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Post-Quantum Cryptography standardization process
» KEM + Signature.
» 4 Rounds since 2017.

» 1 KEM + 3 Signatures selected for standardization in 2022, based on
Lattices and Hash functions.

» 3 code-based KEMs in the 4th Round.
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Post-Quantum Cryptography standardization process

» KEM + Signature.
» 4 Rounds since 2017.

» 1 KEM + 3 Signatures selected for standardization in 2022, based on
Lattices and Hash functions.

» 3 code-based KEMs in the 4th Round.

Additional Digital Signature Schemes
» June 1, 2023. First Round ongoing.

» 40 submissions.
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Post-quantum cryptography

Rank metric Code-based cryptography
» Various proposals : KEM, PKE, signatures.

Interesting underlying (hard) problems

» MinRank,
» Rank Decoding RD,
» Rank Support Learning RSL.

= Algebraic cryptanalysis of these problems? Complexity?
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Rank metric [Del78]

General Linear code
» A linear subspace ¥ = {xG : x € Fff} C IFQV, dimension K, I, finite field.
» Generator matrix G of rank K in IF?XN.

» Parity-check matrix H of rank N— K, GH' =0.
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Rank metric [Del78]

General Linear code

» A linear subspace ¥ = {xG : x € Fff} C IFQV, dimension K, I, finite field.

» Generator matrix G of rank K in

» Parity-check matrix H of rank N— K, GH' =0.
» Hamming distance d(c,c’) = #{i: ¢ # ¢/}

KxN
FKXN,

Rank metric and Matrix codes over Fg’” when N = mn

» A word x = (x1,...,Xmn) € Fg" is viewed as a (column) matrix
X1 o Xm(n-1)41
—_ . . mxn
X= Xo : g
Xm ... Xmn

» The rank distance d(X, Y) =Rank(Y — X).
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Matrix codes and Rank distance

Example 1

» x=(1,0,1,0,1,1,0,0,0,1,0,1,0,0,1,1,1,0,0,1) € F3°.

110
0 11
1 00
0 01

> Mat(x) =

» The weight of x is 3.

0

= = O

1

0
1

4x5
€ I}
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Rank metric [Gab85]

Equivalent definition for Matrix codes over Fg™ <> Fim

» Finite field Iy, extension Fgm, basis B = (B1,...,Bm) as an Fg-vector space.

> Correspondence x € Fgn <> Mat(x) € Fg™", x =  Mat(x).
> Rank weight |x| = Rank(Mat(x)) = dim((xi,...,Xn)F,), support.
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Rank metric [Gab85]

Equivalent definition for Matrix codes over Fg™ <> Fim

» Finite field Iy, extension Fgm, basis B = (B1,...,Bm) as an Fg-vector space.

> Correspondence x € Fgn <> Mat(x) € Fg™", x =  Mat(x).
> Rank weight |x| = Rank(Mat(x)) = dim((xi,...,Xn)F,), support.

Example
» a4 over Iy, basis (1, a, a2, o).
> x=(1+o?1+a,0+oa®+01+a3) <

11001
Mat(x) = (1J (1) é g 8 € F3*° and (1,0, a2, 03) Mat(x) = x.
001 11

> |x| =3, the support of x is ¥ = (1+ 02,1+ &, 0+ 0°)p, .
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Interesting Codes in Rank metric Desoring
Magali Bardet

Rank metric

General Matrix codes are F4-linear codes (Delsart [Del78])

mxn

g " endowed with the rank

They are I ;-linear subspaces of Fgn =Fg" =F
metric.
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Interesting Codes in Rank metric

General Matrix codes are F4-linear codes (Delsart [Del78])

They are I ;-linear subspaces of Fgm = Fg"" = Fg™*", endowed with the rank
metric.

