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NIST call for proposals

Post-Quantum Cryptography standardization process
I KEM + Signature.
I 4 Rounds since 2017.
I 1 KEM + 3 Signatures selected for standardization in 2022, based on

Lattices and Hash functions.
I 3 code-based KEMs in the 4th Round.

Additional Digital Signature Schemes
I June 1, 2023. First Round ongoing.
I 40 submissions.
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Post-quantum cryptography

Rank metric Code-based cryptography
I Various proposals : KEM, PKE, signatures.

Interesting underlying (hard) problems
I MinRank,
I Rank Decoding RD,
I Rank Support Learning RSL.

⇒ Algebraic cryptanalysis of these problems? Complexity?
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Rank metric [Del78]

General Linear code
I A linear subspace C = {xG : x ∈ FK

q } ⊂ FN
q , dimension K , Fq finite field.

I Generator matrix G of rank K in FK×N
q .

I Parity-check matrix H of rank N−K , GH> = 0.

I Hamming distance d(c ,c ′) = #{i : ci 6= c ′i}.

Rank metric and Matrix codes over Fmn
q when N =mn

I A word x = (x1, . . . ,xmn) ∈ Fmn
q is viewed as a (column) matrix

X =

x1 . . . xm(n−1)+1

x2
...

...
xm . . . xmn

 ∈ Fm×n
q .

I The rank distance d(X ,Y ) = Rank(Y −X ).
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Matrix codes and Rank distance

Example 1
I x = (1,0,1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,0,0,1) ∈ F20

2 .

I Mat(x) =


1 1 0 0 1
0 1 1 0 0
1 0 0 1 0
0 0 1 1 1

 ∈ F4×5
2

I The weight of x is 3.
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Rank metric [Gab85]

Equivalent definition for Matrix codes over Fnm
q ↔ Fn

qm

I Finite field Fq, extension Fqm , basis β = (β1, . . . ,βm) as an Fq-vector space.
I Correspondence x ∈ Fn

qm ↔ Mat(x) ∈ Fm×n
q , x = β Mat(x).

I Rank weight |x |= Rank(Mat(x)) = dim(〈x1, . . . ,xn〉Fq), support.

Example
I F24 over F2, basis (1,α,α2,α3).
I x = (1+α2,1+α,α +α3,α2+α3,1+α3) ↔

Mat(x) =


1 1 0 0 1
0 1 1 0 0
1 0 0 1 0
0 0 1 1 1

 ∈ F4×5
2 and (1,α,α2,α3)Mat(x) = x .

I |x |= 3, the support of x is V = 〈1+α2,1+α,α +α3〉Fq .
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Interesting Codes in Rank metric

General Matrix codes are Fq-linear codes (Delsart [Del78])
They are Fq-linear subspaces of Fn

qm = Fmn
q = Fm×n

q , endowed with the rank
metric.

Particular Matrix codes specified as Fqm-linear codes (Gabidulin [Gab85])
They are Fqm -linear subspaces of Fn

qm , endowed with the rank metric.

I Fqm -linear codes are particular matrix codes with a structure,
I Known families of Fqm -linear codes with decoding algorithms,
I Fqm -linear codes have a much shorter description (save a factor m)
⇒ Shorter public keys in cryptography!

7 / 41



Algebraic
Decoding

Magali Bardet

Rank metric

Algebraic
Modeling

RD

References

Interesting Codes in Rank metric

General Matrix codes are Fq-linear codes (Delsart [Del78])
They are Fq-linear subspaces of Fn

qm = Fmn
q = Fm×n

q , endowed with the rank
metric.

Particular Matrix codes specified as Fqm-linear codes (Gabidulin [Gab85])
They are Fqm -linear subspaces of Fn

qm , endowed with the rank metric.

I Fqm -linear codes are particular matrix codes with a structure,
I Known families of Fqm -linear codes with decoding algorithms,
I Fqm -linear codes have a much shorter description (save a factor m)
⇒ Shorter public keys in cryptography!

7 / 41



Algebraic
Decoding

Magali Bardet

Rank metric

Algebraic
Modeling

RD

References

Specific family of codes

Fqm-linear codes in rank metric: C ⊂ Fn
qm has an additional structure

Fn
qm -linear code Matrix code in Fnm

q

Field Fqm Fq

Length n nm
Dimension k km
Codeword x = (x1, . . . ,xn) ∈ Fn

qm matrix X ∈ Fm×n
q

Size of a basis knm log(q) kmnm log(q)
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Application of the rank metric

Examples of Fqm-linear codes with decoding algorithms

I Gabidulin codes [Gab85] (rank-metric analogue of Reed-Solomon codes),
I Low Rank Parity Check codes [Ara+19a] (rank-metric analogue of MDPC

codes)
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The Rank Decoding Problem (RD)

Rank Decoding Problem (RD)
I Input: an integer r ∈ N, an Fqm -basis G ∈ Fk×n

qm of a subspace C ⊂ Fn
qm ,

and a vector y ∈ Fn
qm such that d(y ,C )≤ r .

