Recent results on scattered spaces and MRD codes

Daniele Bartoli University of Perugia, Italy

OpeRA 2024

"Open Problems on Rank-Metric Codes" Caserta, 14 - 16 February 2024

1 Linear sets, Scattered linear sets, and connections

Linear sets, Scattered linear sets, and connections

2 Maximum scattered linear sets in $PG(1, \mathbb{F}_{q^n})$

Linear sets, Scattered linear sets, and connections

2 Maximum scattered linear sets in $PG(1, \mathbb{F}_{q^n})$

1 Maximum r-scattered linear sets in $PG(r, \mathbb{F}_{q^n})$

Linear sets, Scattered linear sets, and connections

② Maximum scattered linear sets in $PG(1, \mathbb{F}_{q^n})$

1 Maximum r-scattered linear sets in $PG(r, \mathbb{F}_{q^n})$

Rank-metric codes

1 Linear sets, Scattered linear sets, and connections

2 Maximum scattered linear sets in $PG(1, \mathbb{F}_{q^n})$

1 Maximum r-scattered linear sets in $PG(r, \mathbb{F}_{q^n})$

Rank-metric codes

Scattered sequences

Linear sets and scattered linear sets

Definition (Linear sets)

$$\mathbb{U} \leq_q \mathbb{F}_{q^n}^{r+1}$$
, $\dim_q(\mathbb{U}) = k$

$$L(\mathbb{U}) = \{\langle u \rangle_{\mathbb{F}_{q^n}} : u \in \mathbb{U} \setminus \{\mathbf{0}\}\} \subset \mathrm{PG}(r, \mathbb{F}_{q^n})$$

$$\mathbb{F}_q$$
-linear set of $\mathrm{PG}(r,\mathbb{F}_{q^n})$ of rank k

$$|\mathit{L}(\mathbb{U})| \leq \frac{q^k - 1}{q - 1}$$

$$k \leq \frac{n(r+1)}{2}$$

[Blokhuis and Lavrauw 2000]

Definition (Maximum scattered Linear sets in $PG(r, q^n)$)

$$\dim_q(\mathbb{U}) = k \leftarrow \text{maximum possible}$$
 $|L(\mathbb{U})| = \frac{q^k - 1}{q - 1} \leftarrow \text{maximum possible}$

Some applications

- blocking sets

 Ball, Blokhuis, Lavrauw, Lunardon, Polverino, Trombetti, Zhou...
- two-intersection sets

Blokhuis, Lavrauw. . .

- finite semifields
 - Cardinali, Polverino, Trombetti, Ebert, Marino, Lunardon...
- translation caps

B., Giulietti, Marino, Polverino...

translation hyperovals

Durante, Trombetti, Zhou...

Scattered and Maximum scattered linear sets are not rare in general

One seeks for sets with a prescribed shape in general

Scattered and Maximum scattered linear sets are not rare in general

One seeks for sets with a prescribed shape in general

"Geometric" constructions (projection, intersection, ...)

"polynomial" constructions (description via polynomials over finite fields)

Maximum Scattered linear sets in $PG(1, q^n)$

$$egin{aligned} f(X) &= \sum_i a_i X^{q^i} \in \mathbb{F}_{q^n}[X] \ & \mathbb{U} = \{(x, f(x)) \ : \ x \in \mathbb{F}_{q^n}\} \leq \mathbb{F}_{q^n}^2 \end{aligned}$$

Definition (Maximum scattered Linear sets in $PG(1, q^n)$)

$$\dim_q(\mathbb{U}) = n$$
 $|L(\mathbb{U})| = \frac{q^n-1}{q-1}$ \Longrightarrow $L(\mathbb{U})$ is Maximum scattered $f(X)$ scattered polynomial (Sheekey 2016)

Definition (B.-ZHOU; J. Alg. 2018)

$$f(X) = \sum_i a_i X^{q^i} \in \mathbb{F}_{q^n}[X]$$
 Scattered of index t if

$$\mathbb{U} = \left\{ (x^{q^t}, f(x)) : x \in \mathbb{F}_{q^n} \right\}$$

maximum scattered

Definition (B.-ZHOU; J. Alg. 2018)

$$f(X) = \sum_i a_i X^{q^i} \in \mathbb{F}_{q^n}[X]$$
 Exceptional Scattered of index t if

$$\mathbb{U}_{\mathbf{m}} = \left\{ \left(x^{q^t}, f(x) \right) : x \in \mathbb{F}_{q^{mn}} \right\}$$

maximum scattered for infinitely many m

Definition (B.-ZHOU; J. Alg. 2018)

$$f(X) = \sum_i a_i X^{q^i} \in \mathbb{F}_{q^n}[X]$$
 Scattered of index t if

$$\mathbb{U} = \left\{ (x^{q^t}, f(x)) : x \in \mathbb{F}_{q^n} \right\}$$

maximum scattered

Lemma

$$\mathbb{U} = \left\{ \left(x^{q^t}, f(x) \right) : x \in \mathbb{F}_{q^n} \right\}$$