Particular Matrix codes specified as Fgm-linear codes (Gabidulin [Gab85])
They are [, n-linear subspaces of Fgm, endowed with the rank metric.
» [Fgm-linear codes are particular matrix codes with a structure,

» Known families of Fgm-linear codes with decoding algorithms,

» [P m-linear codes have a much shorter description (save a factor m)
= Shorter public keys in cryptography!
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Specific family of codes

[Fgm-linear codes in rank metric: € C Fgm has

Fgm—linear code

an additional structure

Matrix code in Fgm

Field
Length
Dimension
Codeword
Size of a basis

Fom
n
k
X =(x1,..., %) € Fgm
knmlog(q)

Fq
nm
km
matrix X € Fg™"
kmnmlog(q)
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Application of the rank metric

Examples of Fgm-linear codes with decoding algorithms

» Gabidulin codes [Gab85] (rank-metric analogue of Reed-Solomon codes),

» Low Rank Parity Check codes [Ara+19a] (rank-metric analogue of MDPC
codes)
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The Rank Decoding Problem (RD)

Rank Decoding Problem (RD)

» Input: an integer r € N, an Fgm-basis G € IE‘Z,?" of a subspace ¢’ C Fgm,
and a vector y € Fgn such that d(y,¢) <r.

> Output: e € Fgm such that

y =xG+e and Rank(e) <r.

ls=yHT, y one solution of yH' = s without constraints on the weight of y.
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The Rank Decoding Problem (RD)

Rank Decoding Problem (RD)

» Input: an integer r € N, an Fgm-basis G € IE‘Z,?" of a subspace ¢’ C Fgm,
and a vector y € Fgn such that d(y,¢) <r.

> Output: e € Fgm such that
y =xG +e and Rank(e) <r.
Syndrome formulation?

Given s € Fg;k and H e Fgﬂ_k)m, find e € Fgm such that
s=eH" and Rank(e) < r.

ls=yHT, y one solution of yH' = s without constraints on the weight of y.
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The MinRank Problem Desoring
Magali Bardet

Rank metric

Computational MinRank (affine)

» Input: integers r,m,n €N, and K = k+ 1 matrices Y ,M1,...,M, € Fg™"
» Output: (xi,...,xx) € Fq, such that

i=1

k
Rank <Y+ Zx,-M,-) <r.

11/ 41



Hardness of MinRank and RD

Hardness of the decoding for F4-linear matrix codes

» MinRank is an NP-complete problem (Buss, Frandsen, Shallit 1999),
> used to cryptanalyse various multivariate and code-based cryptosystems.
» This is exactly the decoding problem for matrix codes,
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Hardness of MinRank and RD

Hardness of the decoding for F4-linear matrix codes

» MinRank is an NP-complete problem (Buss, Frandsen, Shallit 1999),
> used to cryptanalyse various multivariate and code-based cryptosystems.
» This is exactly the decoding problem for matrix codes,

Hardness of the decoding for Fgm-linear codes
» RD is not “a priori” NP-hard.

» DP (Decoding problem, Hamming metric) < andomized RD (m > n?) [GZ16]
» RD < MinRank [FLPO08].
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The Rank Support Learning Problem (RSL) [Gab+16]

Generalization of RD to multiple syndromes with the same support.

Rank Support Learning Problem (RSL)

> Input:

» an integer r € N,

» an Fgm-basis G € Fg,ﬁ" of a subspace € C Fgm,

> a set of syndromes s; = e;H ' € Fom (1 <i<?) such that the errors e; share
the same support ¥ = <e,-_j>[gq of dimension r,

» QOutput: The secret subspace 7.
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The Rank Support Learning Problem (RSL) [Gab+16] Desodng

Magali Bardet

Rank metric

Generalization of RD to multiple syndromes with the same support.

Rank Support Learning Problem (RSL)

> Input:
» an integer r € N,

» an Fgm-basis G € Fg,ﬁ" of a subspace € C Fgm,

> a set of syndromes s; = e;H ' € Fom (1 <i<?) such that the errors e; share
the same support ¥ = <e,-_j>[gq of dimension r,

» QOutput: The secret subspace 7.

