# Zeta Polynomials of Rank-Metric Codes 

Eimear Byrne University College Dublin Open Problems in Rank-Metric Codes

Caserta, Feb 14-16, 2024

## The Zeta Function of a Curve

- $\mathscr{X}$ non-singular projective curve over $\mathbb{F}_{q}$,
- $N_{k}$ the number of $\mathbb{F}_{q^{k}}$-rational points of $\mathscr{X}$,

The zeta-function of $\mathscr{X}$ is

$$
Z(\mathscr{X}, T)=\exp \left(\sum_{k \geq 1} \frac{N_{k}}{k} T^{k}\right) .
$$

## Theorem 1

The zeta function of any non-singular projective curve of genus $g$ can be expressed as

$$
Z(\mathscr{X}, T)=\frac{P(T)}{(1-T)(1-q T)},
$$

some $P(T) \in \mathbb{Q}[T], \operatorname{deg} P(T) \leq 2 g .|\omega|=q^{-1 / 2}$ for each root $\omega$ of $P(T)$.

Hartshorne, Algebraic Geometry. Springer, New York (1977). Graduate Texts in Math, No. 52.

## Zeta Functions for Hamming-Metric Codes

## Definition 2 (Duursma 1999)

The zeta polynomial of a (Hamming metric) $\mathbb{F}_{q}-[n, k, d]$ code $C$ is the unique polynomial $P(T)$ of degree at most $n-d$ such that

$$
\frac{P(T)}{(1-T)(1-q T)}(T x+(1-T) y)^{n}=\cdots+\frac{W(x, y)-x^{n}}{q-1} T^{n-d}+\cdots .
$$

The quotient

$$
Z(T):=\frac{P(T)}{(1-T)(1-q T)}
$$

is called the zeta function of $C$.

- Gives proofs of the Mallows-Sloane bounds.
- Obtains a classification of extremal self-dual codes.
- Versions of Greene's theorem.
- Raises conjectures on the 'Riemann hypothesis' for linear codes.
I. Duursma, 'Weight distributions of geometric Goppa codes,'Trans. Amer. Math. Soc., 351(9):3609-3639, 1999.


## Rank-Metric Codes

- These are linear spaces of matrices, endowed with the rank metric.
- Introduced by Delsarte (1978), Gabidulin (1986) and Roth (1991).
- Studied more after 2000 in the context of code-based-cryptosystems (Gabidulin, Loidreau, Gaborit, Couvreur, most of France).
- Since 2008, generated interest among algebraic coding theorists due to their applicability in network error correction.

[^0]
## Rank-Metric Codes

## Definition 3

A linear $\mathbb{F}_{q^{-}}[m \times n, k, d]$ rank-metric code $C$ is a $k$-dimensional subspace of $\mathbb{F}_{q}^{m \times n}$ of minimum rank distance

$$
d=\min \{\operatorname{rk}(A-B): A, B \in C\}
$$

- rk is a distance function on $\mathbb{F}_{q^{-}}[m \times n, k, d]$.
- $C$ is optimal if $k$ attains the max. possible dimension for fixed $m, n, d$.


## Theorem 4 (Rank-metric Singleton bound)

If $C$ is an $[m \times n, k, d]$ code then $k \leq \max (m, n)(\min (m, n)-d+1)$.

- Codes that meet the rank Singleton bound are called maximum rank distance codes (MRD).
- MRD codes exist for all $q, m, n, d$.


## Shortened Subcodes and Binomial Moments

## Definition 5 (The shortened subcode of $C$ )

The shortened subcode of $C$ wrt $U \subseteq \mathbb{F}_{q}^{n}$ is:

$$
C(U):=\{X \in C: \operatorname{colspace}(X) \leq U\} .
$$

## Definition 6 (The Binomial Moments of $C$ )

$$
\begin{gathered}
B_{u}:=\sum_{\operatorname{dim} U=u}(|C(U)|-1) \text { and } b_{u}:=\left[\begin{array}{c}
n \\
u+d
\end{array}\right]^{-1} B_{u+d} \\
B_{u}=\left\{\begin{array}{cl}
0 & \text { if } u<d, \\
{\left[\begin{array}{l}
n \\
u
\end{array}\right]\left[\begin{array}{c}
k-m(n-u) \\
i
\end{array}\right]} & \text { if } u>n-d^{\perp} .
\end{array}\right.
\end{gathered}
$$

The $B_{u}$ are determined if $C$ is MRD $\left(n-d^{\perp}=d-2\right)$.

