algorithms, for any input system:

- Buchberger ([Buc65]),
- F4 ([Fau99]),
- F5 ([Fau02]).

The algorithms will always terminate and give the Gröbner basis. But the time is hard to predict for any instance (goes from 1 to $d^{2^{n}}$ [MM82], simply exponential for zero-dimensional, grevlex [G84; Laz83]).

Gröbner basis algorithms

General algorithms, for any input system:

- Buchberger ([Buc65]),
- F4 ([Fau99]),
- F5 ([Fau02]).

The algorithms will always terminate and give the Gröbner basis.
But the time is hard to predict for any instance (goes from 1 to $d^{2^{n}}$ [MM82], simply exponential for zero-dimensional, grevlex [G84; Laz83]).

Specific algorithms, for a particular class of systems:
The algorithms will terminate in a predictable time.
The result is not always a Gröbner basis of the system.
For random instances in the specific class, the result is a Gröbner basis.

Generic Complexity analysis

$$
\text { System }\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array} \quad, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, f_{i} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right] .\right.
$$

Tools from computer algebra

$$
t^{\prime}
$$

- Macaulay Matrices (1902): $\left.\mathscr{M}_{d}\left(\left\{f_{1}, \ldots, f_{m}\right\}\right)=\begin{array}{l} \\ \\ \vdots \\ \vdots\end{array}\right)\left(\quad \operatorname{coeff}\left(t f_{i}, t^{\prime}\right)\right)$
- Describes the vector space $\left\langle t f_{i}: \operatorname{deg}\left(t f_{i}\right)=d\right\rangle_{\mathbb{K}}$.
- Lazard (1983): compute a Gb with linear algebra on the Macaulay matrices up to degree D.

Complexity bounds

Linear algebra on the Macaulay matrix of degree D
A Gröbner basis of a system $\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ up to degree D for a graded monomial ordering can be computed in, at most,

$$
O\left(m D\binom{n+D-1}{D}^{\omega}\right) \quad n, m \rightarrow \infty .
$$

Rank metric
Algebraic Modeling
operations.

Complexity bounds

Linear algebra on the Macaulay matrix of degree D
A Gröbner basis of a system $\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ up to degree D for a graded monomial ordering can be computed in, at most,

$$
O\left(m D\binom{n+D-1}{D}^{\omega}\right) \quad n, m \rightarrow \infty
$$

operations.

Main challenges

- Estimate D.
- Identify unnecessary computations to reduce the complexity, e.g. to $O\left(\binom{n+D}{D}^{\omega}\right)$.
- If there are fall degree at degree $<D$, construct a better strategy (algorithm) to take that into account, and estimate its complexity.

Generic Complexity analysis

Known classes of particular systems (not exhaustive)

- regular systems [Mac94],
- determinantal systems [CH94],
- semi-regular systems [BFS04],
- solutions in \mathbb{F}_{2} : boolean semi-regular systems [Bar+05],
- bi-regular bilinear systems [FSS11].

Difference between classes

$$
O\left(m D\binom{n+D-1}{D}^{\omega}\right) \quad n, m \rightarrow \infty .
$$

Rank metric
Algebraic

Examples of quadratic equations:

- $m=n$ regular system: : $D \leq n+1$,
- $m=n+1$ semi-regular system: $D \leq\left\lceil\frac{n+2}{2}\right\rceil$,
- $m=n$ regular bilinear system with $\left\lfloor\frac{n}{2}\right\rfloor$ variables x and $\left\lceil\frac{n}{2}\right\rceil$ variables y : $D \leq\left\lceil\frac{n}{2}\right\rceil$.
- $m=n$ regular over $\mathbb{F}_{2}: D \simeq \frac{n}{11}, O\left(\binom{n}{D}^{\omega}\right)$

Algebraic attack

For each class we know

- relations between rows in the Macaulay matrices = syzygies,
- the rank of the Macaulay matrices for generic systems,

Rank metric

- the maximal degree $D \rightarrow$ complexity estimates,
- a specific Gb algorithm that is more efficient.

Algebraic attack

For each class we know

- relations between rows in the Macaulay matrices = syzygies,
- the maximal degree $D \rightarrow$ complexity estimates,
- a specific Gb algorithm that is more efficient.

If the system is not in a known class

- Identify a generic behavior,
- Identify a specific algorithm to compute the Gb,
- Create a new class!