Hardness of RSL
» RSL < RD.
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Code-Based cryptography

First rank-metric code-based cryptosystem

» GPT cryptosystem based on Gabidulin codes (Eurocrypt'91, [GPT91]),
» broken by the Overbeck attack [Ove05],

Recent proposals

» ROLLO: Analogue of the NTRU cryptosystem, secret Ideal LRPC codes
([Ara+19b], NIST ROUND-2),

» RQC: RD for Ideal codes, LWE structure, public Gabidulin code + random
ideal code ([Agu+20], NIST ROUND-2)

» family of rank metric trapdoor functions: RSL, trapdoor based on secret
LRPC code ([Bur+23])
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Code-Based cryptography

Signature schemes (authentication protocoles)
» Durandal (Eurocrypt'19): RSL + Ideal structure.
» RYDE (NIST signature submission): RD.
» MIRA and MiRitH (NIST signature submission): MinRank.
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Complexity of solving RD, MinRank, RSL Desodng
Magali Bardet
How can we solve those problems? Rank metric

» Combinatorial approach: try “all possible solutions” efficiently;
— the complexity is easy to estimate.

» Algebraic approach: solve an algebraic system.
— how to estimate the complexity?
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Complexity of solving RD, MinRank, RSL

How can we solve those problems?
» Combinatorial approach: try “all possible solutions” efficiently;
— the complexity is easy to estimate.

» Algebraic approach: solve an algebraic system.
— how to estimate the complexity?

Hybrid approach

» Reduce the resolution of one big instance to the resolution of smaller
instances.

» Works for any approach, any algorithm.

» Efficient if the small instances are easier.

» cf [BFP09; Bar+23]
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Algebraic Modeling Desoding
Magali Bardet
Principle: write a Polynomial System

Algebraic
fl (X17 . 7Xn) Modeling

, deg(fi)=d;,fi € K[x1,...,Xn]
fm(X1,5. ..y Xn)
such that finding the set of solutions
V(f,....fm) = {(x1,-..,xn) €K": fi(x1,..., %) = 0,Vi € {1..m}}
gives (part of) the secret.

Ideally: any solution is related to the secret!
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» Otherwise, we have to deal with spurious solutions.
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Algebraic Modeling Desoding
Magali Bardet
Principle: write a Polynomial System

Algebraic
fl (X17 . 7Xn) Modeling

, deg(fi)=d;,fi € K[x1,...,Xn]
fm(X1,5. ..y Xn)

such that finding the set of solutions
V(f,....fm) = {(x1,-..,xn) €K": fi(x1,..., %) = 0,Vi € {1..m}}
gives (part of) the secret.

Ideally: any solution is related to the secret!

» Otherwise, we have to deal with spurious solutions.

> Solutions in Fg: algebraic constraint! add the field equations x;7 — x;.

17 /41



Algebraic Modeling

Solving the algebraic system using Grébner bases (object)

» A particular basis of the ideal
(.. fm)=(f,...,fm)

that solves the ideal-membership problem.

» Depends on the choice of a monomial ordering.
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Algebraic Modeling

Solving the algebraic system using Grébner bases (object)

» A particular basis of the ideal
(.. fm)=(f,...,fm)

that solves the ideal-membership problem.

» Depends on the choice of a monomial ordering.

A hard problem
» Ideal Membership testing is EXPSPACE-complete,

> Existence of solutions to a system of polynomial equations over a finite field
is NP-complete ([FY79]),
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Monomial ordering examples

Lexicographical ordering x; > --- > x,

o1 (0 /% 1
X{ 7T Xg" > X ..

it {9 =P VI
o > ﬁ,’.

