Algebraic attacks for the Rank Decoding Problem

Magali Bardet

LITIS, University of Rouen Normandie, France magali.bardet@univ-rouen.fr

> OpeRa 2024, February 14th, 2024

Algebraic Decoding

Magali Bardet

Algebraic Aodeling RD

NIST call for proposals

Post-Quantum Cryptography standardization process

- ► KEM + Signature.
- ▶ 4 Rounds since 2017.
- 1 KEM + 3 Signatures selected for standardization in 2022, based on Lattices and Hash functions.
- 3 code-based KEMs in the 4th Round.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

NIST call for proposals

Post-Quantum Cryptography standardization process

- KEM + Signature.
- ▶ 4 Rounds since 2017.
- 1 KEM + 3 Signatures selected for standardization in 2022, based on Lattices and Hash functions.
- 3 code-based KEMs in the 4th Round.

Additional Digital Signature Schemes

- ▶ June 1, 2023. First Round ongoing.
- 40 submissions.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Post-quantum cryptography

Rank metric Code-based cryptography

► Various proposals : KEM, PKE, signatures.

Interesting underlying (hard) problems

- MinRank,
- ► Rank Decoding RD,
- ► Rank Support Learning RSL.

 \Rightarrow Algebraic cryptanalysis of these problems? Complexity?

Magali Bardet

Rank metric

Algebraic Modeling

RD

Rank metric [Del78]

General Linear code

- ▶ A linear subspace $\mathscr{C} = \{ \mathbf{x} \mathbf{G} : \mathbf{x} \in \mathbb{F}_q^K \} \subset \mathbb{F}_q^N$, dimension K, \mathbb{F}_q finite field.
- Generator matrix **G** of rank K in $\mathbb{F}_q^{K \times N}$.
- ▶ Parity-check matrix **H** of rank N K, $GH^{\top} = 0$.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Rank metric [Del78]

General Linear code

- ▶ A linear subspace $\mathscr{C} = \{ \mathbf{x} \mathbf{G} : \mathbf{x} \in \mathbb{F}_q^K \} \subset \mathbb{F}_q^N$, dimension K, \mathbb{F}_q finite field.
- Generator matrix **G** of rank K in $\mathbb{F}_q^{K \times N}$.
- Parity-check matrix **H** of rank N K, $GH^{\top} = 0$.
- Hamming distance $d(\boldsymbol{c}, \boldsymbol{c}') = \#\{i : c_i \neq c'_i\}$.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Rank metric [Del78]

General Linear code

- ▶ A linear subspace $\mathscr{C} = \{ \mathbf{x} \mathbf{G} : \mathbf{x} \in \mathbb{F}_q^K \} \subset \mathbb{F}_q^N$, dimension K, \mathbb{F}_q finite field.
- Generator matrix **G** of rank K in $\mathbb{F}_q^{K \times N}$.
- Parity-check matrix **H** of rank N K, $GH^{\top} = 0$.
- Hamming distance $d(\boldsymbol{c}, \boldsymbol{c}') = \#\{i : c_i \neq c'_i\}$.

Rank metric and Matrix codes over \mathbb{F}_q^{mn} when N = mn

• A word
$$\mathbf{x} = (x_1, \dots, x_{mn}) \in \mathbb{F}_q^{mn}$$
 is viewed as a (column) matrix
 $\mathbf{X} = \begin{pmatrix} x_1 & \dots & x_{m(n-1)+1} \\ x_2 & \vdots & \vdots \\ x_m & \dots & x_{mn} \end{pmatrix} \in \mathbb{F}_q^{m \times n}.$

▶ The rank distance d(X, Y) = Rank(Y - X).

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling RD

Matrix codes and Rank distance

Example 1

•
$$\mathbf{x} = (1,0,1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,0,0,1) \in \mathbb{F}_2^{20}.$$

• $Mat(\mathbf{x}) = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \in \mathbb{F}_2^{4 \times 5}$

The weight of x is 3.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Rank metric [Gab85]

Equivalent definition for Matrix codes over $\mathbb{F}_q^{nm} \leftrightarrow \mathbb{F}_{q^m}^n$

- ▶ Finite field \mathbb{F}_q , extension \mathbb{F}_{q^m} , basis $\beta = (\beta_1, \dots, \beta_m)$ as an \mathbb{F}_q -vector space.
- ► Correspondence $\mathbf{x} \in \mathbb{F}_{q^m}^n \leftrightarrow Mat(\mathbf{x}) \in \mathbb{F}_q^{m \times n}$, $\mathbf{x} = \beta Mat(\mathbf{x})$.
- ▶ Rank weight $|\mathbf{x}| = \text{Rank}(\text{Mat}(\mathbf{x})) = \dim(\langle x_1, \dots, x_n \rangle_{\mathbb{F}_q})$, support.

Magali Bardet

Rank metric

Algebraic Modeling

RD

Rank metric [Gab85]

Equivalent definition for Matrix codes over $\mathbb{F}_q^{nm} \leftrightarrow \mathbb{F}_{q^m}^n$

- ▶ Finite field \mathbb{F}_q , extension \mathbb{F}_{q^m} , basis $\beta = (\beta_1, \dots, \beta_m)$ as an \mathbb{F}_q -vector space.
- ► Correspondence $\mathbf{x} \in \mathbb{F}_{q^m}^n \leftrightarrow Mat(\mathbf{x}) \in \mathbb{F}_q^{m \times n}$, $\mathbf{x} = \beta Mat(\mathbf{x})$.
- ▶ Rank weight $|\mathbf{x}| = \text{Rank}(\text{Mat}(\mathbf{x})) = \text{dim}(\langle x_1, \dots, x_n \rangle_{\mathbb{F}_q})$, support.