I Output: e ∈ Fn
qm such that

y = xG +e and Rank(e)≤ r .

Syndrome formulation1

Given s ∈ Fn−k
qm and H ∈ F(n−k)×n

qm , find e ∈ Fn
qm such that

s = eH> and Rank(e)≤ r .

1s = yH>, y one solution of yH> = s without constraints on the weight of y .
10 / 41
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The MinRank Problem

Computational MinRank (affine)
I Input: integers r ,m,n ∈ N, and K = k+1 matrices Y ,M1, . . . ,Mk ∈ Fm×n

q

I Output: (x1, . . . ,xk) ∈ Fq, such that

Rank

(
Y +

k

∑
i=1

xiM i

)
≤ r .

11 / 41
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Hardness of MinRank and RD

Hardness of the decoding for Fq-linear matrix codes

I MinRank is an NP-complete problem (Buss, Frandsen, Shallit 1999),
I used to cryptanalyse various multivariate and code-based cryptosystems.
I This is exactly the decoding problem for matrix codes,

Hardness of the decoding for Fqm-linear codes

I RD is not “a priori” NP-hard.
I DP (Decoding problem, Hamming metric) ≤randomized RD (m > n2) [GZ16]
I RD ≤ MinRank [FLP08].
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The Rank Support Learning Problem (RSL) [Gab+16]

Generalization of RD to multiple syndromes with the same support.

Rank Support Learning Problem (RSL)
I Input:

I an integer r ∈ N,
I an Fqm -basis G ∈ Fk×n

qm of a subspace C ⊂ Fn
qm ,

I a set of syndromes s i = e iH> ∈ Fn
qm (1≤ i ≤ `) such that the errors e i share

the same support V = 〈ei ,j 〉Fq of dimension r ,

I Output: The secret subspace V .

Hardness of RSL
I RSL ≤ RD.

13 / 41
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Code-Based cryptography

First rank-metric code-based cryptosystem
I GPT cryptosystem based on Gabidulin codes (Eurocrypt’91, [GPT91]),
I broken by the Overbeck attack [Ove05],

Recent proposals
I ROLLO: Analogue of the NTRU cryptosystem, secret Ideal LRPC codes

([Ara+19b], NIST ROUND-2),
I RQC: RD for Ideal codes, LWE structure, public Gabidulin code + random

ideal code ([Agu+20], NIST ROUND-2)
I family of rank metric trapdoor functions: RSL, trapdoor based on secret

LRPC code ([Bur+23])
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Code-Based cryptography

Signature schemes (authentication protocoles)
I Durandal (Eurocrypt’19): RSL + Ideal structure.
I RYDE (NIST signature submission): RD.
I MIRA and MiRitH (NIST signature submission): MinRank.
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Complexity of solving RD, MinRank, RSL

How can we solve those problems?
I Combinatorial approach: try “all possible solutions” efficiently;
→ the complexity is easy to estimate.

I Algebraic approach: solve an algebraic system.
→ how to estimate the complexity?

Hybrid approach
I Reduce the resolution of one big instance to the resolution of smaller

instances.
I Works for any approach, any algorithm.
I Efficient if the small instances are easier.
I cf [BFP09; Bar+23]
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Algebraic Modeling

Principle: write a Polynomial System
f1(x1, . . . ,xn)
...

fm(x1, . . . ,xn)

, deg(fi ) = di , fi ∈K[x1, . . . ,xn].

such that finding the set of solutions

V (f1, . . . , fm) =
{
(x1, . . . ,xn) ∈Kn : fi (x1, . . . ,xn) = 0,∀i ∈ {1..m}

}
gives (part of) the secret.

Ideally: any solution is related to the secret!

I Otherwise, we have to deal with spurious solutions.
I Solutions in Fq: algebraic constraint! add the field equations xqi −xi .
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Algebraic Modeling

Solving the algebraic system using Gröbner bases (object)
I A particular basis of the ideal

I (f1, . . . , fm) = 〈f1, . . . , fm〉

that solves the ideal-membership problem.
I Depends on the choice of a monomial ordering.