Graded Reverse Lexicographical ordering x; > -+ > x,

o1 (0 /% 1
Xl ce Xy >X1

Elimination Ordering x >y

x%yB > x@ B iff {

it {9 =P VI
o < ﬁ,’.

a>pao
ora=a"and >, B
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Properties of monomial orderings Desodng
Magali Bardet

Different monomial orderings have different properties

Algebraic
» the /ex order (Lexicographical): in Shape Position, for a zero-dimension Modeling

ideal, the lex basis is

X1 —81 (Xn)7

Xn—1 _gn—l(Xn);
gn(Xn),
with deg(g,) = D the number of solutions to the system.

» the grevlex order (Graded Reverse Lexicographical): usually the best one
w.r.t. the complexity.

» the elim order (Elimination): two blocks of variables x >y.

20/41



Systems with 0 or 1 solution

The grevlex and lex bases are the same:

> If the system has 1 solution:

X1 — alv
Xn — am
where (a1,...,ap) € Fg is the solution.

» If the system has no solution:

(1).
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Change of ordering FGLM for zero-dimensional systems

» The FGLM ([Fau+93]) Algorithm performs a change of ordering in
complexity

0(nD?),

n number of variables, n — oo, D degree of the ideal (number of solutions).
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Change of ordering FGLM for zero-dimensional systems

» The FGLM ([Fau+93]) Algorithm performs a change of ordering in
complexity

0(nD?),

n number of variables, n — oo, D degree of the ideal (number of solutions).

» Complexity for grevlex to lex (Shape position) ([Fau+14]):

O(log,(D)(D® + nlog,(D)D)).
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Change of ordering FGLM for zero-dimensional systems pene
Magali Bardet

» The FGLM ([Fau+93]) Algorithm performs a change of ordering in

CompleXIty Algebraic

Modeling

0(nD?),

n number of variables, n — oo, D degree of the ideal (number of solutions).

» Complexity for grevlex to lex (Shape position) ([Fau+14]):
O(logy(D)(D® + nlog,(D)D)).

» Sparse versions for generic systems grevlex to lex ([FM17]) in

ol /8 pr=t).
nm
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Grobner basis algorithms

General algorithms, for any input system:
» Buchberger ([Buc65]),
> F4 ([Fau99]),
> F5 ([Fau02]).

The algorithms will always terminate and give the Grdbner basis.
But the time is hard to predict for any instance (goes from 1 to d%" [MM82],
simply exponential for zero-dimensional, grevlex [G84; Laz83]).
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Grobner basis algorithms pehe

Decoding

Magali Bardet

General algorithms, for any input system: T

» Buchberger ([Buc65]), Modeling
> F4 ([Fau99]),
> F5 ([Fau02]).

The algorithms will always terminate and give the Grdbner basis.
But the time is hard to predict for any instance (goes from 1 to d%" [MM82],
simply exponential for zero-dimensional, grevlex [G84; Laz83]).

Specific algorithms, for a particular class of systems:

The algorithms will terminate in a predictable time.
The result is not always a Grobner basis of the system.
For random instances in the specific class, the result is a Grobner basis.

22 /41



Generic Complexity analysis Bl
Magali Bardet
f(xt,. .y %n)
System < - , deg(fi)=d, fi € K[x,...,xn] ﬂfifﬁé

fm(X1,...,Xn)

Tools from computer algebra

» Macaulay Matrices (1902): .Zy({fi,...,fm}) = (t,1) coeff(tf;, t')
» Describes the vector space (tf; : deg(tf;) = d)k.

» Lazard (1983): compute a Gb with linear algebra on the Macaulay matrices
up to degree D.

24 /41



Algebraic
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Complexity bounds

Magali Bardet

Linear algebra on the Macaulay matrix of degree D

A Grobner basis of a system (f1,...,fm) € K[x1,...,x,] up to degree D for a T
graded monomial ordering can be computed in, at most, Ntoding
D—-1\*
O(mD<n+D ) ) n,m — oo.

operations.
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Algebraic

Complexity bounds Bt
Magali Bardet

Linear algebra on the Macaulay matrix of degree D

A Grobner basis of a system (f1,...,fm) € K[x1,...,x,] up to degree D for a T
graded monomial ordering can be computed in, at most, Ntoding

w
O(mD(n+g_1> ) n,m — oo.