Example

F₂₄ over F₂, basis
$$(1, \alpha, \alpha^2, \alpha^3)$$
.
 $\mathbf{x} = (1 + \alpha^2, 1 + \alpha, \alpha + \alpha^3, \alpha^2 + \alpha^3, 1 + \alpha^3) \leftrightarrow$
Mat(\mathbf{x}) = $\begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \in \mathbb{F}_2^{4 \times 5}$ and $(1, \alpha, \alpha^2, \alpha^3) \operatorname{Mat}(\mathbf{x}) = \mathbf{x}$.
 $|\mathbf{x}| = 3$, the support of \mathbf{x} is $\mathcal{V} = \langle 1 + \alpha^2, 1 + \alpha, \alpha + \alpha^3 \rangle_{\mathbb{F}_q}$.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

General Matrix codes are \mathbb{F}_q -linear codes (Delsart [Del78]) They are \mathbb{F}_q -linear subspaces of $\mathbb{F}_{q^m}^n = \mathbb{F}_q^{mn} = \mathbb{F}_q^{m \times n}$, endowed with the rank metric.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

General Matrix codes are \mathbb{F}_q -linear codes (Delsart [Del78]) They are \mathbb{F}_q -linear subspaces of $\mathbb{F}_{q^m}^n = \mathbb{F}_q^{mn} = \mathbb{F}_q^{m \times n}$, endowed with the rank metric.

Particular Matrix codes specified as \mathbb{F}_{q^m} -linear codes (Gabidulin [Gab85]) They are \mathbb{F}_{q^m} -linear subspaces of $\mathbb{F}_{q^m}^n$, endowed with the rank metric.

- \mathbb{F}_{q^m} -linear codes are particular matrix codes with a structure,
- ▶ Known families of \mathbb{F}_{q^m} -linear codes with decoding algorithms,
- ▶ F_{q^m}-linear codes have a much shorter description (save a factor m) ⇒ Shorter public keys in cryptography!

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

$\mathbb{F}_{q^m}\text{-linear}$ codes in rank metric: $\mathscr{C}\subset \mathbb{F}_{q^m}^n$ has an additional structure

	$\mathbb{F}_{q^m}^n$ -linear code	Matrix code in \mathbb{F}_q^{nm}
Field	\mathbb{F}_{q^m}	\mathbb{F}_{q}
Length	п	nm
Dimension	k	km
Codeword	$m{x} = (x_1, \dots, x_n) \in \mathbb{F}_{a^m}^n$	matrix $oldsymbol{X} \in \mathbb{F}_{q}^{m imes n}$
Size of a basis	$knm\log(q)$	$k m n m \log(q)$

Magali Bardet

Rank metric

Algebraic Modeling

RD

Examples of \mathbb{F}_{q^m} -linear codes with decoding algorithms

- Gabidulin codes [Gab85] (rank-metric analogue of Reed-Solomon codes),
- Low Rank Parity Check codes [Ara+19a] (rank-metric analogue of MDPC codes)

Magali Bardet

Rank metric

Algebraic Modeling

RD

The Rank Decoding Problem (RD)

Rank Decoding Problem (RD)

- ▶ Input: an integer $r \in \mathbb{N}$, an \mathbb{F}_{q^m} -basis $G \in \mathbb{F}_{q^m}^{k \times n}$ of a subspace $\mathscr{C} \subset \mathbb{F}_{q^m}^n$, and a vector $y \in \mathbb{F}_{q^m}^n$ such that $d(y, \mathscr{C}) \leq r$.
- ▶ Output: $e \in \mathbb{F}_{q^m}^n$ such that

 $y = \mathbf{x}\mathbf{G} + \mathbf{e}$ and $\operatorname{Rank}(\mathbf{e}) \leq r$.

 ${}^{1}s = yH^{\top}$, y one solution of $yH^{\top} = s$ without constraints on the weight of y.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

The Rank Decoding Problem (RD)

Rank Decoding Problem (RD)

- ▶ Input: an integer $r \in \mathbb{N}$, an \mathbb{F}_{q^m} -basis $G \in \mathbb{F}_{q^m}^{k \times n}$ of a subspace $\mathscr{C} \subset \mathbb{F}_{q^m}^n$, and a vector $y \in \mathbb{F}_{q^m}^n$ such that $d(y, \mathscr{C}) \leq r$.
- ▶ Output: $e \in \mathbb{F}_{q^m}^n$ such that

 $y = \mathbf{x}\mathbf{G} + \mathbf{e}$ and $\operatorname{Rank}(\mathbf{e}) \leq r$.

Syndrome formulation¹

Given
$$s \in \mathbb{F}_{q^m}^{n-k}$$
 and $H \in \mathbb{F}_{q^m}^{(n-k) \times n}$, find $e \in \mathbb{F}_{q^m}^n$ such that
 $s = eH^\top$ and $\text{Rank}(e) \leq r$.

 ${}^{1}s = yH^{\top}$, y one solution of $yH^{\top} = s$ without constraints on the weight of y.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Computational MinRank (affine)

- ▶ Input: integers $r, m, n \in \mathbb{N}$, and K = k + 1 matrices $Y, M_1, \ldots, M_k \in \mathbb{F}_q^{m \times n}$
- ▶ Output: $(x_1, \ldots, x_k) \in \mathbb{F}_q$, such that

$$\operatorname{Rank}\left(\boldsymbol{Y}+\sum_{i=1}^{k}\boldsymbol{x}_{i}\boldsymbol{M}_{i}\right)\leq r.$$

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Hardness of MinRank and RD

Hardness of the decoding for $\mathbb{F}_q\text{-linear}$ matrix codes

- MinRank is an NP-complete problem (Buss, Frandsen, Shallit 1999),
- used to cryptanalyse various multivariate and code-based cryptosystems.
- This is exactly the decoding problem for matrix codes,

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Hardness of MinRank and RD

Hardness of the decoding for $\mathbb{F}_q\text{-linear}$ matrix codes

- MinRank is an NP-complete problem (Buss, Frandsen, Shallit 1999),
- used to cryptanalyse various multivariate and code-based cryptosystems.
- This is exactly the decoding problem for matrix codes,

Hardness of the decoding for \mathbb{F}_{q^m} -linear codes

- RD is not "a priori" NP-hard.
- ▶ DP (Decoding problem, Hamming metric) $\leq_{randomized}$ RD $(m > n^2)$ [GZ16]
- ▶ $RD \leq MinRank$ [FLP08].