Algebraic modeling for RD

RD instance: $G \in \mathbb{F}_{q^{m}}^{k \times n}$ public matrix, $y \in \mathbb{F}_{q^{m}}^{n}$ such that $d(y, \mathscr{C}) \leq r, H_{y}$ a

Algebraic modeling for RD

RD instance: $G \in \mathbb{F}_{q^{m}}^{k \times n}$ public matrix, $y \in \mathbb{F}_{q^{m}}^{n}$ such that $d(y, \mathscr{C}) \leq r, H_{y}$ a

Equivalent formulations, different algebraic modeling

- find $e \in \mathbb{F}_{q^{m}}^{n}, x \in \mathbb{F}_{q^{m}}^{k}$ such that $e=x G+y$ and $\operatorname{Rank}(e) \leq r$

Algebraic modeling for RD

RD instance: $G \in \mathbb{F}_{q^{m}}^{k \times n}$ public matrix, $y \in \mathbb{F}_{q^{m}}^{n}$ such that $d(y, \mathscr{C}) \leq r, H_{y}$ a parity-check matrix of the code $\mathscr{C}+\langle\boldsymbol{y}\rangle_{\mathbb{F}_{q^{m}}}$.
Equivalent formulations, different algebraic modeling

- find $e \in \mathbb{F}_{q^{m}}^{n}$ such that $e H_{y}{ }^{\top}=0$ and $\operatorname{Rank}(e) \leq r$

Algebraic modeling for RD

RD instance: $G \in \mathbb{F}_{q^{m}}^{k \times n}$ public matrix, $y \in \mathbb{F}_{q^{m}}^{n}$ such that $d(y, \mathscr{C}) \leq r, H_{y}$ a parity-check matrix of the code $\mathscr{C}+\langle\boldsymbol{y}\rangle_{\mathbb{F}_{q^{m}}}$.
Equivalent formulations, different algebraic modeling

- find $\boldsymbol{e} \in \mathbb{F}_{\boldsymbol{q}^{m}}^{n} \quad$ such that $\boldsymbol{e} \boldsymbol{H}_{y}^{\top}=0$ and $\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{F}_{q^{m}}^{r}$, $\boldsymbol{C} \in \mathbb{F}_{q}^{r \times n}$ such that $\boldsymbol{e}=\left(s_{1}, \ldots, s_{r}\right) \boldsymbol{C}$.

Algebraic modeling for RD

RD instance: $G \in \mathbb{F}_{q^{m}}^{k \times n}$ public matrix, $y \in \mathbb{F}_{q^{m}}^{n}$ such that $d(y, \mathscr{C}) \leq r, H_{y}$ a parity-check matrix of the code $\mathscr{C}+\langle y\rangle_{\mathbb{F}_{q^{m}}}$.
Equivalent formulations, different algebraic modeling

- find $\boldsymbol{e} \in \mathbb{F}_{\boldsymbol{q}^{m}}^{n} \quad$ such that $\boldsymbol{e} \boldsymbol{H}_{y}^{\top}=0$ and $\quad\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{F}_{q^{m}}^{r}$, $\boldsymbol{C} \in \mathbb{F}_{q}^{r \times n}$ such that $\boldsymbol{e}=\left(s_{1}, \ldots, s_{r}\right) \boldsymbol{C}$.
- find $\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{F}_{q^{m}}^{r}$ and $C \in \mathbb{F}_{q}^{r \times n}$ such that $\left(s_{1}, \ldots, s_{r}\right)$ CH $_{y}{ }^{\top}=0$ [OJ02].

Algebraic modeling for RD

RD instance: $G \in \mathbb{F}_{q^{m}}^{k \times n}$ public matrix, $y \in \mathbb{F}_{q^{m}}^{n}$ such that $d(y, \mathscr{C}) \leq r, H_{y}$ a

Equivalent formulations, different algebraic modeling

- find $\boldsymbol{e} \in \mathbb{F}_{\boldsymbol{q}^{m}}^{n} \quad$ such that $\boldsymbol{e} \boldsymbol{H}_{y}^{\top}=0$ and $\quad\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{F}_{q^{m}}^{r}$, $\boldsymbol{C} \in \mathbb{F}_{q}^{r \times n}$ such that $\boldsymbol{e}=\left(s_{1}, \ldots, s_{r}\right) \boldsymbol{C}$.
- find $\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{F}_{q^{m}}^{r}$ and $C \in \mathbb{F}_{q}^{r \times n}$ such that $\left(s_{1}, \ldots, s_{r}\right)$ CH $_{y}{ }^{\top}=0$ [OJ02].
- find $C \in \mathbb{F}_{q}^{r \times n}$ such that $\mathrm{CH}_{y}{ }^{\top}$ has a non-trivial left kernel [Bar+20].