 $L(\mathbb{U}) \subset \mathrm{PG}(1,q^n)$ maximum scattered linear set \iff

$$C_f$$
: $\frac{f(X)Y^{q^i}-f(Y)X^{q^i}}{X^qY-XY^q}=0\subset \mathrm{PG}(2,q^n)$

Lemma

$$\mathbb{U} = \left\{ (x^{q^t}, f(x)) : x \in \mathbb{F}_{q^n} \right\}$$

 $L(\mathbb{U})\subset \mathrm{PG}(1,q^n)$ maximum scattered linear set \iff

$$\frac{\mathcal{C}_f}{X^qY-XY^q}: \frac{f(X)Y^{q^t}-f(Y)X^{q^t}}{X^qY-XY^q}=0\subset \mathrm{PG}(2,q^n)$$

$$Hasse-Weil \Longrightarrow \deg(\mathcal{C}_f) < q^{n/4}$$

Lemma

$$\mathbb{U} = \left\{ (x^{q^t}, f(x)) : x \in \mathbb{F}_{q^n} \right\}$$

 $L(\mathbb{U})\subset \mathrm{PG}(1,q^n)$ maximum scattered linear set \iff

$$\frac{\mathcal{C}_f}{X^qY-XY^q}: \frac{f(X)Y^{q^t}-f(Y)X^{q^t}}{X^qY-XY^q}=0\subset \mathrm{PG}(2,q^n)$$

$$\begin{array}{l} \textit{Hasse-Weil} \Longrightarrow \deg(\mathcal{C}_{f}) < q^{n/4} \\ \mathbb{U} = \{(x, f(x)) \ : \ x \in \mathbb{F}_{q^n}\} \Longrightarrow \mathbb{U} = \left\{(x^{q^t}, g(x) = (f(x))^{q^t}) \ : \ x \in \mathbb{F}_{q^n}\right\} \end{array}$$

Lemma

$$\mathbb{U} = \left\{ \left(x^{q^t}, f(x) \right) : x \in \mathbb{F}_{q^n} \right\}$$

 $L(\mathbb{U})\subset \mathrm{PG}(1,q^n)$ maximum scattered linear set \iff

$$\mathcal{C}_f$$
: $\frac{f(X)Y^{q^i}-f(Y)X^{q^i}}{X^qY-XY^q}=0\subset \mathrm{PG}(2,q^n)$

$$\begin{aligned} \textit{Hasse-Weil} &\Longrightarrow \deg(\mathcal{C}_f) < q^{n/4} \\ \mathbb{U} &= \{(x, f(x)) \ : \ x \in \mathbb{F}_{q^n}\} \Longrightarrow \mathbb{U} = \left\{(x^{q^t}, g(x) = (f(x))^{q^t}) \ : \ x \in \mathbb{F}_{q^n}\right\} \\ & \deg\left(\frac{g(X)Y^{q^t} - g(Y)X^{q^t}}{X^qY - XY^q}\right) << \deg\left(\frac{f(X)Y - f(Y)X}{X^qY - XY^q}\right) \end{aligned}$$

$$\frac{C_f}{X^q Y - XY^q} : \frac{f(X)Y^{q^t} - f(Y)X^{q^t}}{X^q Y - XY^q} = 0$$

Theorem (B.-ZHOU; J. Alg. 2018)

- INDEX $0 \Longrightarrow X^{q^k}$, q > 5
- INDEX $1 \Longrightarrow \frac{X}{bX + X^{q^2}}$, $N_{\mathbb{F}_{q^n}/\mathbb{F}_q}(b) \neq 1$

$$\frac{C_f}{X^q Y - XY^q} = 0$$

Theorem (B.-ZHOU; J. Alg. 2018)

- INDEX $0 \Longrightarrow X^{q^k}$, q > 5
- INDEX $1\Longrightarrow rac{\mathsf{X}}{\mathsf{b}\mathsf{X}+\mathsf{X}^{\mathsf{q}^2}},\ \mathsf{N}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(b)
 eq 1$

Tools

- Estimation on the number and "type" of singular points
- Study the structure of the branches centered at singular points

$$\frac{C_f}{X^q Y - XY^q} = 0$$

Theorem (B.-ZHOU; J. Alg. 2018)

- INDEX $0 \Longrightarrow X^{q^k}$, q > 5
- INDEX $1 \Longrightarrow \begin{array}{c} {\sf X} \\ {\sf bX} + {\sf X}^{{\sf q}^2}, \; {\sf N}_{\mathbb{F}_{q^n}/\mathbb{F}_q}({\sf b})
 eq 1$

Tools

- Estimation on the number and "type" of singular points
- Study the structure of the branches centered at singular points

(B.-MONTANUCCI, JCTA 2021)

Classification of exceptional scattered monic polynomial of INDEX t=2 and partial classification for INDEX t>2

Exceptional Scattered polynomials via group theory

Theorem (Ferraguti, Micheli, J. Alg. 2021)

```
\begin{array}{l} \textit{f linearized nonmonomial polynomial} \\ \textit{d} := \max\{\deg_q(f), t\} \begin{array}{l} \textit{odd prime} \end{array} \implies \textit{f not exceptional scattered} \end{array}
```