A hard problem
I Ideal Membership testing is EXPSPACE-complete,
I Existence of solutions to a system of polynomial equations over a finite field

is NP-complete ([FY79]),

18 / 41
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Monomial ordering examples

Lexicographical ordering x1 > · · ·> xn

xα1
1 . . .xαn

n > x
β1
1 . . .xβn

n iff

{
αj = βj ∀j < i ,

αi > βi .

Graded Reverse Lexicographical ordering x1 > · · ·> xn

xα1
1 . . .xαn

n > x
β1
1 . . .xβn

n iff

{
αj = βj ∀j > i ,

αi < βi .

Elimination Ordering x> y

xαyβ > xα ′yβ ′ iff

{
α >1 α ′

or α = α ′ and β >2 β ′.
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Properties of monomial orderings

Different monomial orderings have different properties
I the lex order (Lexicographical): in Shape Position, for a zero-dimension

ideal, the lex basis is 
x1−g1(xn),

...
xn−1−gn−1(xn),

gn(xn),

with deg(gn) = D the number of solutions to the system.
I the grevlex order (Graded Reverse Lexicographical): usually the best one

w.r.t. the complexity.
I the elim order (Elimination): two blocks of variables x> y.

20 / 41



Algebraic
Decoding

Magali Bardet

Rank metric

Algebraic
Modeling

RD

References

Systems with 0 or 1 solution

The grevlex and lex bases are the same:
I If the system has 1 solution: 

x1−a1,
...

xn−an,

where (a1, . . . ,an) ∈ Fn
q is the solution.

I If the system has no solution:
〈1〉.
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Change of ordering FGLM for zero-dimensional systems

I The FGLM ([Fau+93]) Algorithm performs a change of ordering in
complexity

O(nD3),

n number of variables, n→ ∞, D degree of the ideal (number of solutions).

I Complexity for grevlex to lex (Shape position) ([Fau+14]):

O(log2(D)(Dω +n log2(D)D)).

I Sparse versions for generic systems grevlex to lex ([FM17]) in

O

(√
6
nπ

D2+ n−1
n

)
.
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Gröbner basis algorithms

General algorithms, for any input system:
I Buchberger ([Buc65]),
I F4 ([Fau99]),
I F5 ([Fau02]).

The algorithms will always terminate and give the Gröbner basis.
But the time is hard to predict for any instance (goes from 1 to d2n [MM82],
simply exponential for zero-dimensional, grevlex [G84; Laz83]).

Specific algorithms, for a particular class of systems:
The algorithms will terminate in a predictable time.
The result is not always a Gröbner basis of the system.
For random instances in the specific class, the result is a Gröbner basis.
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Generic Complexity analysis

System


f1(x1, . . . ,xn)
...

fm(x1, . . . ,xn)

, deg(fi ) = di , fi ∈K[x1, . . . ,xn].

Tools from computer algebra

I Macaulay Matrices (1902): Md({f1, . . . , fm}) =


t ′

...
(t, i) coeff(tfi , t ′)
...


I Describes the vector space 〈tfi : deg(tfi ) = d〉K.
I Lazard (1983): compute a Gb with linear algebra on the Macaulay matrices

up to degree D.
24 / 41
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Complexity bounds

Linear algebra on the Macaulay matrix of degree D

A Gröbner basis of a system (f1, . . . , fm) ∈K[x1, . . . ,xn] up to degree D for a
graded monomial ordering can be computed in, at most,

O

(
mD

(
n+D−1

D

)ω)
n,m→ ∞.

operations.

Main challenges
I Estimate D.
I Identify unnecessary computations to reduce the complexity, e.g. to

O
((n+D

D

)ω
)
.

I If there are fall degree at degree < D, construct a better strategy
(algorithm) to take that into account, and estimate its complexity.
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Complexity bounds

Linear algebra on the Macaulay matrix of degree D

A Gröbner basis of a system (f1, . . . , fm) ∈K[x1, . . . ,xn] up to degree D for a
graded monomial ordering can be computed in, at most,

O
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mD

(
n+D−1

D

)ω)
n,m→ ∞.
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Generic Complexity analysis

Known classes of particular systems (not exhaustive)
I regular systems [Mac94],
I determinantal systems [CH94],
I semi-regular systems [BFS04],
I solutions in F2: boolean semi-regular systems [Bar+05],
I bi-regular bilinear systems [FSS11].
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Difference between classes

O

(
mD

(
n+D−1

D

)ω)
n,m→ ∞.