MaxMinors modeling
Algebraic Modeling [Bar+20]

$$
\operatorname{MaxMinors}\left(C H_{y}^{\top}\right)=\left\{P_{J}:=\left|C H_{y}^{\top}\right|_{*, J}: J \subset\{1 . . n-k-1\}, \# J=r\right\} .
$$

- Cauchy-Binet formula: $\operatorname{det}(\boldsymbol{A B})=\Sigma_{T} \operatorname{det}\left(\boldsymbol{A}_{*, T}\right) \operatorname{det}\left(\boldsymbol{B}_{T, *}\right)$.

MaxMinors modeling
Algebraic Modeling [Bar+20]

$$
\operatorname{MaxMinors}\left(C H_{y}^{\top}\right)=\left\{P_{J}:=\left|C H_{y}^{\top}\right|_{*, J}: J \subset\{1 . . n-k-1\}, \# J=r\right\} .
$$

- Cauchy-Binet formula: $\operatorname{det}(\boldsymbol{A B})=\Sigma_{T} \operatorname{det}\left(\boldsymbol{A}_{*, T}\right) \operatorname{det}\left(\boldsymbol{B}_{T, *}\right)$.
- Plücker coordinates $\left(N=\binom{n}{r}-1\right)$: injective map, easy to invert on its image.

$$
p:\left\{\mathscr{W} \subset \mathbb{F}_{q}^{n}: \operatorname{dim}(\mathscr{W})=r\right\} \rightarrow \mathbb{P}^{N}\left(\mathbb{F}_{q}\right)
$$

C generator matrix of $\mathscr{W} \mapsto\left(\left|C_{*, T}\right|\right)_{T \subset\{1 . . n\}, \# T=r}$

MaxMinors modeling

Algebraic Modeling [Bar+20]
Rank metric
Algebraic Modeling
$\operatorname{MaxMinors}\left(C H_{y}^{\top}\right)=\left\{P_{J}:=\left|C H_{y}^{\top}\right|_{*, J}: J \subset\{1 . . n-k-1\}, \# J=r\right\}$.

Analysis of the system
$-\binom{n}{r}$ variables $c_{T}=|C|_{*, T}, T \subset\{1 . . n\}, \# T=r$

- $\binom{n-k-1}{r}$ linear equations $P_{J}=0$ with coefficients in $\mathbb{F}_{q^{m}}$,

MaxMinors modeling

Algebraic Modeling [Bar+20]
Rank metric
Algebraic Modeling
$\operatorname{MaxMinors}\left(C H_{y}^{\top}\right)=\left\{P_{J}:=\left|C H_{y}^{\top}\right|_{*, J}: J \subset\{1 . . n-k-1\}, \# J=r\right\}$.

Analysis of the system
$-\binom{n}{r}$ variables $c_{T}=|C|_{*, T}, T \subset\{1 . . n\}, \# T=r$

- $\binom{n-k-1}{r}$ linear equations $P_{J}=0$ with coefficients in $\mathbb{F}_{q^{m}}$,
- m times more equations over \mathbb{F}_{q}.

Complexity of solving the MaxMinors modeling

 possible" \rightarrow independence assumption.
Complexity of solving the MaxMinors modeling

Solving in the Overdetermined case
If $m\binom{n-k-1}{r} \geq\binom{ n}{r}-1$ and the equations over \mathbb{F}_{q} are "as linearly independent as possible" \rightarrow independence assumption.

In the Underdetermined case

- Hybrid approach to reduce to the overdetermined case;
- Introduce another set of variables (e.g. x or s).

Non overdetermined cases

$$
e=x G+y=s C
$$

Reduce to smaller problems

- if a positions of e are zero: a linear equations in x, a columns of C are zero \rightarrow reduce to a smaller instance with parameters ($m, n-a, k-a, r$),
- this has a chance $1 / q^{a r}$ to happen.
- Deterministic version if $a+r \leq k$.
- Constraint $m\binom{n-k-1}{r} \geq\binom{ n-a}{r}-1$ will be satisfied for a large enough.