Exceptional Scattered polynomials via group theory

Theorem (Ferraguti, Micheli, J. Alg. 2021)

f linearized nonmonomial polynomial $d := \max\{\deg_q(f), t\}$ odd prime

 \Longrightarrow f not exceptional scattered

Theorem (B., Giulietti, Zini, 2022)

f linearized nonmonomial polynomial $d := \max\{\deg_{a}(f), t\}$ odd

 \Longrightarrow f not exceptional scattered

r-fat polynomials

Definition

f linearized polynomial r-fat polynomial of index $t \in \{0, \dots, n-1\}$

1

 $\exists \ m_1,\ldots,m_r \in \mathbb{F}_{q^n}: \dim_{\mathbb{F}_q} \ker(f(x)-m_i x^{q^t}) > 1$

r-fat polynomials $\iff U = \{(x^{q^t}, f(x)) : x \in \mathbb{F}_{q^n}\}$ has r fat points

r-fat polynomials

Theorem (B. Micheli, Zini, Zullo, JCTA 2021)

There exist no exceptional r-fat polynomials whenever r > 0

Maximum *h*-Scattered linear sets in $PG(r, q^n)$

Definition (Linear sets)

$$\mathbb{U} \leq_q \mathbb{F}_{q^n}^{r+1}$$
, $\dim_q(\mathbb{U}) = k$

$$L(\mathbb{U}) = \{\langle u \rangle_{\mathbb{F}_{q^n}} : u \in \mathbb{U} \setminus \{\mathbf{0}\}\} \subset \mathrm{PG}(r, \mathbb{F}_{q^n})$$

 \mathbb{F}_{q} -linear set of $\mathrm{PG}(r,\mathbb{F}_{q^n})$ of rank k

$$W \leq_{q^n} \mathbb{F}_{q^n}^{r+1}$$

$$\mathbb{F}_{q^n}^{r+1}$$

 \mathbb{U} is said h-scattered if

$$\forall W \subset \mathbb{F}_{q^n}^{r+1}, \dim_{\mathbb{F}_{q^n}}(W) = h \Longrightarrow w_{\mathbb{U}}(W) \leq h$$

 $w_{\mathbb{U}}(W) = \dim_{\mathbb{F}_q}(\mathbb{U} \cap W)$

Maximum h-Scattered linear sets in $PG(r, q^n)$

Definition (Weight of a subspace)

 $W \leq_{q^n} \mathbb{F}_{q^n}^{r+1}$

$$w_{\mathbb{U}}(W)=\dim_{\mathbb{F}_q}(\mathbb{U}\cap W)$$

Definition (h-scattered subspace)

 \mathbb{U} is said h-scattered if

$$\forall W \subset \mathbb{F}_{a^n}^{r+1}, \dim_{\mathbb{F}_{a^n}}(W) = h \Longrightarrow w_{\mathbb{U}}(W) \leq h$$

1-scattered \Longrightarrow scattered

$$k \leq \frac{n(r+1)}{h+1}$$

[Csajbók, Marino, Polverino, Zullo 2021]

$$v = (v_1, \ldots, v_n) \in \mathbb{F}_{q^m}^n, \qquad u = (u_1, \ldots, u_n) \in \mathbb{F}_{q^m}^n$$

$$\operatorname{wt}_{\operatorname{rk}}(v) = \dim_{\mathbb{F}_q} \langle v_1, \dots, v_n \rangle_{\mathbb{F}_q}$$
 rank weight of v $\operatorname{d}_{\operatorname{rk}}(u,v) = \operatorname{wt}_{\operatorname{rk}}(u-v)$ rank distance

$$v=(v_1,\ldots,v_n)\in \mathbb{F}_{q^m}^n, \qquad u=(u_1,\ldots,u_n)\in \mathbb{F}_{q^m}^n$$
 $\operatorname{wt}_{\operatorname{rk}}(v)=\dim_{\mathbb{F}_q}\langle v_1,\ldots,v_n\rangle_{\mathbb{F}_q} \quad \text{rank weight of } v$ $\operatorname{d}_{\operatorname{rk}}(u,v)=\operatorname{wt}_{\operatorname{rk}}(u-v) \quad \text{rank distance}$

Definition (Delsarte 1978 - Gabidulin 1985)

An $[n,k]_{q^m/q}$ (rank-metric) code is a k-dimensional \mathbb{F}_{q^m} -subspace of $\mathbb{F}_{q^m}^n$ endowed with the rank distance.

$$d(\mathcal{C}) := d = \min \left\{ \operatorname{wt}_{\mathsf{rk}}(v) : v \in \mathcal{C}, v \neq 0 \right\}$$

 $\mathcal{C} \text{ is an } [n, k, d]_{q^m/q} \text{ code}$

Theorem (Singleton Bound - Delsarte 1978)

$$mk \leq \min\{m(n-d+1), n(m-d+1)\}$$

$$mk = min\{m(n-d+1), n(m-d+1)\} \Rightarrow C$$
 Maximum Rank Distance

$$d(\mathcal{C}) := d = \min \left\{ \operatorname{wt}_{\mathsf{rk}}(v) : v \in \mathcal{C}, v \neq 0 \right\}$$