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

The Rank Support Learning Problem (RSL) [Gab+16]

Generalization of RD to multiple syndromes with the same support.

```
Rank Support Learning Problem (RSL)
```

- Input:
 - ▶ an integer $r \in \mathbb{N}$,
 - ▶ an \mathbb{F}_{q^m} -basis $G \in \mathbb{F}_{q^m}^{k \times n}$ of a subspace $\mathscr{C} \subset \mathbb{F}_{q^m}^n$,
 - ▶ a set of syndromes $s_i = e_i H^\top \in \mathbb{F}_{q^m}^n$ $(1 \le i \le \ell)$ such that the errors e_i share the same support $\mathscr{V} = \langle e_{i,j} \rangle_{\mathbb{F}_q}$ of dimension r,
- Output: The secret subspace \mathscr{V} .

Algebraic Decoding

Magali Bardet

Rank metric Algebraic Modeling

RD

The Rank Support Learning Problem (RSL) [Gab+16]

Generalization of RD to multiple syndromes with the same support.

```
Rank Support Learning Problem (RSL)
```

- Input:
 - ▶ an integer $r \in \mathbb{N}$,
 - ▶ an \mathbb{F}_{q^m} -basis $G \in \mathbb{F}_{q^m}^{k \times n}$ of a subspace $\mathscr{C} \subset \mathbb{F}_{q^m}^n$,
 - ▶ a set of syndromes $s_i = e_i H^\top \in \mathbb{F}_{q^m}^n$ $(1 \le i \le \ell)$ such that the errors e_i share the same support $\mathscr{V} = \langle e_{i,j} \rangle_{\mathbb{F}_q}$ of dimension r,
- ▶ Output: The secret subspace \mathscr{V} .

Hardness of RSL

▶ $\mathsf{RSL} \leq \mathsf{RD}.$

Algebraic Decoding

Magali Bardet

lgebraic Iodeling

Rank metric

Code-Based cryptography

First rank-metric code-based cryptosystem

- GPT cryptosystem based on Gabidulin codes (Eurocrypt'91, [GPT91]),
- broken by the Overbeck attack [Ove05],

Recent proposals

- ROLLO: Analogue of the NTRU cryptosystem, secret Ideal LRPC codes ([Ara+19b], NIST ROUND-2),
- RQC: RD for Ideal codes, LWE structure, public Gabidulin code + random ideal code ([Agu+20], NIST ROUND-2)
- family of rank metric trapdoor functions: RSL, trapdoor based on secret LRPC code ([Bur+23])

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

Signature schemes (authentication protocoles)

- Durandal (Eurocrypt'19): RSL + Ideal structure.
- RYDE (NIST signature submission): RD.
- MIRA and MiRitH (NIST signature submission): MinRank.

Algebraic Decoding Magali Bardet

Rank metric

15 / 11

Complexity of solving RD, MinRank, RSL

How can we solve those problems?

► Combinatorial approach: try "all possible solutions" efficiently; → the complexity is easy to estimate.

► Algebraic approach: solve an algebraic system.

 \rightarrow how to estimate the complexity?

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Complexity of solving RD, MinRank, RSL

How can we solve those problems?

► Combinatorial approach: try "all possible solutions" efficiently; → the complexity is easy to estimate.

► Algebraic approach: solve an algebraic system.

 \rightarrow how to estimate the complexity?

Hybrid approach

- Reduce the resolution of one big instance to the resolution of smaller instances.
- ▶ Works for any approach, any algorithm.
- Efficient if the small instances are easier.
- ▶ cf [BFP09; Bar+23]

Magali Bardet

Rank metric

Algebraic Modeling

Principle: write a Polynomial System

$$\begin{cases} f_1(x_1,\ldots,x_n) \\ \vdots \\ f_m(x_1,\ldots,x_n) \end{cases}, \quad \deg(f_i) = d_i, f_i \in \mathbb{K}[x_1,\ldots,x_n]. \end{cases}$$

such that finding the set of solutions

$$V(f_1,\ldots,f_m) = \left\{ (x_1,\ldots,x_n) \in \overline{\mathbb{K}}^n : f_i(x_1,\ldots,x_n) = 0, \forall i \in \{1..m\} \right\}$$

gives (part of) the secret.

Ideally: any solution is related to the secret!

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Principle: write a Polynomial System

$$\begin{cases} f_1(x_1,\ldots,x_n) \\ \vdots \\ f_m(x_1,\ldots,x_n) \end{cases}, \quad \deg(f_i) = d_i, f_i \in \mathbb{K}[x_1,\ldots,x_n]. \end{cases}$$

such that finding the set of solutions

$$V(f_1,\ldots,f_m) = \left\{ (x_1,\ldots,x_n) \in \overline{\mathbb{K}}^n : f_i(x_1,\ldots,x_n) = 0, \forall i \in \{1..m\} \right\}$$

gives (part of) the secret.

Ideally: any solution is related to the secret!

Otherwise, we have to deal with spurious solutions.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Principle: write a Polynomial System

$$\begin{cases} f_1(x_1,\ldots,x_n) \\ \vdots \\ f_m(x_1,\ldots,x_n) \end{cases}, \quad \deg(f_i) = d_i, f_i \in \mathbb{K}[x_1,\ldots,x_n]. \end{cases}$$

such that finding the set of solutions

$$V(f_1,\ldots,f_m) = \left\{ (x_1,\ldots,x_n) \in \overline{\mathbb{K}}^n : f_i(x_1,\ldots,x_n) = 0, \forall i \in \{1..m\} \right\}$$

gives (part of) the secret.

Ideally: any solution is related to the secret!

- Otherwise, we have to deal with spurious solutions.
- Solutions in \mathbb{F}_q : algebraic constraint! add the field equations $x_i^q x_i$.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Solving the algebraic system using Gröbner bases (object)

A particular basis of the ideal

$$I(f_1,\ldots,f_m) = \langle f_1,\ldots,f_m \rangle$$

that solves the ideal-membership problem.

Depends on the choice of a monomial ordering.

Magali Bardet

Rank metric

Algebraic Modeling

RD

Solving the algebraic system using Gröbner bases (object)

A particular basis of the ideal

$$I(f_1,\ldots,f_m) = \langle f_1,\ldots,f_m \rangle$$

that solves the ideal-membership problem.

Depends on the choice of a monomial ordering.