$$
\text { Cost } q^{a r} \mathbb{C}_{R D}(m, n-a, k-a, r)
$$

Non overdetermined cases

$$
e=x G+y=s C
$$

Support Minors modeling over $\mathbb{F}_{q^{m}}[$ Bar+23]

$$
\left\{Q_{I} \stackrel{\text { def }}{=}\left|\binom{x G+y}{C}\right|_{*, I}: I \subset\{1 . . n\}, \# I=r+1\right\}
$$

- $\binom{n}{r}$ variables $c_{T} \in \mathbb{F}_{q}, k$ variables $x_{1}, \ldots, x_{k} \in \mathbb{F}_{q^{m}}$,
- $\binom{n}{r+1}$ equations $Q_{I}=0$ for $I \subset\{1 . . n\}$, $\# I=r+1$, viewed as affine bilinear equations over $\mathbb{F}_{q^{m}}$ in the x_{i} 's and the c_{T} 's.

Analysis of the Support Minors modeling over $\mathbb{F}_{q^{m}}$

$$
\begin{aligned}
& \mathscr{Q}=\left\{Q_{I} \stackrel{\text { def }}{=}\left|\binom{x G+y}{C}\right|_{*, I}: I \subset\{1 . . n\}, \# I=r+1\right\} \\
& \mathscr{P}=\left\{P_{J} \stackrel{\text { def }}{=}\left|C H_{y}^{\top}\right|_{*, J}: J \subset\{1 . . n-k-1\}, \# J=r\right\} .
\end{aligned}
$$

Rank metric
Algebraic Modeling

$$
\mathscr{Q}_{s}=\left\{Q_{I}: \#(I \cap\{1 . . k+1\})=s\right\}
$$

$$
\mathscr{Q}_{\geq s}=\left\{Q_{I}: \#(I \cap\{1 . . k+1\}) \geq s\right\}
$$

Analysis of the Support Minors modeling over $\mathbb{F}_{q^{m}}$

$$
\begin{aligned}
& \mathscr{Q}=\left\{Q_{I} \stackrel{\text { def }}{=}\left|\binom{x G+y}{C}\right|_{*, I}: I \subset\{1 . . n\}, \# I=r+1\right\} \\
& \mathscr{P}=\left\{P_{J} \stackrel{\text { def }}{=}\left|C H_{y}^{\top}\right|_{*, J}: J \subset\{1 . . n-k-1\}, \# J=r\right\} .
\end{aligned}
$$

$$
\mathscr{D}_{\geq s}=\left\{Q_{I}: \#(I \cap\{1 . . k+1\}) \geq s\right\}
$$

Proposition:

$$
\begin{gathered}
\mathscr{Q}_{0} \subset\left\langle\mathscr{Q}_{\geq 1}\right\rangle_{\mathbb{F}_{q}} \\
\left\langle\mathscr{P}, x_{i} \mathscr{P}: i \in\{1 . . k\}, \mathscr{Q}_{\geq 2}\right\rangle_{\mathbb{F}_{q}}=\left\langle\mathscr{Q}_{1}, \mathscr{Q}_{\geq 2}\right\rangle_{\mathbb{F}_{q}} \\
\mathscr{P}, x_{i} \mathscr{P}: i \in\{1 . . k\}, \mathscr{Q}_{\geq 2} \text { are linearly independent over } \mathbb{F}_{q}
\end{gathered}
$$

Rank metric

$$
\mathscr{Q}_{s}=\left\{Q_{I}: \#(I \cap\{1 . . k+1\})=s\right\},
$$

Hints of Proof

- $\left.\left\lvert\, \begin{array}{c}x G+y \\ C\end{array}\right.\right)\left.H_{y}^{\top}\right|_{*, T}=0+$ Cauchy-Binet formula + systematic form implies
- We introduce a monomial ordering and compare leading terms.
- $\left|\binom{x G+y}{C} \boldsymbol{H}^{\top}\right|_{*, J \cup\{n-k\}}=(-1)^{r} P_{J}+$ Cauchy-Binet formula + systematic form implies that $\mathscr{P} \subset \mathscr{Q}_{1}+\left\langle\mathscr{Q}_{\geq 2}\right\rangle$.
- same idea with another matrix for $x_{i} P_{J}$.

Solving Support Minors over $\mathbb{F}_{q^{m}}$: too many solutions

With the equations $\mathscr{P}+\mathscr{Q}_{\geq 2}$

Rank metric
Algebraic Modeling

- we can describe the vector spaces generated by $\mathscr{Q}_{\geq 2}$ for each bidegree $(b, 1)$ in $\left(x_{i}, c_{T}\right)$,
- the Macaulay matrices always have a rank = \# rows.