Examples of quadratic equations:
I m = n regular system: : D ≤ n+1,
I m = n+1 semi-regular system: D ≤ dn+2

2 e,
I m = n regular bilinear system with bn2c variables x and dn2e variables y :

D ≤ dn2e.
I m = n regular over F2: D ' n

11 , O(
(n
D

)ω
)
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Algebraic attack

For each class we know
I relations between rows in the Macaulay matrices = syzygies,
I the rank of the Macaulay matrices for generic systems,
I the maximal degree D→ complexity estimates,
I a specific Gb algorithm that is more efficient.

If the system is not in a known class
I Identify a generic behavior,
I Identify a specific algorithm to compute the Gb,
I Create a new class!

28 / 41



Algebraic
Decoding

Magali Bardet

Rank metric

Algebraic
Modeling

RD

References

Algebraic attack

For each class we know
I relations between rows in the Macaulay matrices = syzygies,
I the rank of the Macaulay matrices for generic systems,
I the maximal degree D→ complexity estimates,
I a specific Gb algorithm that is more efficient.

If the system is not in a known class
I Identify a generic behavior,
I Identify a specific algorithm to compute the Gb,
I Create a new class!

28 / 41



Algebraic
Decoding

Magali Bardet

Rank metric

Algebraic
Modeling

RD

References

Algebraic modeling for RD

RD instance: G ∈ Fk×n
qm public matrix, y ∈ Fn

qm such that d(y ,C )≤ r , Hy a
parity-check matrix of the code C + 〈y〉Fqm

.

Equivalent formulations, different algebraic modeling
I find e ∈ Fn

qm

,x ∈ Fk
qm

such that and

(s1, . . . ,sr ) ∈ Fr
qm , C ∈ Fr×n

q such
that e = (s1, . . . ,sr )C .

I find (s1, . . . ,sr ) ∈ Fr
qm and C ∈ Fr×n

q such that (s1, . . . ,sr )CHy
> = 0 [OJ02].

I find C ∈ Fr×n
q such that CHy

> has a non-trivial left kernel [Bar+20].
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MaxMinors modeling

Algebraic Modeling [Bar+20]

MaxMinors(CHy
>) =

{
PJ :=

∣∣∣CHy
>
∣∣∣
∗,J

: J ⊂ {1..n−k−1},#J = r

}
.

I Cauchy-Binet formula: det(AB) = ∑T det(A∗,T )det(BT ,∗).

I Plücker coordinates (N =
(n
r

)
−1): injective map, easy to invert on its image.

p : {W ⊂ Fn
q : dim(W ) = r}→ PN(Fq)

C generator matrix of W 7→ (
∣∣C ∗,T ∣∣)T⊂{1..n},#T=r

Analysis of the system

I
(n
r

)
variables cT = |C |∗,T , T ⊂ {1..n}, #T = r

I
(n−k−1

r

)
linear equations PJ = 0 with coefficients in Fqm ,

I m times more equations over Fq.
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Complexity of solving the MaxMinors modeling

Solving in the Overdetermined case
If m

(n−k−1
r

)
≥
(n
r

)
−1 and the equations over Fq are “as linearly independent as

possible” → independence assumption.

In the Underdetermined case
I Hybrid approach to reduce to the overdetermined case;
I Introduce another set of variables (e.g. x or s).
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Non overdetermined cases

e = xG +y = sC

Reduce to smaller problems
I if a positions of e are zero: a linear equations in x , a columns of C are zero
→ reduce to a smaller instance with parameters (m,n−a,k−a, r),

I this has a chance 1/qar to happen.
I Deterministic version if a+ r ≤ k .
I Constraint m

(n−k−1
r

)
≥
(n−a

r

)
−1 will be satisfied for a large enough.

Cost qarCRD(m,n−a,k−a, r).
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Non overdetermined cases

e = xG +y = sC

Support Minors modeling over Fqm [Bar+23]

{
QI

def
=

∣∣∣∣(xG +y
C

)∣∣∣∣
∗,I

: I ⊂ {1..n},#I = r +1

}

I
(n
r

)
variables cT ∈ Fq, k variables x1, . . . ,xk ∈ Fqm ,

I
( n
r+1

)
equations QI = 0 for I ⊂ {1..n}, #I = r +1, viewed as affine bilinear

equations over Fqm in the xi ’s and the cT ’s.
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Analysis of the Support Minors modeling over Fqm

Q =

{
QI

def
=

∣∣∣∣(xG +y
C

)∣∣∣∣
∗,I

: I ⊂ {1..n},#I = r +1

}

P =

{
PJ

def
=
∣∣∣CHy

>
∣∣∣
∗,J

: J ⊂ {1..n−k−1},#J = r

}
.