## The Rank-Weight Enumerator

## Definition 7

The rank-weight enumerator an $\mathbb{F}_{q}-[n \times m, k]$ code $C$ is:

$$
W(x, y)=\sum_{i=0}^{n} W_{i} x^{n-i} y^{i}
$$

where $W_{t}:=\mid\{X \in C:$ rk $X=t\} \mid$ for $0 \leq t \leq n$.
By Möbius inversion, we have the following relations:
Theorem 8 (Ravagnani, 2015)

- $b_{u}=\left[\begin{array}{c}n \\ u+d\end{array}\right]^{-1} \sum_{i=1}^{u+d} W_{i}\left[\begin{array}{c}n-i \\ n-u-d\end{array}\right]$
- $W_{u}=\left[\begin{array}{l}n \\ t\end{array}\right] \sum_{i=d}^{u}(-1)^{u-i} q^{\binom{u-i}{2}}\left[\begin{array}{l}t \\ i\end{array}\right] b_{i-d}$
A. Ravagnani, 'Rank-metric codes and their duality theory,' Designs, Codes Cryptogr., 2015.


## $q$-Bernstein Polynomials

## Definition 9

$\mathscr{B}_{i}^{n}(x, y):=\left[\begin{array}{l}n \\ i\end{array}\right] y^{i^{i}} \prod_{j=0}^{n-i-1}\left(x-q^{j} y\right)$ is called a $q$-Bernstein polynomial.
We have the following inversion formulae:

$$
\begin{aligned}
x^{n-i} y^{i} & =\left[\begin{array}{c}
n \\
i
\end{array}\right]^{-1} \sum_{t=i}^{n}\left[\begin{array}{c}
t \\
i
\end{array}\right] \mathscr{B}_{t}^{n}(x, y) \\
\mathscr{B}_{i}^{n}(x, y) & =\left[\begin{array}{c}
n \\
i
\end{array}\right] \sum_{t=0}^{n-i}(-1)^{t} q^{\binom{t}{2}}\left[\begin{array}{c}
n-i \\
t
\end{array}\right] x^{t} y^{n-t} .
\end{aligned}
$$

We thus get:

$$
W(x, y)=\sum_{i=0}^{n} W_{i} x^{n-i} y^{i}=\sum_{i=d}^{n} b_{i-d} \mathscr{B}_{i}^{n}(x, y)+x^{n} .
$$

## Shortened Subcodes, Binomial Moments and $W(x, y)$

Example 10
Here's an $\mathbb{F}_{2^{-}}[3 \times 3,4,2]$ code with $W(x, y)=x^{3}+13 x y^{2}+2 y^{3}$ and $d^{\perp}=1$.

$$
C=\left\langle\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]\right\rangle .
$$

- $C(U)=\{0\}$ if $\operatorname{dim} U \leq 1$.
- If $\operatorname{dim} U=2$ then $|C(U)|=2,2,2,2,4,4,4$.

$$
\begin{aligned}
& b_{0}=\frac{13}{7}, b_{1}=2^{4}-1 \\
& W(x, y)=x^{3}+\left[\begin{array}{l}
3 \\
2
\end{array}\right](x-y) b_{0}+\left[\begin{array}{l}
3 \\
3
\end{array}\right] b_{1} \\
&=x^{3}+7(x-y) y^{2} \frac{13}{7}+15 y^{3} \\
&=x^{3}+13 x y^{2}+2 y^{3} .
\end{aligned}
$$

## Weight Enumerators

The weight enumerator is an important invariant of a code.
For example, weight enumerators relate codes to designs, strongly regular graphs and association schemes.

It also tells us precisely how effective the code is for transmitting information.

- For some extremal codes, the weight enumerator is determined.
- In the Hamming metric, this occurs for MDS codes.
- In the rank metric, this occurs for MRD codes.

$$
\begin{aligned}
M_{m \times n, d}(x, y) & =x^{n}+\sum_{i=d}^{n} \underbrace{\left(q^{m(i-d+1)}-1\right)}_{b_{i-d}} \underbrace{\left[\begin{array}{l}
n \\
i
\end{array}\right] y^{i} \prod_{t=0}^{n-i-1}\left(x-q^{t} y\right)}_{\mathscr{B}_{i}^{n}(x, y)} . \\
& =x^{n}+\sum_{i=d}^{n} b_{i-d} \mathscr{B}_{i}^{n}(x, y)
\end{aligned}
$$

## MRD Weight Enumerators

- If $C$ is MRD, then its weight enumerator is determined (Delsarte, 1978).

$$
M_{n \times m, d}(x, y)=x^{n}+\sum_{i=d}^{n}\left(q^{m(i-d+1)}-1\right)\left[\begin{array}{l}
n \\
i
\end{array}\right] y^{i} \prod_{t=0}^{n-i-1}\left(x-q^{t} y\right) .
$$

- The MRD weight enumerators

$$
\left\{M_{n \times m, d}(x, y): 0 \leq d \leq n\right\} \cup\left\{x^{n}\right\}
$$

are a $\mathbb{Q}$-basis for the space of all $m \times n$ 'weight enumerators' (homogeneous polys of degree $n$ ).