 $\mathcal{C} \text{ is an } [n, k, d]_{q^m/q} \text{ code}$

Theorem (Singleton Bound - Delsarte 1978)

$$mk \leq \min\{m(n-d+1), n(m-d+1)\}$$

 $mk = \min\{m(n-d+1), n(m-d+1)\} \Rightarrow C$ Maximum Rank Distance

Theorem (Zini, Zullo 2021)

$$n := \frac{km}{h+1}$$
 L_U linear set of rank n in $PG(k-1, q^m)$

 L_U maximum h-scattered $\iff C_U^{\perp}$ MRD

$$d(\mathcal{C}) := d = \min \left\{ \operatorname{wt}_{\mathsf{rk}}(v) : v \in \mathcal{C}, v \neq 0 \right\}$$

 \mathcal{C} is an $[n, k, d]_{q^m/q}$ code

Theorem (Singleton Bound - Delsarte 1978)

$$mk \leq \min\{m(n-d+1), n(m-d+1)\}$$

$$\textit{mk} = \min\{\textit{m}(\textit{n}-\textit{d}+1), \textit{n}(\textit{m}-\textit{d}+1)\} \Rightarrow \mathcal{C} \textit{ Maximum Rank Distance}$$

Theorem (Zini, Zullo 2021)

$$n := \frac{km}{h+1}$$
 L_U linear set of rank n in PG $(k-1, q^m)$

$$L_U$$
 maximum h-scattered $\iff \mathcal{C}_U^{\perp}$ MRD

- Francesco's talk
- @ Giuseppe's talk

Maximum r-Scattered linear sets in $PG(r, q^n)$

Consider the linear set

$$\mathbb{U} := \{(x^{q^t}, f_1(x), \dots, f_r(x)) : x \in \mathbb{F}_{q^n}\}$$

where f_i are q-linearized

Maximum r-Scattered linear sets in $PG(r, q^n)$

Consider the linear set

$$\mathbb{U} := \{(x^{q^t}, f_1(x), \dots, f_r(x)) : x \in \mathbb{F}_{q^n}\}$$

where f_i are g-linearized

When $L(\mathbb{U})$ is maximum r-scattered?

Maximum r-Scattered linear sets in $PG(r, q^n)$

Consider the linear set

$$\mathbb{U} := \{ (x^{q^t}, f_1(x), \dots, f_r(x)) : x \in \mathbb{F}_{q^n} \}$$

where f_i are q-linearized

When $L(\mathbb{U})$ is maximum r-scattered?

Theorem

 $L(\mathbb{U})$ is maximum r-scattered \iff

$$\det \begin{pmatrix} x_1^{q^t} & f_1(x_1) & \cdots & f_r(x_1) \\ x_2^{q^t} & f_1(x_2) & \cdots & f_r(x_2) \\ \vdots & \vdots & & \vdots \\ x_{r+1}^{q^t} & f_1(x_{r+1}) & \cdots & f_r(x_{r+1}) \end{pmatrix} = 0$$

has only solutions (a_1,\ldots,a_{r+1}) such that a_1,\ldots,a_{r+1} are \mathbb{F}_q -dependent

Monomial case

$$f_i(x) = x^{q^{l_j}}, t = 0, l_1 < \ldots < l_r$$

$$F = \det \begin{pmatrix} X_1 & X_1^{q^{l_1}} & \cdots & X_1^{q^{l_r}} \\ X_2 & X_2^{q^{l_1}} & \cdots & X_2^{q^{l_r}} \\ \vdots & \vdots & & \vdots \\ X_{r+1} & X_{r+1}^{q^{l_1}} & \cdots & X_{r+1}^{q^{l_r}} \end{pmatrix},$$

$$G = \det \begin{pmatrix} X_1 & X_1^q & \cdots & X_1^{q^r} \\ X_2 & X_2^q & \cdots & X_2^{q^r} \\ \vdots & \vdots & & \vdots \\ X_{r+1} & X_{r+1}^q & \cdots & X_{r+1}^{q^r} \end{pmatrix}$$

Theorem

$$\mathbb{U}:=\{(x,x^{q^{l_1}},\ldots,x^{q^{l_r}}):x\in\mathbb{F}_{q^n}\}$$

 $L(\mathbb{U})$ is maximum r-scattered if and only if F/G=0 does not contain \mathbb{F}_{q^n} -rational points off G=0.

Theorem (B.-Zhou JCTA, 2020)

 $I = \{0, i_1, i_2, \dots, i_r\}$, $0 < i_1 < \dots < i_r$ NOT an arithmetic progression.

- (a) $i_2 i_0 \neq 2(i_1 i_0)$;
- (b) $i_2 i_0 = 2(i_1 i_0)$, k > 3 and $q \ge 7$;
- (c) $i_2 i_0 = 2(i_1 i_0)$, k > 3, q = 3, 4, 5 and $i_1 i_0 > 1$;
- (d) $i_2 i_0 = 2(i_1 i_0)$, k > 3 and q = 2 with $i_1 i_0 > 2$.