A hard problem

- Ideal Membership testing is EXPSPACE-complete,
- Existence of solutions to a system of polynomial equations over a finite field is NP-complete ([FY79]),

Magali Bardet

Rank metric

Algebraic Modeling

RD

Monomial ordering examples

Lexicographical ordering $x_1 > \cdots > x_n$ $x_1^{\alpha_1} \dots x_n^{\alpha_n} > x_1^{\beta_1} \dots x_n^{\beta_n}$ iff $\begin{cases} \alpha_j = \beta_j & \forall j < i, \\ \alpha_i > \beta_i. \end{cases}$

Graded Reverse Lexicographical ordering $x_1 > \cdots > x_n$

$$x_1^{lpha_1} \dots x_n^{lpha_n} > x_1^{eta_1} \dots x_n^{eta_n} ext{ iff } \begin{cases} lpha_j = eta_j & orall j > i, \ lpha_i < eta_i. \end{cases}$$

Elimination Ordering x > y

$$\mathsf{x}^{\alpha}\mathsf{y}^{\beta} > \mathsf{x}^{\alpha'}\mathsf{y}^{\beta'} \text{ iff } \begin{cases} \alpha >_1 \alpha' \\ \text{or } \alpha = \alpha' \text{ and } \beta >_2 \beta'. \end{cases}$$

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Properties of monomial orderings

Different monomial orderings have different properties

the *lex* order (Lexicographical): in Shape Position, for a zero-dimension ideal, the lex basis is

$$\begin{cases} x_1 - g_1(x_n), \\ \vdots \\ x_{n-1} - g_{n-1}(x_n) \\ g_n(x_n), \end{cases}$$

with $deg(g_n) = D$ the number of solutions to the system.

- the grevlex order (Graded Reverse Lexicographical): usually the best one w.r.t. the complexity.
- ▶ the *elim* order (Elimination): two blocks of variables x > y.

Magali Bardet

Rank metric

Algebraic Modeling

RD

Systems with 0 or 1 solution

The grevlex and lex bases are the same:

► If the system has 1 solution:

$$\begin{cases} x_1 - a_1, \\ \vdots \\ x_n - a_n, \end{cases}$$

where (a₁,..., a_n) ∈ 𝔽ⁿ_q is the solution.
If the system has no solution: (1).

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Change of ordering FGLM for zero-dimensional systems

 The FGLM ([Fau+93]) Algorithm performs a change of ordering in complexity

 $O(nD^3),$

n number of variables, $n \rightarrow \infty$, *D* degree of the ideal (number of solutions).

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Change of ordering FGLM for zero-dimensional systems

 The FGLM ([Fau+93]) Algorithm performs a change of ordering in complexity

$O(nD^3),$

n number of variables, $n \rightarrow \infty$, *D* degree of the ideal (number of solutions).

Complexity for grevlex to lex (Shape position) ([Fau+14]):

 $O(\log_2(D)(D^{\omega}+n\log_2(D)D)).$

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Change of ordering FGLM for zero-dimensional systems

 The FGLM ([Fau+93]) Algorithm performs a change of ordering in complexity

$O(nD^3),$

n number of variables, $n \rightarrow \infty$, *D* degree of the ideal (number of solutions).

Complexity for grevlex to lex (Shape position) ([Fau+14]):

 $O(\log_2(D)(D^{\omega}+n\log_2(D)D)).$

Sparse versions for generic systems grevlex to lex ([FM17]) in

$$O\left(\sqrt{\frac{6}{n\pi}}D^{2+\frac{n-1}{n}}\right)$$

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD
Gröbner basis algorithms

General algorithms, for any input system:

- Buchberger ([Buc65]),
- ▶ F4 ([Fau99]),
- ► F5 ([Fau02]).

The algorithms will always terminate and give the Gröbner basis. But the time is hard to predict for *any* instance (goes from 1 to d^{2^n} [MM82], simply exponential for zero-dimensional, grevlex [G84; Laz83]). Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Gröbner basis algorithms

General algorithms, for any input system:

- Buchberger ([Buc65]),
- ► F4 ([Fau99]),
- ► F5 ([Fau02]).

The algorithms will always terminate and give the Gröbner basis. But the time is hard to predict for *any* instance (goes from 1 to d^{2^n} [MM82], simply exponential for zero-dimensional, grevlex [G84; Laz83]).

Specific algorithms, for a particular class of systems:

The algorithms will terminate in a predictable time. The result is not always a Gröbner basis of the system. For random instances in the specific class, the result is a Gröbner basis. Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Generic Complexity analysis

.

System
$$\begin{cases} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{cases}, \quad \deg(f_i) = d_i, f_i \in \mathbb{K}[x_1, \dots, x_n]. \end{cases}$$

Tools from computer algebra

Macaulay Matrices (1902):
$$\mathcal{M}_d(\{f_1, \dots, f_m\}) = \begin{pmatrix} t' \\ (t, i) \end{pmatrix}$$

- Describes the vector space $\langle tf_i : \deg(tf_i) = d \rangle_{\mathbb{K}}$.
- Lazard (1983): compute a Gb with linear algebra on the Macaulay matrices up to degree D.

Magali Bardet

Rank metric

Algebraic Modeling

RD

. 1

Complexity bounds

Linear algebra on the Macaulay matrix of degree D

A Gröbner basis of a system $(f_1, \ldots, f_m) \in \mathbb{K}[x_1, \ldots, x_n]$ up to degree D for a graded monomial ordering can be computed in, at most,

$$O\left(mD\binom{n+D-1}{D}^{\omega}
ight) \qquad n,m o \infty.$$

operations.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Complexity bounds

Linear algebra on the Macaulay matrix of degree D

A Gröbner basis of a system $(f_1, \ldots, f_m) \in \mathbb{K}[x_1, \ldots, x_n]$ up to degree D for a graded monomial ordering can be computed in, at most,

$$O\left(mD\binom{n+D-1}{D}^{\omega}\right) \qquad n,m \to \infty.$$

operations.

Main challenges

- Estimate D.
- Identify unnecessary computations to reduce the complexity, e.g. to $O\left(\binom{n+D}{D}^{\omega}\right)$.
- If there are fall degree at degree < D, construct a better strategy (algorithm) to take that into account, and estimate its complexity.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Known classes of particular systems (not exhaustive)

- regular systems [Mac94],
- determinantal systems [CH94],
- semi-regular systems [BFS04],
- ▶ solutions in \mathbb{F}_2 : **boolean semi-regular** systems [Bar+05],
- **bi-regular bilinear** systems [FSS11].