- If $C$ is an $[m \times n, k, d]$ code there exist unique coefficients $p_{i} \in \mathbb{Q}$ s.t.

$$
W(x, y)=p_{0} M_{n \times m, d}(x, y)+\cdots+p_{r} M_{n \times m, n}(x, y) .
$$

## Equivalent Expressions of the Weight Enumerator

$$
\begin{aligned}
W(x, y) & =x^{n}+\sum_{i=d}^{n} W_{i} x^{n-i} y^{i} \\
& =x^{n}+\sum_{i=d}^{n} b_{i-d} \mathscr{B}_{i}^{n}(x, y) \\
& =\sum_{i=0}^{n-d} p_{i} M_{n \times m, d+i}(x, y)
\end{aligned}
$$

## Definition 11

- The zeta polynomial of $C$ is $P(T)=\sum_{j=0}^{n-d} p_{j} T^{j}$.
- The zeta function of $C$ is defined to be $Z(T):=\sum_{j \geq 0} b_{j} T^{j}$, where $b_{j}=q^{k-m(n-j-d)}-1, j>n-d-d^{\perp}$.


## Recurrence Relations

From the different expressions of the weight enumerator we obtain:

$$
p_{j}=b_{j}-\left(q^{m}+1\right) b_{j-1}+q^{m} b_{j-2} .
$$

Therefore:

$$
Z(T)=\left(q^{m}+1\right) T Z(T)-q^{m} T^{2} Z(T)+P(T),
$$

The recurrence relation gives us:

$$
Z(T)=\frac{P(T)}{(1-T)\left(1-q^{m} T\right)}
$$

## Zeta Functions, Zeta Polynomials, Weight Enumerators

Theorem 12 (B., Blanco-Chacón, Duursma, Sheekey, 2018)

$$
Z(T) \mathscr{B}_{n}(T)=\frac{P(T) \mathscr{B}_{n}(T)}{(1-T)\left(1-q^{m} T\right)}=\cdots+\frac{W(x, y)-x^{n}}{q^{m}-1} T^{n-d}+\cdots .
$$

$P(T)$ is the unique polynomial of degree at most $n-d$ such that

$$
W(x, y)=\sum_{i=0}^{n-d} p_{i} M_{m \times n, d+i}(x, y) .
$$

- $\mathscr{B}_{n, r}(x, y)=\left[\begin{array}{l}n \\ r\end{array}\right] \prod_{j=0}^{r-1}\left(x-q^{j} y\right) y^{n-r}$.
- $\mathscr{B}_{n}(T):=\sum_{r=0}^{n} \mathscr{B}_{n, r}(x, y) T^{r}$.
- If $C$ is MRD then $P(T)=1$.


## Duality for the Zeta Polynomial

## Theorem 13 (B., Blanco-Chacón, Duursma, Sheekey, 2018)

$$
P^{\perp}(T)=T^{n-d-d^{\perp}+2} q^{m(n-d+1)-k} P\left(\frac{1}{q^{m} T}\right)
$$

If $C$ is formally self-dual then

$$
P(T)=T^{n-2 d+2} q^{m(n-d+1)-k} P\left(\frac{1}{q^{m} T}\right)
$$

and the roots of $P(T)$ occur in pairs $\left(\alpha,\left(q^{m} \alpha\right)^{-1}\right)$.
Then

$$
|\alpha|=\left|\left(q^{m} \alpha\right)^{-1}\right| \Leftrightarrow|\alpha|=q^{-m / 2} .
$$

## Riemann Hypothesis for Hamming Weight Enumerators

## Definition 14

We say that a Hamming weight enumerator $W(x, y)$ satisfies the Riemann hypothesis $(\mathrm{RH})$ if all the roots of its zeta polynomial $P(T)$ have modulus $q^{-1 / 2}$.

- $Z(T)$ is the generating function of binomial moments of a code.
- Codes whose zeta functions behave like those of curves will satisfy RH.
- It has been conjectured that all codes whose parameters meet the Mallows-Sloane bound satisfy RH.
- It has been conjectured that a sufficient condition for RH of a formally self-dual Hamming metric code is that it has weight distribution close to a random code.
- The Riemann hypothesis has been studied in the more general setting of a self-dual weight enumerator (Chinen \& Imamura, 2021).


## The Riemann Hypothesis for Rank Metric Codes

## Example 15

Any MRD code satisfies RH - it has $P(T)=1$ !