 $\exists N$ such that $L(\mathbb{U})$ is not maximum r-scattered if n>N

Theorem (B.-Zini-Zullo, IEEE 2023)

$$\mathbb{U} := \{(x^{q^t}, f_1(x), \dots, f_r(x)) : x \in \mathbb{F}_{q^n}\}$$

$L(\mathbb{U})$ maximum r-scattered

- If t = 0, and $(q, \deg_q(f_1(x))) \notin \{(2, 2), (2, 4), (3, 2), (4, 2), (5, 2)\}$ then f_i is a monomial
- If t > 0 and $\deg(f_i(x)) > \max\{q^t, \deg(f_1(x))\}$ for each $i = 2, \ldots, r$, then $f_1(x)$ is exceptional scattered of index t.

Tools

$$F(X_{1},...,X_{n},T) = F_{0}(X_{1},...,X_{n}) + F_{1}(X_{1},...,X_{n})T + \cdots + F_{d}(X_{1},...,X_{n})T^{d}$$

$$S: F(X_{1},...,X_{n},T) = 0$$

 $F_0(X_1,\ldots,X_n)$ has an absolutely irreducible factor non-repeated and \mathbb{F}_q -rational

 ${\mathcal S}$ contains an absolutely irreducible ${\mathbb F}_q$ -rational component

 \mathcal{H} hypersurface

 $\mathcal{H}\cap\mathcal{S}$ contains an absolutely irreducible non-repeated \mathbb{F}_q -rational component

 $\mathcal S$ contains an absolutely irreducible $\mathbb F_q$ -rational component

Specific types of RD codes: Minimal RD codes

Definition

 $t=1\Longrightarrow L_{\mathbb{U}}$ is (linear) cutting (strong blocking set)

Theorem

 $L_{\mathbb{U}}$ linear set cutting $\iff \mathcal{C}_{\mathbb{U}}$ minimal rank-metric code

Alfarano, Borello, Neri, Ravagnani 2022

Specific types of RD codes: Minimal RD codes

Definition

 $t=1\Longrightarrow L_{\mathbb{U}}$ is (linear) cutting (strong blocking set)

Theorem

 $L_{\mathbb{U}}$ linear set cutting $\iff \mathcal{C}_{\mathbb{U}}$ minimal rank-metric code

Alfarano, Borello, Neri, Ravagnani 2022

Definition

 $[n,k]_{q^m/q}$ code \mathcal{C}

 $v \in \mathcal{C}$ minimal codeword \iff $\forall v' \in \mathcal{C}, \ \sigma^{\mathsf{rk}}(v') \subseteq \sigma^{\mathsf{rk}}(v)$ implies $v' = \alpha v$ for some $\alpha \in \mathbb{F}_{q^m}$

 \mathcal{C} is minimal if all its codewords are minimal

Specific types of RD codes: Minimal RD codes

Definition

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

 $t=1\Longrightarrow L_{\mathbb{U}}$ is (linear) cutting (strong blocking set)

Theorem

 $L_{\mathbb{U}}$ linear set cutting $\iff \mathcal{C}_{\mathbb{U}}$ minimal rank-metric code

Alfarano, Borello, Neri, Ravagnani 2022

See Giuseppe's talk

Specific types of RD codes: Covering RD codes

Definition (Saturating Set)

$$\begin{array}{c} S \subset \mathrm{PG}(k-1,q^m) \\ \begin{array}{c} \rho\text{-saturating} \end{array} \iff \begin{array}{c} \forall P \in \mathrm{PG}(k-1,q^m) \\ P \in \langle P_1,\ldots,P_{\rho+1} \rangle \\ P_1,\ldots,P_{\rho+1} \in S \end{array}$$

Theorem

 ρ -saturating sets \iff $(\rho + 1)$ -covering codes

Specific types of RD codes: Covering RD codes

Definition (Saturating Set)

$$S \subset \mathrm{PG}(k-1,q^m) \iff \begin{array}{c} \forall P \in \mathrm{PG}(k-1,q^m) \\ P \in \langle P_1,\ldots,P_{\rho+1} \rangle \\ P_1,\ldots,P_{\rho+1} \in S \end{array}$$

Theorem

$$\rho$$
-saturating sets \iff $(\rho + 1)$ -covering codes

What if S is a linear set? [Bonini, Borello, and Byrne]

- Oconstruction of saturating linear sets meeting the lower bound
- ② link with other properties (scatteredness)
- When the bound is not tight?

Specific types of RD codes: Covering RD codes

Definition (Saturating Set)

$$\begin{array}{c} S \subset \mathrm{PG}(k-1,q^m) \\ \begin{array}{c} \rho\text{-saturating} \end{array} \iff \begin{array}{c} \forall P \in \mathrm{PG}(k-1,q^m) \\ P \in \langle P_1,\ldots,P_{\rho+1} \rangle \\ P_1,\ldots,P_{\rho+1} \in S \end{array}$$

Theorem

$$\rho$$
-saturating sets \iff $(\rho + 1)$ -covering codes

What if S is a linear set? [Bonini, Borello, and Byrne]

- construction of saturating linear sets meeting the lower bound
- Iink with other properties (scatteredness)
- When the bound is not tight?