Magali Bardet

Rank metric

Algebraic Modeling

RD

Difference between classes

$$O\left(mD\binom{n+D-1}{D}^{\omega}\right) \qquad n,m \to \infty.$$

Examples of quadratic equations:

- m = n regular system: $D \le n+1$,
- ▶ m = n + 1 semi-regular system: $D \leq \lceil \frac{n+2}{2} \rceil$,
- m = n regular bilinear system with $\lfloor \frac{n}{2} \rfloor$ variables x and $\lceil \frac{n}{2} \rceil$ variables y: $D \leq \lceil \frac{n}{2} \rceil$.
- m = n regular over \mathbb{F}_2 : $D \simeq \frac{n}{11}$, $O(\binom{n}{D}^{\omega})$

Magali Bardet

Rank metric

Algebraic Modeling

RD

Algebraic attack

For each class we know

- relations between rows in the Macaulay matrices = syzygies,
- the rank of the Macaulay matrices for generic systems,
- the maximal degree $D \rightarrow$ complexity estimates,
- ▶ a specific Gb algorithm that is more efficient.

Magali Bardet

Rank metric

Algebraic Modeling

RD

Algebraic attack

For each class we know

- relations between rows in the Macaulay matrices = syzygies,
- the rank of the Macaulay matrices for generic systems,
- the maximal degree $D \rightarrow$ complexity estimates,
- ▶ a specific Gb algorithm that is more efficient.

If the system is not in a known class

- Identify a generic behavior,
- Identify a specific algorithm to compute the Gb,
- Create a new class!

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

RD instance: $\boldsymbol{G} \in \mathbb{F}_{q^m}^{k \times n}$ public matrix, $\boldsymbol{y} \in \mathbb{F}_{q^m}^n$ such that $d(\boldsymbol{y}, \mathscr{C}) \leq r$, \boldsymbol{H}_y a parity-check matrix of the code $\mathscr{C} + \langle \boldsymbol{y} \rangle_{\mathbb{F}_{q^m}}$.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

RD instance: $\boldsymbol{G} \in \mathbb{F}_{q^m}^{k \times n}$ public matrix, $\boldsymbol{y} \in \mathbb{F}_{q^m}^n$ such that $d(\boldsymbol{y}, \mathscr{C}) \leq r$, \boldsymbol{H}_y a parity-check matrix of the code $\mathscr{C} + \langle \boldsymbol{y} \rangle_{\mathbb{F}_{q^m}}$.

Equivalent formulations, different algebraic modeling

▶ find
$$e \in \mathbb{F}_{q^m}^n$$
, $x \in \mathbb{F}_{q^m}^k$ such that $e = x G + y$ and $\text{Rank}(e) \leq r$

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

RD instance: $\boldsymbol{G} \in \mathbb{F}_{q^m}^{k \times n}$ public matrix, $\boldsymbol{y} \in \mathbb{F}_{q^m}^n$ such that $d(\boldsymbol{y}, \mathscr{C}) \leq r$, \boldsymbol{H}_y a parity-check matrix of the code $\mathscr{C} + \langle \boldsymbol{y} \rangle_{\mathbb{F}_{q^m}}$.

Equivalent formulations, different algebraic modeling

▶ find
$$e \in \mathbb{F}_{q^m}^n$$
 such that $eH_y^\top = 0$ and $\operatorname{Rank}(e) \leq r$

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

RD instance: $\boldsymbol{G} \in \mathbb{F}_{q^m}^{k \times n}$ public matrix, $\boldsymbol{y} \in \mathbb{F}_{q^m}^n$ such that $d(\boldsymbol{y}, \mathscr{C}) \leq r$, \boldsymbol{H}_y a parity-check matrix of the code $\mathscr{C} + \langle \boldsymbol{y} \rangle_{\mathbb{F}_{q^m}}$.

Equivalent formulations, different algebraic modeling

▶ find $e \in \mathbb{F}_{q^m}^n$ such that $eH_y^\top = 0$ and $(s_1, ..., s_r) \in \mathbb{F}_{q^m}^r$, $C \in \mathbb{F}_q^{r \times n}$ such that $e = (s_1, ..., s_r)C$.

Algebraic Decoding

Magali Bardet

Rank metric

Modeling

RD

RD instance: $\boldsymbol{G} \in \mathbb{F}_{q^m}^{k \times n}$ public matrix, $\boldsymbol{y} \in \mathbb{F}_{q^m}^n$ such that $d(\boldsymbol{y}, \mathscr{C}) \leq r$, \boldsymbol{H}_y a parity-check matrix of the code $\mathscr{C} + \langle \boldsymbol{y} \rangle_{\mathbb{F}_{q^m}}$.

Equivalent formulations, different algebraic modeling

- ▶ find $e \in \mathbb{F}_{q^m}^n$ such that $eH_y^\top = 0$ and $(s_1, \ldots, s_r) \in \mathbb{F}_{q^m}^r$, $C \in \mathbb{F}_q^{r \times n}$ such that $e = (s_1, \ldots, s_r)C$.
- ▶ find $(s_1, ..., s_r) \in \mathbb{F}_{q^m}^r$ and $C \in \mathbb{F}_q^{r \times n}$ such that $(s_1, ..., s_r) C H_y^{\top} = 0$ [OJ02].

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

RD instance: $\boldsymbol{G} \in \mathbb{F}_{q^m}^{k \times n}$ public matrix, $\boldsymbol{y} \in \mathbb{F}_{q^m}^n$ such that $d(\boldsymbol{y}, \mathscr{C}) \leq r$, \boldsymbol{H}_y a parity-check matrix of the code $\mathscr{C} + \langle \boldsymbol{y} \rangle_{\mathbb{F}_{q^m}}$.