Main challenges

» Estimate D.
» |dentify unnecessary computations to reduce the complexity, e.g. to
n+D\®
o(("")")
» If there are fall degree at degree < D, construct a better strategy
(algorithm) to take that into account, and estimate its complexity.

operations.
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Generic Complexity analysis

Known classes of particular systems (not exhaustive)

regular systems [Mac94],

determinantal systems [CH94],

semi-regular systems [BFS04],

solutions in Fy: boolean semi-regular systems [Bar+-05],
bi-regular bilinear systems [FSS11].
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Difference between classes Pl e

Magali Bardet

Algebraic

D_1 [0} Modeling
O<mD(n+D ) > n,m — oo,

Examples of quadratic equations:

>
>
>

m = n regular system: : D < n+1,

. _ 2
m = n+1 semi-regular system: D < [*£2],

m = n regular bilinear system with | 5] variables x and [ 7] variables y:
D<Tz1

m = n regular over Fy: D ~ ﬁ O((B)w)
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Algebraic attack

each class we know

relations between rows in the Macaulay matrices = syzygies,
the rank of the Macaulay matrices for generic systems,

the maximal degree D — complexity estimates,

a specific Gb algorithm that is more efficient.
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Algebraic attack Desodng

Magali Bardet

For each class we know Necbrae
> relations between rows in the Macaulay matrices = syzygies,
» the rank of the Macaulay matrices for generic systems,
» the maximal degree D — complexity estimates,
> a specific Gb algorithm that is more efficient.

If the system is not in a known class

> |dentify a generic behavior,
» Identify a specific algorithm to compute the Gb,

» Create a new class!

29 /41



Algebraic modeling for RD Desodng

Magali Bardet

RD instance: G € Féi" public matrix, y € Fgm such that d(y,¢)<r, H, a
parity-check matrix of the code €+ (y)F -

RD
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Algebraic modeling for RD

RD instance: G € ng" public matrix, y € Fgm such that d(y,¢)<r, H, a
parity-check matrix of the code €+ (y)F -

Equivalent formulations, different algebraic modeling

> find e € Flm ,x € Fkm such that e=xG +y and Rank(e) <r
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Algebraic modeling for RD

RD instance: G € ng" public matrix, y € Fgm such that d(y,¢)<r, H, a

parity-check matrix of the code €+ (y)F -

Equivalent formulations, different algebraic modeling

> find e € F1,

such that eH," =0 and Rank(e) < r

Algebraic
Decoding

Magali Bardet

RD

20 /41



Algebraic modeling for RD

RD instance: G € ng" public matrix, y € Fgm such that d(y,¢)<r, H,
parity-check matrix of the code € + (y)r,m-

Equivalent formulations, different algebraic modeling

> find e € Fgn such that eH," =0and (si,...,s)€ Fom,
C € Fg" such that e = (s1,...,s,)C.
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Algebraic modeling for RD

RD instance: G € ng" public matrix, y € Fgm such that d(y,¢)<r, H, a
parity-check matrix of the code € + (y)r,m-

Equivalent formulations, different algebraic modeling

> find e € Fgn such that eH," =0and (si,...,s)€ Fom,
C € Fg" such that e = (s1,...,s,)C.

> find (s1,...,5,) €Ffm and C € 7" such that (sq,...,s5,)CH, " =0[0J02].
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Algebraic modeling for RD

RD instance: G € ng" public matrix, y € Fgm such that d(y,¢)<r, H, a
parity-check matrix of the code € + (y)r,m-

Equivalent formulations, different algebraic modeling

> find e € Fgn such that eH," =0and (si,...,s)€ Fom,
C € Fg" such that e = (s1,...,s,)C.