See Giuseppe's talk

Definition (B., Marino, Neri, Vicino 2022)

 $i_1, i_2, \ldots, i_m \in \mathbb{N}$

 f_1,\ldots,f_s linearized q-polynomials over \mathbb{F}_{q^n} in $\underline{X}=(X_1,\ldots,X_m)$

 $\mathcal{F} := (f_1, \dots, f_s)$ is $(\mathcal{I}; h)_{q^n}$ -scattered sequence of order m

$$\mathbb{U}_{\mathcal{F}} := \left\{ \begin{array}{l} (x_1^{q^{i_1}}, \dots, x_m^{q^{i_m}}, f_1(\underline{x}), \dots, f_s(\underline{x})) : \\ \underline{x} = (x_1, \dots, x_m) \in \mathbb{F}_{q^n}^m \end{array} \right\} \subseteq_{\mathbb{F}_q} \mathbb{F}_{q^n}^{s+m}$$
is maximum *h*-scattered in $\mathbb{F}_{q^n}^{s+m}$,

Definition (B. Marino, Neri, Vicino 2022)

$$i_1,i_2,\ldots,i_m\in\mathbb{N}$$
 f_1,\ldots,f_s linearized q -polynomials over \mathbb{F}_{q^n} in $\underline{X}=(X_1,\ldots,X_m)$

$$\mathcal{F}:=(f_1,\ldots,f_s) \text{ is } (\mathcal{I};h)_{q^n}\text{-scattered sequence of order } m$$
 \Uparrow

$$\mathbb{U}_{\mathcal{F}} := \left\{ \begin{array}{l} (x_1^{q^{l_1}}, \dots, x_m^{q^{l_m}}, f_1(\underline{x}), \dots, f_s(\underline{x})) : \\ \underline{x} = (x_1, \dots, x_m) \in \mathbb{F}_{q^n}^m \end{array} \right\} \subseteq_{\mathbb{F}_q} \mathbb{F}_q^{s+m}$$
 is maximum *h*-scattered in $\mathbb{F}_{q^n}^{s+m}$,

$$\begin{array}{c} f(X) \\ \text{scattered polynomial} \\ \text{of index } t \end{array} \iff \begin{array}{c} \{(x^{q^t},f(x)):x\in\mathbb{F}_{q^n}\}\subseteq_{\mathbb{F}_q}\mathbb{F}_{q^n}^2 \\ \text{scattered} \end{array}$$

Sheekey, B.-Zhou

Definition (B. Marino, Neri, Vicino 2022)

$$i_1,i_2,\ldots,i_m\in\mathbb{N}$$
 f_1,\ldots,f_s linearized q -polynomials over \mathbb{F}_{q^n} in $\underline{X}=(X_1,\ldots,X_m)$

$$\mathcal{F}:=(f_1,\ldots,f_s)$$
 is $(\mathcal{I};h)_{q^n}$ -scattered sequence of order m

$$\updownarrow$$

$$\mathbb{U}_{\mathcal{F}} := \left\{ \begin{array}{l} (x_1^{q^{i_1}}, \dots, x_m^{q^{i_m}}, f_1(\underline{x}), \dots, f_s(\underline{x})) : \\ \underline{x} = (x_1, \dots, x_m) \in \mathbb{F}_{q^n}^m \end{array} \right\} \subseteq_{\mathbb{F}_q} \mathbb{F}_{q^n}^{s+m}$$
is maximum *h*-scattered in $\mathbb{F}_{q^n}^{s+m}$,

$$\begin{array}{c} f(X) \\ \text{scattered polynomial} \\ \text{of index } t \end{array} \iff \begin{array}{c} \{(x^{q^t},f(x)):x\in\mathbb{F}_{q^n}\}\subseteq_{\mathbb{F}_q}\mathbb{F}_{q^n}^2 \\ \text{scattered} \end{array}$$

Sheekey, B.-Zhou

f is a $(\{t\}, 1)$ -scattered sequence of order 1

Definition (B. Marino, Neri, Vicino 2022)

$$i_1,i_2,\ldots,i_m\in\mathbb{N}$$
 f_1,\ldots,f_s linearized q -polynomials over \mathbb{F}_{q^n} in $\underline{X}=(X_1,\ldots,X_m)$

$$\mathcal{F} := (f_1, \dots, f_s)$$
 is $(\mathcal{I}; h)_{q^n}$ -scattered sequence of order m

 \updownarrow

$$\mathbb{U}_{\mathcal{F}} := \left\{ \begin{array}{l} (x_1^{q^{i_1}}, \dots, x_m^{q^{i_m}}, f_1(\underline{x}), \dots, f_s(\underline{x})) : \\ \underline{x} = (x_1, \dots, x_m) \in \mathbb{F}_{q^n}^m \end{array} \right\} \subseteq_{\mathbb{F}_q} \mathbb{F}_{q^n}^{s+m}$$
 is maximum *h*-scattered in $\mathbb{F}_{q^n}^{s+m}$,

$$\mathbb{U} := \{ (x^{q^t}, f_1(x), \dots, f_r(x)) : x \in \mathbb{F}_{q^n} \} \iff$$
maximum *r*-scattered