Equivalent formulations, different algebraic modeling

- ▶ find $e \in \mathbb{F}_{q^m}^n$ such that $eH_y^\top = 0$ and $(s_1, ..., s_r) \in \mathbb{F}_{q^m}^r$, $C \in \mathbb{F}_q^{r \times n}$ such that $e = (s_1, ..., s_r)C$.
- Find (s₁,...,s_r) ∈ 𝔽^r_{q^m} and 𝔅 ∈ 𝔅^{r×n}_q such that (s₁,...,s_r)𝔅𝒾^T_y[⊤] = 0 [OJ02].
 Find 𝔅 ∈ 𝔅^{r×n}_q such that 𝔅𝒾^T_y[⊤] has a non-trivial left kernel [Bar+20].

Magali Bardet

Rank metric

Algebraic Modeling

RD

Algebraic Modeling [Bar+20]

MaxMinors(
$$CH_y^{\top}$$
) = $\left\{ P_J := \left| CH_y^{\top} \right|_{*,J} : J \subset \{1..n-k-1\}, \#J = r \right\}.$

• Cauchy-Binet formula: $det(\boldsymbol{AB}) = \sum_{T} det(\boldsymbol{A}_{*,T}) det(\boldsymbol{B}_{T,*}).$

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Algebraic Modeling [Bar+20]

$$\mathsf{MaxMinors}(\mathbf{CH}_{y}^{\top}) = \left\{ P_{J} := \left| \mathbf{CH}_{y}^{\top} \right|_{*,J} : J \subset \{1..n-k-1\}, \#J = r \right\}.$$

- ► Cauchy-Binet formula: $det(AB) = \sum_{T} det(A_{*,T}) det(B_{T,*})$.
- ▶ Plücker coordinates $(N = {n \choose r} 1)$: injective map, easy to invert on its image.

$$p: \{\mathscr{W} \subset \mathbb{F}_q^n : \dim(\mathscr{W}) = r\} \to \mathbb{P}^N(\mathbb{F}_q)$$

C generator matrix of $\mathscr{W} \mapsto (|C_{*,T}|)_{T \subset \{1...n\}, \#T = r}$

Algebraic Decoding

Magali Bardet

Kank metri Algebraic Modeling

RD

Algebraic Modeling [Bar+20]

$$\mathsf{MaxMinors}(\mathbf{C}\mathbf{H}_{y}^{\top}) = \left\{ \mathbf{P}_{J} := \left| \mathbf{C}\mathbf{H}_{y}^{\top} \right|_{*,J} : J \subset \{1..n-k-1\}, \#J = r \right\}.$$

Analysis of the system

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Algebraic Modeling [Bar+20]

$$\mathsf{MaxMinors}(\mathbf{C}\mathbf{H}_{y}^{\top}) = \left\{ \mathbf{P}_{J} := \left| \mathbf{C}\mathbf{H}_{y}^{\top} \right|_{*,J} : J \subset \{1..n-k-1\}, \#J = r \right\}.$$

Analysis of the system

- $\binom{n}{r}$ variables $c_T = |\mathbf{C}|_{*,T}$, $T \subset \{1..n\}$, #T = r
- $\binom{n-k-1}{r}$ linear equations $P_J = 0$ with coefficients in \mathbb{F}_{q^m} ,
- *m* times more equations over \mathbb{F}_q .

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Complexity of solving the MaxMinors modeling

Solving in the Overdetermined case

If $m\binom{n-k-1}{r} \ge \binom{n}{r} - 1$ and the equations over \mathbb{F}_q are "as linearly independent as possible" \rightarrow independence assumption.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Complexity of solving the MaxMinors modeling

Solving in the Overdetermined case

If $m\binom{n-k-1}{r} \ge \binom{n}{r} - 1$ and the equations over \mathbb{F}_q are "as linearly independent as possible" \rightarrow independence assumption.

In the Underdetermined case

- Hybrid approach to reduce to the overdetermined case;
- Introduce another set of variables (e.g. x or s).

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Non overdetermined cases

 $\boldsymbol{e} = \boldsymbol{x}\boldsymbol{G} + \boldsymbol{y} = \boldsymbol{s}\boldsymbol{C}$

Reduce to smaller problems

- ▶ if a positions of *e* are zero: a linear equations in *x*, a columns of *C* are zero \rightarrow reduce to a smaller instance with parameters (m, n a, k a, r),
- this has a chance $1/q^{ar}$ to happen.
- Deterministic version if $a + r \le k$.
- ► Constraint $m\binom{n-k-1}{r} \ge \binom{n-a}{r} 1$ will be satisfied for a large enough. Cost $q^{ar} \mathbb{C}_{RD}(m, n-a, k-a, r)$.

Magali Bardet

Rank metric

Algebraic Modeling

RD

Non overdetermined cases

Support Minors modeling over \mathbb{F}_{q^m} [Bar+23]

$$\left\{ Q_{I} \stackrel{\text{def}}{=} \left| \begin{pmatrix} \mathbf{x} \mathbf{G} + \mathbf{y} \\ \mathbf{C} \end{pmatrix} \right|_{*,I} : I \subset \{1..n\}, \#I = r+1 \right\}$$

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

Analysis of the Support Minors modeling over \mathbb{F}_{q^m}

$$\mathcal{Q} = \left\{ Q_I \stackrel{\text{def}}{=} \left| \begin{pmatrix} \mathbf{x} \, \mathbf{G} + \mathbf{y} \\ \mathbf{C} \end{pmatrix} \right|_{*,I} : I \subset \{1..n\}, \#I = r+1 \right\}$$
$$\mathcal{P} = \left\{ P_J \stackrel{\text{def}}{=} \left| \mathbf{C} \, \mathbf{H}_{\mathbf{y}}^{\top} \right|_{*,J} : J \subset \{1..n-k-1\}, \#J = r \right\}.$$

$$\mathcal{Q}_{s} = \{ Q_{I} : \#(I \cap \{1..k+1\}) = s \}, \\ \mathcal{Q}_{\geq s} = \{ Q_{I} : \#(I \cap \{1..k+1\}) \geq s \},$$