Solving Support Minors over $\mathbb{F}_{q^{m}}$: too many solutions

With the equations $\mathscr{P}+\mathscr{Q}_{\geq 2}$

- we can describe the vector spaces generated by $\mathscr{Q}_{\geq 2}$ for each bidegree $(b, 1)$ in $\left(x_{i}, c_{T}\right)$,
- the Macaulay matrices always have a rank = \# rows.

But...

- we can eliminate m times more variables c_{J} by unfolding the P_{j} 's!
- that's $S M-\mathbb{F}_{q^{m}}^{+}=\left\{Q_{I}: I\right\}+\left\{P_{i, J}: i, J\right\}$.
- we analyse the vector spaces generated by the equations in any bidegree $(b, 1)$ in $\boldsymbol{x}_{i}, c_{T} \rightarrow$ syzygies \rightarrow generic complexity.

Complexity of solving $\mathrm{SM}-\mathbb{F}_{q^{m}}^{+}$

$$
\begin{array}{lll}
\mathscr{N}_{b}^{\mathbb{F}_{q}}=\mathscr{N}_{b}^{\mathbb{F}_{q^{m}}}-\mathscr{N}_{b, \text { syz }}^{\mathbb{F}_{q}}, \\
\mathscr{N}_{b}^{\mathbb{F}_{q^{m}}}=\sum_{i=1}^{k}\binom{n-i}{r}\binom{k+b-1-i}{b-1}-\binom{n-k-1}{r}\binom{k+b-1}{b} & (\text { exact) } \tag{exact}\\
\mathscr{N}_{b, s y z}^{\mathbb{F}_{q}}=(m-1) \sum_{i=1}^{b}(-1)^{i+1}\binom{k+b-i-1}{b-i}\binom{n-k-1}{r+i} & \text { (conjecture) } \\
\mathscr{M}_{b}^{\mathbb{F}_{q}}=\binom{k+b-1}{b}\left(\binom{n}{r}-m\binom{n-k-1}{r}\right), & \text { (exact) }
\end{array}
$$

Solving SM- $\mathbb{F}_{q^{m}}^{+}$

We can solve $\mathrm{SM}-\mathbb{F}_{q^{m}}^{+}$by linearization at bidegree $(b, 1)$ whenever
$\mathscr{N}_{b}^{\mathbb{F}_{q}} \geq \mathscr{M}_{b}^{\mathbb{F}_{q}}-1$ with a cost $\mathscr{O}\left(m^{2} \mathscr{N}_{b}^{\mathbb{F}_{q}} \mathscr{M}_{b}^{\mathbb{F}_{q} \omega-1}\right)$ operations in \mathbb{F}_{q}.

Figure: Theoretical $\log _{2}$ complexities \mathbb{C} of $\mathrm{MM}-\mathbb{F}_{q} / \mathrm{SM}-\mathbb{F}_{q^{m}}^{+}$(the best one, hybrid and punctured version) and of the combinatorial attack for RD instances with fixed $(m, n, k)=(31,33,15)$ and various values of $r . d_{\mathrm{RGV}}(m, n, k, q=2)=10$.

Figure: Same parameters as Fig. 1 but with $q=2^{8}$.

Figure: Optimal values of a with $(m, n, k)=(31,33,15)$, for $\mathrm{MM}-\mathbb{F}_{q}$ and $\mathrm{SM}-\mathbb{F}_{q^{m}}^{+}$.