Qs = {QI : #(I ∩{1..k+1}) = s},
Q≥s = {QI : #(I ∩{1..k+1})≥ s},

Proposition:

Q0 ⊂ 〈Q≥1〉Fq

〈P,xiP : i ∈ {1..k},Q≥2〉Fq = 〈Q1,Q≥2〉Fq

P,xiP : i ∈ {1..k},Q≥2 are linearly independent over Fq

34 / 41



Algebraic
Decoding

Magali Bardet

Rank metric

Algebraic
Modeling

RD

References

Analysis of the Support Minors modeling over Fqm

Q =

{
QI

def
=

∣∣∣∣(xG +y
C

)∣∣∣∣
∗,I

: I ⊂ {1..n},#I = r +1

}

P =

{
PJ

def
=
∣∣∣CHy

>
∣∣∣
∗,J

: J ⊂ {1..n−k−1},#J = r

}
.

Qs = {QI : #(I ∩{1..k+1}) = s},
Q≥s = {QI : #(I ∩{1..k+1})≥ s},

Proposition:

Q0 ⊂ 〈Q≥1〉Fq

〈P,xiP : i ∈ {1..k},Q≥2〉Fq = 〈Q1,Q≥2〉Fq

P,xiP : i ∈ {1..k},Q≥2 are linearly independent over Fq

34 / 41



Algebraic
Decoding

Magali Bardet

Rank metric

Algebraic
Modeling

RD

References

Hints of Proof

I
∣∣∣∣(xG +y

C

)
Hy
>
∣∣∣∣
∗,T

= 0 + Cauchy-Binet formula + systematic form implies

that Q0 ⊂ 〈Q≥1〉.
I We introduce a monomial ordering and compare leading terms.

I
∣∣∣∣(xG +y

C

)
H>
∣∣∣∣
∗,J∪{n−k}

= (−1)rPJ + Cauchy-Binet formula + systematic

form implies that P ⊂Q1+ 〈Q≥2〉.
I same idea with another matrix for xiPJ .
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Solving Support Minors over Fqm: too many solutions

With the equations P + Q≥2

I each linear equation PJ removes a variable cJ+k+1 that does not appear in
Q≥2,

I we can describe the vector spaces generated by Q≥2 for each bidegree (b,1)
in (xi ,cT ),

I the Macaulay matrices always have a rank = # rows.

But...
I we can eliminate m times more variables cJ by unfolding the PJ ’s!
I that’s SM-F+

qm = {QI : I}+{Pi ,J : i ,J}.
I we analyse the vector spaces generated by the equations in any bidegree

(b,1) in x i ,cT → syzygies → generic complexity.
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Complexity of solving SM-F+
qm

N
Fq

b = N
Fqm

b −N
Fq

b,syz ,

N
Fqm

b =
k

∑
i=1

(
n− i

r

)(
k+b−1− i

b−1

)
−
(
n−k−1

r

)(
k+b−1

b

)
(exact)

N
Fq

b,syz = (m−1)
b

∑
i=1

(−1)i+1
(
k+b− i −1

b− i

)(
n−k−1
r + i

)
(conjecture)

M
Fq

b =

(
k+b−1

b

)((
n

r

)
−m

(
n−k−1

r

))
, (exact)

Solving SM-F+
qm

We can solve SM-F+
qm by linearization at bidegree (b,1) whenever

N
Fq

b ≥M
Fq

b −1 with a cost O

(
m2N

Fq

b M
Fq

b

ω−1
)

operations in Fq.
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Target rank r

C
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SM+
Comb.

Figure: Theoretical log2 complexities C of MM-Fq/SM-F+
qm(the best one, hybrid and

punctured version) and of the combinatorial attack for RD instances with fixed
(m,n,k) = (31,33,15) and various values of r . dRGV(m,n,k,q = 2) = 10.
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2 3 4 5 6 7 8 9 10
0

500

1,000

1,500

Target rank r

C

MM complex.
SM+ complex.
Comb. complex.

Figure: Same parameters as Fig. 1 but with q = 28.
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Target rank r

a

a for MM (any q)
a for SM+ (q = 2)
a for SM+ (q = 28)

Figure: Optimal values of a with (m,n,k) = (31,33,15), for MM-Fq and SM-F+
qm .
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Conclusion

I A powerful tool to solve problems that have an algebraic modeling,
I Design specific algorithms for specific class of systems to be efficient.
I A lot of parameters to choose, how to optimize?
I New modeling: e.g. RD over Fq?
I Optimize the linear algebra part?
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