Algebraic Decoding

Magali Bardet

Algebraic Modeling RD

Analysis of the Support Minors modeling over \mathbb{F}_{q^m}

$$\mathcal{Q} = \left\{ Q_I \stackrel{\text{def}}{=} \left| \begin{pmatrix} \mathbf{x} \, \mathbf{G} + \mathbf{y} \\ \mathbf{C} \end{pmatrix} \right|_{*,I} : I \subset \{1..n\}, \#I = r+1 \right\}$$
$$\mathcal{P} = \left\{ P_J \stackrel{\text{def}}{=} \left| \mathbf{C} \, \mathbf{H}_{\mathbf{y}}^{\top} \right|_{*,J} : J \subset \{1..n-k-1\}, \#J = r \right\}.$$

$$\mathcal{Q}_{s} = \{Q_{I} : \#(I \cap \{1..k+1\}) = s\}, \\ \mathcal{Q}_{\geq s} = \{Q_{I} : \#(I \cap \{1..k+1\}) \geq s\},$$

Proposition:

$$\begin{split} & \mathcal{Q}_0 \subset \langle \mathcal{Q}_{\geq 1} \rangle_{\mathbb{F}_q} \\ \langle \mathscr{P}, x_i \mathscr{P} : i \in \{1..k\}, \mathcal{Q}_{\geq 2} \rangle_{\mathbb{F}_q} = \langle \mathcal{Q}_1, \mathcal{Q}_{\geq 2} \rangle_{\mathbb{F}_q} \\ & \mathscr{P}, x_i \mathscr{P} : i \in \{1..k\}, \mathcal{Q}_{\geq 2} \text{ are linearly independent over } \mathbb{F}_q \end{split}$$

Algebraic Decoding

Magali Bardet

Algebraic Modeling RD

Hints of Proof

$H_{\nu}^{\top} = 0 + \text{Cauchy-Binet formula} + \text{systematic form implies}$

 $\left\| \begin{pmatrix} \mathbf{x} \mathbf{G} + \mathbf{y} \\ \mathbf{C} \end{pmatrix} \mathbf{H}_{\mathbf{y}}^{\top} \right\|_{*, T} = 0 + \text{Cauchy-Binet formula} + \text{systematic form implies}$ that $\mathcal{Q}_0 \subset \langle \mathcal{Q}_{\geq 1} \rangle$.

We introduce a monomial ordering and compare leading terms. \[\begin{bmatrix} x \ G + y \\ C \end{bmatrix} \mathcal{H}^T \| _{*,J \cup \{n-k\}} = (-1)^r P_J + Cauchy-Binet formula + systematic form implies that \(\mathcal{P} \) ⊂ \(\mathcal{D}_1 + \langle \mathcal{D}_{\geq 2}\rangle\).

> same idea with another matrix for $x_i P_J$.

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD.

Solving Support Minors over \mathbb{F}_{q^m} : too many solutions

With the equations $\mathscr{P} + \mathscr{Q}_{\geq 2}$

- ▶ each linear equation P_J removes a variable c_{J+k+1} that does not appear in $\mathcal{Q}_{\geq 2}$,
- ▶ we can describe the vector spaces generated by *Q*_{≥2} for each bidegree (*b*,1) in (*x_i*, *c*_T),
- the Macaulay matrices always have a rank = # rows.

Algebraic Decoding

Magali Bardet

Rank metric Algebraic

RD

Solving Support Minors over \mathbb{F}_{q^m} : too many solutions

With the equations $\mathscr{P} + \mathscr{Q}_{\geq 2}$

- ▶ each linear equation P_J removes a variable c_{J+k+1} that does not appear in $\mathcal{Q}_{\geq 2}$,
- ▶ we can describe the vector spaces generated by *Q*_{≥2} for each bidegree (*b*,1) in (*x_i*, *c*_T),
- the Macaulay matrices always have a rank = # rows.

But...

- we can eliminate m times more variables c_J by unfolding the P_J 's!
- that's SM- $\mathbb{F}_{q^m}^+ = \{Q_I : I\} + \{P_{i,J} : i, J\}.$
- we analyse the vector spaces generated by the equations in any bidegree (b,1) in $\mathbf{x}_i, c_T \rightarrow \text{syzygies} \rightarrow \text{generic complexity.}$

Algebraic Decoding

Magali Bardet

Rank metric Algebraic

RD

Complexity of solving SM- $\mathbb{F}_{q^m}^+$

$$\begin{split} \mathcal{N}_{b}^{\mathbb{F}_{q}} &= \mathcal{N}_{b}^{\mathbb{F}_{q^{m}}} - \mathcal{N}_{b,syz}^{\mathbb{F}_{q}}, \\ \mathcal{N}_{b}^{\mathbb{F}_{q^{m}}} &= \sum_{i=1}^{k} \binom{n-i}{r} \binom{k+b-1-i}{b-1} - \binom{n-k-1}{r} \binom{k+b-1}{b} \quad (exact) \\ \mathcal{N}_{b,syz}^{\mathbb{F}_{q}} &= (m-1) \sum_{i=1}^{b} (-1)^{i+1} \binom{k+b-i-1}{b-i} \binom{n-k-1}{r+i} \quad (conjecture) \\ \mathcal{M}_{b}^{\mathbb{F}_{q}} &= \binom{k+b-1}{b} \binom{n}{r} \binom{n-k-1}{r}, \quad (exact) \end{split}$$

Solving SM- $\mathbb{F}_{q^m}^+$ We can solve SM- $\mathbb{F}_{q^m}^+$ by linearization at bidegree (b,1) whenever

$$\mathscr{N}_{b}^{\mathbb{F}_{q}} \geq \mathscr{M}_{b}^{\mathbb{F}_{q}} - 1 \text{ with a cost } \mathscr{O}\left(m^{2}\mathscr{N}_{b}^{\mathbb{F}_{q}}\mathscr{M}_{b}^{\mathbb{F}_{q}}^{\omega-1}\right) \text{ operations in } \mathbb{F}_{q}.$$

Algebraic Decoding Magali Bardet

Figure: Theoretical log₂ complexities \mathbb{C} of MM- \mathbb{F}_q/SM - $\mathbb{F}_{q^m}^+$ (the best one, hybrid and punctured version) and of the combinatorial attack for RD instances with fixed (m, n, k) = (31, 33, 15) and various values of r. $d_{RGV}(m, n, k, q = 2) = 10$.

Figure: Same parameters as Fig. 1 but with $q = 2^8$.

Figure: Optimal values of a with (m, n, k) = (31, 33, 15), for MM- \mathbb{F}_q and SM- $\mathbb{F}_{q^m}^+$.