 $f_1, \dots, f_r \iff (\{t\}, r)$ -scattered sequence of order 1

B.-Zhou, B.-Zini-Zullo

Definition (B., Marino, Neri, Vicino 2022)

$$i_1,i_2,\ldots,i_m\in\mathbb{N}$$
 f_1,\ldots,f_s linearized q -polynomials over \mathbb{F}_{q^n} in $\underline{X}=(X_1,\ldots,X_m)$

$$\mathcal{F}:=(f_1,\ldots,f_s) \text{ is } (\mathcal{I};h)_{q^n}\text{-scattered sequence of order } m$$

$$\mathbb{U}_{\mathcal{F}} := \left\{ \begin{array}{l} (x_1^{q'_1}, \dots, x_m^{q'_m}, f_1(\underline{x}), \dots, f_s(\underline{x})) : \\ \underline{x} = (x_1, \dots, x_m) \in \mathbb{F}_{q^n}^m \end{array} \right\} \subseteq_{\mathbb{F}_q} \mathbb{F}_q^{s+m}$$
is maximum *h*-scattered in $\mathbb{F}_{q^n}^{s+m}$,

Definition

 $(\mathcal{I};h)_{q^n}$ -scattered sequence $\mathcal{F}:=(f_1,\ldots,f_s)$ of order m is **indecomposable** if it not the direct sum of two smaller scattered sequences

$$\mathbb{U} := \left\{ \left(x, y, x^q + y^{q^2}, x^{q^2} + y^q + y^{q^2} \right) : x, y \in \mathbb{F}_{q^4} \right\} \subset \mathbb{F}_{q^4}^4$$
 indecomposable $((0,0),1)_{q^4}$ -scattered sequence of order larger than one for $q = 2^{2s+1}$

$$\mathbb{U} := \left\{ \left(x, y, x^q + y^{q^2}, x^{q^2} + y^q + y^{q^2} \right) : x, y \in \mathbb{F}_{q^4} \right\} \subset \mathbb{F}_{q^4}^4$$
 indecomposable $((0,0),1)_{q^4}$ -scattered sequence of order larger than one for $q = 2^{2s+1}$

Definition

$$\alpha, \beta, \gamma \in \mathbb{F}_{q^n}^*$$
, and $I \neq J \in \mathbb{N}$, $I, J < n-1$

$$\mathbb{U}_{\alpha,\beta,\gamma}^{I,J,n} := \left\{ \left(x, y, x^{q^I} + \alpha y^{q^J}, x^{q^J} + \beta y^{q^I} + \gamma y^{q^J} \right) : x, y \in \mathbb{F}_{q^n} \right\}.$$

Theorem

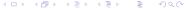
$$\gcd(I,J,n)=1$$

$$P_{\alpha,\beta,\gamma}^{I,J}(X) := \begin{cases} X^{q^{J-I}+1} + \gamma X - \alpha \beta, & \text{if } I < J, \\ X^{q^{I-J}+1} + \gamma X^{q^{I-J}} - \alpha \beta, & \text{if } I > J, \end{cases}$$
(1)

$$P_{\alpha,\beta,\gamma}^{I,J}(X)$$
 no roots in $\mathbb{F}_{q^n} \Longrightarrow \begin{array}{c} \mathbb{U}_{\alpha,\beta,\gamma}^{I,J,n} \ exceptional \ scattered \ \mathbb{U}_{\alpha,\beta,\gamma}^{I,J,n} \ (2,2\max\{I,J\})_q$ -evasive

Corollary

$$P_{\alpha,\beta,\gamma}^{I,J}(X)$$
 no roots in $\mathbb{F}_{q^n} \implies \mathbb{U}_{\alpha,\beta,\gamma}^{I,J,n}$ indecomposable cutting $\max\{I,J\} \leq (n-1)/2 \implies \mathbb{U}_{\alpha,\beta,\gamma}^{I,J,n}$ exceptional scattered



Link with algebraic varieties

• f(x) is scattered \iff $rank <math>\begin{pmatrix} x & f(x) \\ y & f(y) \end{pmatrix} = 2$ unless $x = \lambda y$ with $\lambda \in \mathbb{F}_q$

$$\frac{Xf(Y)-Yf(X)}{X^qY-XY^q}=0 \rightarrow \mathsf{plane}\;\mathsf{curve}$$

Link with algebraic varieties

•
$$f(x)$$
 is scattered \iff $rank \begin{pmatrix} x & f(x) \\ y & f(y) \end{pmatrix} = 2$ unless $x = \lambda y$ with $\lambda \in \mathbb{F}_q$

$$\frac{Xf(Y) - Yf(X)}{X^q Y - XY^q} = 0 \implies \text{plane curve}$$

• $(x^{q^I} + \alpha y^{q^J}, x^{q^J} + \beta y^{q^I} + \gamma y^{q^J})$ is $((0,0),1)_{q^4}$ -scattered sequence

$$\iff rank \begin{pmatrix} x & y & x^{q^l} + \alpha y^{q^J} & x^{q^J} + \beta y^{q^I} + \gamma y^{q^J} \\ z & t & z^{q^I} + \alpha t^{q^J} & z^{q^J} + \beta t^{q^I} + \gamma t^{q^J} \end{pmatrix} = 2$$

unless $(x,y) = \lambda(z,t)$ with $\lambda \in \mathbb{F}_q$

$$\begin{cases} xt - zy = 0 \\ x(z^{q^l} + \alpha t^{q^J}) - z(x^{q^l} + \alpha y^{q^J}) = 0 \\ x(z^{q^J} + \beta t^{q^l} + \gamma t^{q^J}) - z(x^{q^J} + \beta y^{q^l} + \gamma y^{q^J}) = 0 \end{cases} \rightarrow \text{space curve}$$