> find (s1,...,5,) €Ffm and C € 7" such that (sq,...,s5,)CH, " =0[0J02].
> find C € F*" such that CH," has a non-trivial left kernel [Bar+20].

Algebraic
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RD
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MaxMinors modeling Deoding

Magali Bardet

Algebraic Modeling [Bar+20]

MaxMinors(CH, T) = {PJ = ‘CHyT’ I {lan—k—1} 0= r} , RD

» Cauchy-Binet formula: det(AB) =Y rdet(A, 7)det(BT.).
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MaxMinors modeling

Algebraic Modeling [Bar+20]

MaxMinors(CH, T) = {PJ = ‘CHyT’ I {lan—k—1} 0= r} ,

» Cauchy-Binet formula: det(AB) =Y rdet(A, 7)det(BT.).

> Pliicker coordinates (N = (7) —1): injective map, easy to invert on its image.

p:AW CFg:dim(#)=r}— PN (F,)
C generator matrix of # (| C.7|) 71 27"
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MaxMinors modeling Deoding

Magali Bardet

Algebraic Modeling [Bar+20]

RD

MaxMinors(CH, ") = {PJ = ‘CHyT’ I {lan—k=1} 40 = r} ,

Analysis of the system
> (") variables ¢ = |Cl.7o TC{ln}, #T =r

> ("4:71) linear equations P; =0 with coefficients in Fgm,
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MaxMinors modeling Deoding

Magali Bardet

Algebraic Modeling [Bar+20]

RD

MaxMinors(CH, ") = {PJ = ‘CHyT’ I {lan—k=1} 40 = r} ,

Analysis of the system
> (") variables ¢ = |Cl.7o TC{ln}, #T =r
> ("4:71) linear equations P; =0 with coefficients in Fgm,

» m times more equations over [Fg.

2N /41



Complexity of solving the MaxMinors modeling

Solving in the Overdetermined case

If m("_/:_l) > ('r’) — 1 and the equations over Fg are “as linearly independent as
possible” — independence assumption.
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Complexity of solving the MaxMinors modeling

Solving in the Overdetermined case
If m("_/:_l) > ('r’) — 1 and the equations over Fg are “as linearly independent as
possible” — independence assumption.
In the Underdetermined case
» Hybrid approach to reduce to the overdetermined case;

» Introduce another set of variables (e.g. x or s).

Algebraic
Decoding

Magali Bardet

RD
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Non overdetermined cases Pl e

Magali Bardet

e=xG+y=sC

RD

Reduce to smaller problems
» if a positions of e are zero: a linear equations in x, a columns of C are zero
— reduce to a smaller instance with parameters (m,n—a,k —a,r),
» this has a chance 1/¢®" to happen.
» Deterministic version if a-+r < k.
» Constraint m("f’r‘fl) > ("?) — 1 will be satisfied for a large enough.

Cost ¢"Cgrp(m,n—a,k —a,r).

2% /41



Non overdetermined cases e

Magali Bardet

e=xG+y=sC
RD

Support Minors modeling over Fgm [Bar+23]

def | (xG +y
{Q/—( C >

> (") variables ¢ € Fq, k variables xi,...,xx € Fgm,

> (rj;l) equations Q; =0 for | C {1..n}, #/ = r+1, viewed as affine bilinear
equations over Fgm in the x;'s and the c7's.

I C{l.n},#I = r+1}

*,1
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Analysis of the Support Minors modeling over Fgm

-
|

def

Q=

(x GC+ y)

CHyT‘*J JC{l.n—k—-1},#J= r}.

*,1

I C{l.n},#I = r—i—l}

def
P, =

2, ={Q : #(N{l.k+1})=s),
Dos = {Q: #(IN{1.k+1}) > s,
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Analysis of the Support Minors modeling over Fgm

(x GC+ y)

CHyT‘*J JC{l.n—k—-1},#J= r}.