Conclusion

- A powerful tool to solve problems that have an algebraic modeling,
- Design specific algorithms for specific class of systems to be efficient.
- A lot of parameters to choose, how to optimize?
- New modeling: e.g. RD over \mathbb{F}_{q} ?
- Optimize the linear algebra part?
[Agu+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Maxime Bros, Alain Couvreur, Jean-Christophe Deneuville, Philippe Gaborit, Gilles Zémor, and Adrien Hauteville. Rank Quasi Cyclic (RQC). Second Round submission to NIST Post-Quantum Cryptography call. Apr. 2020.
[Ara+19a] N. Aragon, P. Gaborit, A. Hauteville, O. Ruatta, and G. Zémor. "Low Rank Parity Check Codes: New Decoding Algorithms and Application to Cryptography". In: submitted to IEEE IT, preprint available on arXiv. 2019.
[Ara +19b] Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Adrien Hauteville, Olivier Ruatta, Jean-Pierre Tillich, Gilles Zémor, Carlos Aguilar Melchor, Slim Bettaieb, Loïc Bidoux, Magali Bardet, and Ayoub Otmani. ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round submission to the NIST post-quantum cryptography call. NIST Round 2 submission for Post-Quantum Cryptography. Mar. 2019.
[Bar+05] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and
Bo-Yin Yang. "Asymptotic expansion of the degree of regularity for semi-regular systems of equations". In: MEGA'05 - Effective Methods in Algebraic Geometry. 2005, pp. 1-14.
[Bar+20] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. "Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems". In: ASIACRYPT. 2020.
[Bar+23] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, and Jean-Pierre Tillich. "Revisiting Algebraic Attacks on MinRank and on the Rank Decoding Problem". In: Designs, Codes and Cryptography 91 (2023), pp. 3671-3707.
[BFP09] Luk Bettale, Jean-Charles Faugere, and Ludovic Perret. "Hybrid approach for solving multivariate systems over finite fields". In: Journal of Mathematical Cryptology 3.3 (2009), pp. 177-197.
[Buc65] Bruno Buchberger. "Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal". PhD thesis. Universitat Innsbruck, 1965.
[Bur+23] Étienne Burle, Philippe Gaborit, Younes Hatri, and Ayoub Otmani. Injective Rank Metric Trapdoor Functions with Homogeneous Errors. 2023. arXiv: 2310.08962 [cs.CR].
[CH94] Aldo Conca and Jurgen Herzog. "On the Hilbert function of determinantal rings and their canonical module". In: Proc. Amer. Math. Soc 122 (1994), pp. 677-681. Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. "On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations". In: Proceedings of the International Conference on Polynomial System Solving. 2004, pp. 71-74.
[Del78] Philippe Delsarte. "Bilinear Forms over a Finite Field, with Applications to Coding Theory". In: J. Comb. Theory, Ser. A 25.3(1978), pp. 226-241.
[Fau+14] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. "Sub-Cubic Change of Ordering for GröBner Basis: A Probabilistic Approach". In: ISSAC. 2014.
[Fau+93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. "Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering". In: JSC (1993).
[Fau02] Jean-Charles Faugère. "A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero: F5". In: Proceedings ISSAC'02. ACM press, 2002, pp. 75-83.
[Fau99] Jean-Charles Faugère. "A New Efficient Algorithm for Computing Gröbner Bases (F4)". In: J. Pure Appl. Algebra 139.1-3 (1999), pp. 61-88.
[FLP08] Jean-Charles Faugère, Françoise Levy-dit-Vehel, and Ludovic Perret. "Cryptanalysis of Minrank". In: Advances in Cryptology CRYPTO 2008. Ed. by David Wagner. Vol. 5157. LNCS. 2008, pp. 280-296.
[FM17] Jean-Charles Faugère and Chenqi Mou. "Sparse FGLM algorithms". In: JSC (2017).
[FSS11] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer. "Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): Algorithms and complexity". In: J. Symbolic Comput. 46.4 (2011), pp. 406-437.
[Gab+16] Philippe Gaborit, Adrien Hauteville, Duong Hieu Phan, and Jean-Pierre Tillich. Identity-based Encryption from Rank Metric. IACR Cryptology ePrint Archive, Report2017/623. http://eprint.iacr.org/. May 2016.
[Gab85] Ernst M. Gabidulin. "Theory of codes with maximum rank distance". In: Problemy Peredachi Informatsii 21.1 (1985), pp. 3-16.
[GPT91] Ernst M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. "Ideals over a non-commutative ring and their applications to cryptography". In: Advances in Cryptology - EUROCRYPT'91. LNCS 547. Brighton, Apr. 1991, pp. 482-489.
[GZ16] Philippe Gaborit and Gilles Zémor. "On the hardness of the decoding and the minimum distance problems for rank codes". In: IEEE Trans. Inform. Theory 62(12) (2016), pp. 7245-7252.
[Laz83] D. Lazard. "Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations". In: Computer algebra. 1983.
[Mac94] Francis Sowerby Macaulay. The algebraic theory of modular systems. Vol. 19. Cambridge University Press, 1994.
[OJ02] Alexei V. Ourivski and Thomas Johansson. "New Technique for Decoding Codes in the Rank Metric and Its Cryptography Applications". English. In: Problems of Information Transmission 38.3 (2002), pp. 237-246.
[Ove05] Raphael Overbeck. "A New Structural Attack for GPT and Variants". In: Mycrypt. Vol. 3715. LNCS. 2005, pp. 50-63.