Scattered sequences: new constructions and infinite families

Definition

$$I, J, n, m \in \mathbb{N}$$
, $I < J < n$, $m \ge 3$

$$\alpha_1, \ldots, \alpha_m \in \mathbb{F}_{a^n}^*$$

$$U_{\mathbf{A}}^{I,J} := \begin{cases} (x_1, \dots, x_m, x_1^{q^I} + \alpha_2 x_2^{q^J}, \dots, x_{m-1}^{q^I} + \alpha_m x_m^{q^J}, x_m^{q^I} + \alpha_1 x_1^{q^J}) \\ \vdots x_1, \dots, x_m \in \mathbb{F}_{q^n} \end{cases},$$

where $\mathbf{A} := (\alpha_1, \dots, \alpha_m)$

Theorem (B.-Giannoni-Marino 2023)

Then the set $U_{\mathbf{A}}^{I,J}$ is exceptional scattered and indecomposable... often

See Alessandro's talk

Maximum 2-scattered linear set

Main open problem about maximum h-scattered in $V(r, q^n)$ Do they exist for every admissible values of r, n and $h \ge 2$?

Maximum 2-scattered linear set

Main open problem about maximum h-scattered in $V(r, q^n)$ Do they exist for every admissible values of r, n and $h \ge 2$?

 $2 \mid rn \Longrightarrow \exists maximum 1$ -scattered linear sets in $V(r, q^n)$

Ball, Blokhuis, Lavrauw, 2000 Blokhuis, Lavrauw, 2000 Csajbók, Marino, Polverino, Zullo, 2017 B., Giulietti, Marino, Polverino, 2018

Maximum 2-scattered linear set

Main open problem about maximum h-scattered in $V(r, q^n)$ Do they exist for every admissible values of r, n and $h \ge 2$?

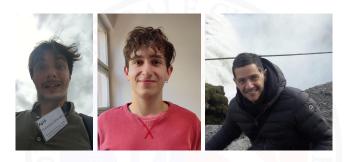
 $2 \mid rn \Longrightarrow \exists maximum 1$ -scattered linear sets in $V(r, q^n)$

Ball, Blokhuis, Lavrauw, 2000 Blokhuis, Lavrauw, 2000 Csajbók, Marino, Polverino, Zullo, 2017 B., Giulietti, Marino, Polverino, 2018

What about h = 2?

- $r \equiv 0 \pmod{3}$ [Csajbók, Marino, Polverino and Zullo, 2021]
- r = 4 and n = 3

Our contribution



$$U := \{(x, y, x^{q^2} + y^q, x^q + y^{q^3}) : x, y \in \mathbb{F}_{q^6}, Tr_{q^6/q^2}(x) = Tr_{q^6/q^2}(y) = 0\}.$$

Proposition

- U is 1-scattered
- $ext{ } ext{ } ext$
- ③ $W \leq \mathbb{F}_{q^6}^4$ q^2 -rational hyperplane $\Longrightarrow \dim_{\mathbb{F}_q}(W' \cap U) \leq 2 \ \forall W' \leq W$ of dimension 2 and not q^2 -rational

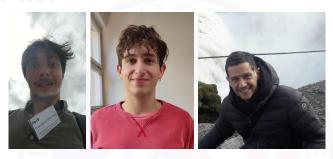
Our contribution

$$U := \{(x, y, x^{q^2} + y^q, x^q + y^{q^3}) : x, y \in \mathbb{F}_{q^6}, Tr_{q^6/q^2}(x) = Tr_{q^6/q^2}(y) = 0\}.$$

Theorem

U is 2-scattered

Our contribution



$$U := \{(x, y, x^{q^2} + y^q, x^q + y^{q^3}) : x, y \in \mathbb{F}_{q^6}, Tr_{q^6/q^2}(x) = Tr_{q^6/q^2}(y) = 0\}.$$

Theorem

U is 2-scattered

- Case by case analysys
- Polynomial systems
- No curves nor varieties :-(
- $lackbox{0} \Longrightarrow \exists \ 2\text{-scattered} \ V(r,q^6) \ \text{for} \ r=4 \ \text{and} \ r \geq 6$

Open questions, future directions

Determine whether U is 2-saturating

Construct h-scattered linear sets using sequences

Find the automorphism groups

Find a lower bound on the number of inequivalent examples

Generalize U

DIPARTIMENTO DI MATEMATICA E INFORMATICA

13th International Workshop on Coding and Cryptography

WCC 2024

University of Perugia, Italy, June 17–21, 2024 https://wcc2024.sites.dmi.unipg.it

THANK YOU

FOR YOUR ATTENTION