Algebraic

Decoding Magali Bardet

RD

- A powerful tool to solve problems that have an algebraic modeling,
- Design specific algorithms for specific class of systems to be efficient.
- A lot of parameters to choose, how to optimize?
- New modeling: e.g. RD over \mathbb{F}_q ?
- Optimize the linear algebra part?

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

[Agu+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Maxime Bros, Alain Couvreur, Jean-Christophe Deneuville, Philippe Gaborit, Gilles Zémor, and Adrien Hauteville. Rank Quasi Cyclic (RQC). Second Round submission to NIST Post-Quantum Cryptography call. Apr. 2020.

[Ara+19a] N. Aragon, P. Gaborit, A. Hauteville, O. Ruatta, and G. Zémor. "Low Rank Parity Check Codes: New Decoding Algorithms and Application to Cryptography". In: submitted to IEEE IT, preprint available on arXiv. 2019.

[Ara+19b] Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Adrien Hauteville, Olivier Ruatta, Jean-Pierre Tillich, Gilles Zémor, Carlos Aguilar Melchor, Slim Bettaieb, Loïc Bidoux, Magali Bardet, and Ayoub Otmani. ROLLO (merger of Rank-Ouroboros, LAKE and LOCKER). Second round submission to the NIST post-quantum cryptography call. NIST Round 2 submission for Post-Quantum Cryptography. Mar. 2019. Algebraic Decoding

Magali Bardet

Algebraic Modeling RD

[Bar+05] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang. "Asymptotic expansion of the degree of regularity for semi-regular systems of equations". In: MEGA'05 – Effective Methods in Algebraic Geometry. 2005, pp. 1–14.

[Bar+20] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. "Improvements of Algebraic Attacks for solving the Rank Decoding and MinRank problems". In: ASIACRYPT. 2020.

[Bar+23] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, and Jean-Pierre Tillich. "Revisiting Algebraic Attacks on MinRank and on the Rank Decoding Problem". In: *Designs, Codes and Cryptography* 91 (2023), pp. 3671–3707.

[BFP09] Luk Bettale, Jean-Charles Faugere, and Ludovic Perret. "Hybrid approach for solving multivariate systems over finite fields". In: *Journal of Mathematical Cryptology* 3.3 (2009), pp. 177–197. Algebraic

RD

[BFS04] Magali Bardet, Jean-Charles Faugère, and Bruno Salvy. "On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations". In: Proceedings of the International Conference on Polynomial System Solving. 2004, pp. 71–74.

- [Buc65] Bruno Buchberger. "Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal". PhD thesis. Universitat Innsbruck, 1965.
- [Bur+23] Étienne Burle, Philippe Gaborit, Younes Hatri, and Ayoub Otmani. Injective Rank Metric Trapdoor Functions with Homogeneous Errors. 2023. arXiv: 2310.08962 [cs.CR].
- [CH94] Aldo Conca and Jurgen Herzog. "On the Hilbert function of determinantal rings and their canonical module". In: Proc. Amer. Math. Soc 122 (1994), pp. 677–681.

Algebraic Decoding

Magali Bardet

Algebraic Modeling RD
[Del78] Philippe Delsarte. "Bilinear Forms over a Finite Field, with Applications to Coding Theory". In: J. Comb. Theory, Ser. A 25.3 (1978), pp. 226–241.

- [Fau+14] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. "Sub-Cubic Change of Ordering for GröBner Basis: A Probabilistic Approach". In: ISSAC. 2014.
- [Fau+93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. "Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering". In: JSC (1993).
- [Fau02] Jean-Charles Faugère. "A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero: F5". In: Proceedings ISSAC'02. ACM press, 2002, pp. 75–83.
- [Fau99] Jean-Charles Faugère. "A New Efficient Algorithm for Computing Gröbner Bases (F4)". In: J. Pure Appl. Algebra 139.1-3 (1999), pp. 61–88.

Magali Bardet

Algebraic Modeling RD References

11 / 11

Algebraic Jean-Charles Faugère, Francoise Levy-dit-Vehel, and Ludovic Perret.

Decoding Magali Bardet

References

"Cryptanalysis of Minrank". In: Advances in Cryptology -CRYPTO 2008. Ed. by David Wagner. Vol. 5157. LNCS. 2008, pp. 280-296.

Jean-Charles Faugère and Chengi Mou. "Sparse FGLM algorithms". [FM17] In: JSC (2017).

[FLP08]

- [FSS11] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer. "Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): Algorithms and complexity". In: J. Symbolic Comput. 46.4 (2011), pp. 406–437.
- [Gab+16] Philippe Gaborit, Adrien Hauteville, Duong Hieu Phan, and Jean-Pierre Tillich. Identity-based Encryption from Rank Metric. IACR Cryptology ePrint Archive, Report2017/623. http://eprint.iacr.org/. May 2016.
- [Gab85] Ernst M. Gabidulin. "Theory of codes with maximum rank distance". In: Problemy Peredachi Informatsii 21.1 (1985), pp. 3–16.

- [GPT91] Ernst M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. "Ideals over a non-commutative ring and their applications to cryptography". In: Advances in Cryptology - EUROCRYPT'91. LNCS 547. Brighton, Apr. 1991, pp. 482–489.
- [GZ16] Philippe Gaborit and Gilles Zémor. "On the hardness of the decoding and the minimum distance problems for rank codes". In: *IEEE Trans. Inform. Theory* 62(12) (2016), pp. 7245–7252.
- [Laz83] D. Lazard. "Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations". In: Computer algebra. 1983.
- [Mac94] Francis Sowerby Macaulay. *The algebraic theory of modular systems*. Vol. 19. Cambridge University Press, 1994.

[OJ02] Alexei V. Ourivski and Thomas Johansson. "New Technique for Decoding Codes in the Rank Metric and Its Cryptography Applications". English. In: *Problems of Information Transmission* 38.3 (2002), pp. 237–246. Algebraic Decoding

Magali Bardet

Rank metric Algebraic Modeling RD References

Algebraic Decoding

Magali Bardet

Rank metric

Algebraic Modeling

RD

References

[Ove05] Raphael Overbeck. "A New Structural Attack for GPT and Variants". In: *Mycrypt*. Vol. 3715. LNCS. 2005, pp. 50–63.