Q:{Q,d:ef

ﬁz{Pﬁéf

I C{l.n},#I = r—i—l}

*,1

2, ={Q : #(N{l.k+1})=s),
Dos = {Q: #(IN{1.k+1}) > s,

Proposition:
Do C (Z>1)w,
<:@,X{:@ TiE {1..k},322>ﬂrq = (217322>Fq
P, x; P i €{l..k},2>5 are linearly independent over F
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Hints of Proof

> <XGC+ y> H,"| =0 + Cauchy-Binet formula + systematic form implies
* T

that 2 C <e@21>.
» We introduce a monomial ordering and compare leading terms.
> <XG+“V> H' = (—1)"P, 4+ Cauchy-Binet formula + systematic

c *,JU{n—k}
form implies that 22 C 21 + (255).

» same idea with another matrix for x;P;.
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Solving Support Minors over Fgm: too many solutions

With the equations & + 2>,

>

>

each linear equation P, removes a variable ¢4 11 that does not appear in
2>,

we can describe the vector spaces generated by 2>, for each bidegree (b,1)
in (x;,cr),

the Macaulay matrices always have a rank = # rows.
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Solving Support Minors over Fgm: too many solutions

With the equations & + 2>,
» each linear equation P, removes a variable ¢ 1,1 that does not appear in
2>,
» we can describe the vector spaces generated by 2-, for each bidegree (b,1)
in (x;,cr),
» the Macaulay matrices always have a rank = # rows.

But...
» we can eliminate m times more variables c¢; by unfolding the P,’s!
> that's SM-Fln = {Q: 1} +{Pi:i,J}.
> we analyse the vector spaces generated by the equations in any bidegree
(b,1) in x;,cT — syzygies — generic complexity.

Algebraic
Decoding

Magali Bardet

RD

26 / 41



Complexity of solving SI\/I-IF;“m Desodng

Magali Bardet

Fq o Fgm Fq
Ny =N =N

b,syz’
k i .
Fgm n—i\(k+b—1—i\ (n—k—-1\ lk+b-1 .
N —I;< . >< b—1 . b (exact)
b .
Fq ir1(k+b—i=1\(n—k-1 ,
=(m-1)Y (-1
N ayz = (M ),:Zl( ) ( b_i oy (conjecture)

(7)) )

Solving SM—Fqﬁn
We can solve SM—F}" by linearization at bidegree (b,1) whenever

F F . ‘ F, 01 . .
Ny T > M —1 with a cost 0 (m2./1/b M, ) operations in Fg.

27 /41



150 -
$
100 - . |
@ .
50 |- . . « MM |
. . SM+
* «Comb.
| | | | | | |
2 3 4 5 6 7 8 9 10

Target rank r

Figure: Theoretical log, complexities C of MM—IE‘q/SM—]F:;m(the best one, hybrid and
punctured version) and of the combinatorial attack for RD instances with fixed
(m,n, k) =(31,33,15) and various values of r. drgv(m,n, k,q=2) = 10.
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1,000 |

500

i . |+ MM complex. | |
. , SM+ complex.
. «Comb. complex.
hd t | | | | |
3 4 5 6 7 8 9

Target rank r

Figure: Same parameters as Fig. 1 but with g = 28.
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12

10

/

RD

—+— afor MM (any q)
a for SM+ (g =2)
—+—a for SM+ (g =28)

| | | J

[OSE =

4 5 6 7 8 9 10
Target rank r

Figure: Optimal values of a with (m, n, k) = (31,33,15), for MM-F, and SM—F;m.
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Conclusion

vVvYyyvyy

A powerful tool to solve problems that have an algebraic modeling,
Design specific algorithms for specific class of systems to be efficient.
A lot of parameters to choose, how to optimize?

New modeling: e.g. RD over F?

Optimize the linear algebra part?
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