## Example 16

- Take an extended binary quadratic residue code in $\mathbb{F}_{2}^{18}$.
- Puncture and shorten this code to get a code in $\mathbb{F}_{2}^{16}$.
- Express each resulting word in $\mathbb{F}_{2}^{16}$ as a $4 \times 4$ matrix to get a self-dual code with rank-weight distribution

$$
[1,0,21,162,72] .
$$

The binomial moments are

$$
\begin{gathered}
b_{0}=0, b_{1}=0, b_{2}=3 / 5, b_{3}=15, b_{4}=255 \\
P(T)=1+8 T+16 T^{2}=(1+4 T)^{2} .
\end{gathered}
$$

The zeroes $\omega=-1 / 4$ have $|\omega|=2^{-4 / 2}$ and so satisfy RH.

## RH for Codes from a QR Code

We get inequivalent $\mathbb{F}_{2}-[4 \times 4,8,2]$ rank-metric codes from a QR code.

| Weights | Binomial Moments | Zeta Polynomial |
| :---: | :---: | :--- |
| $[1,0,23,156,76]$ | $[0,23 / 35,15,255]$ | $368 T^{2}+134 T+23$ |
| $[1,0,24,153,78]$ | $[0,24 / 35,15,255]$ | $128 T^{2}+39 T+8$ |
| $[1,0,25,150,80]$ | $[0,5 / 7,15,255]$ | $16 T^{2}+4 T+1$ |
| $[1,0,26,147,82]$ | $[0,26 / 35,15,255]$ | $416 T^{2}+83 T+26$ |
| $[1,0,27,144,84]$ | $[0,27 / 35,15,255]$ | $144 T^{2}+22 T+9$ |
| $[1,0,28,141,86]$ | $[0,4 / 5,15,255]$ | $64 T^{2}+7 T+4$ |
| $[1,0,29,138,88]$ | $[0,29 / 35,15,255]$ | $464 T^{2}+32 T+29$ |
| $[1,0,30,135,90]$ | $[0,6 / 7,15,255]$ | $32 T^{2}+T+2$ |
| $[1,0,31,132,92]$ | $[0,31 / 35,15,255]$ | $496 T^{2}-2 T+31$ |

These are all formally self-dual and satisfy RH.

## Riemann Hypothesis for Hamming Weight Enumerators

For self-dual MacWilliams-invariant enumerators, there are existence results.

## Theorem 17 (Nishimura, 2008)

Let $W(x, y)=x^{2 d}+W_{d} x^{d} y^{d}+\cdots$. Then $W(x, y)$ satisfies $R H$ iff

$$
\frac{\sqrt{q}-1}{\sqrt{q}+1}\binom{2 d}{d} \leq W_{d} \leq \frac{\sqrt{q}+1}{\sqrt{q}-1}\binom{2 d}{d}
$$

## Theorem 18 (Nishimura, 2008)

Let $W(x, y)=x^{2 d+2}+W_{d} x^{d+2} y^{d}+\cdots$. Then $W(x, y)$ satisfies $R H$ iff the roots of

$$
W_{d} z^{2}-\left((d-q) W_{d}+\frac{d+1}{d+2} W_{d+1}\right) z+(d+1)(q+1)\left(W_{d}+\frac{W_{d+1}}{d+2}\right)+(q-1)\binom{2 d+2}{d}
$$

lie in the interval $[-2 \sqrt{q}, 2 \sqrt{q}]$.
K. Chinen and Y. Imamura, 'Riemann hypothesis for self-dual weight enumerators of genera three and four,' SUT J. Math, 57 (1) 2021.



## Open Questions and Final Remarks

- In the Hamming metric, the zeta polynomial can provide a tool for classifying codes with certain weight enumerators such as divisible codes. No analogue if this result exists for rank metric codes.
- The behaviour of zeroes of classes of codes is an interesting strand of research. There has been almost no work on the question of which rank-metric weight enumerators satisfy RH .
- It seems likely that approaches taken by Chinen \& Imamura could extend to the rank-metric case.
- We can describe this theory in terms of $q$-polymatroids.
- This theory extends to tensor codes for the tensor-rank distance and also to generalised weights.


## Thanks!

## References

I．Blanco－Chacón，E．Byrne，I．Duursma，J．Sheekey，＇Rank－Metric Codes and Zeta Functions，＇Des．Codes，Cryptogr．86， 2018.

E．Byrne，G．Cotardo，and A．Ravagnani，＇Rank－Metric Codes，Generalized Binomial Moments and their Zeta Functions，Linear Algebra and its Applications， 2020.
國 K．Chinen and Y．Imamura，＇Riemann hypothesis for self－dual weight enumerators of genera three and four，＇SUT J．Math， 57 （1） 2021.

國 P．Delsarte，＇Bilinear forms over a finite field，with applications to coding theory，＇J． Combin．Theory Ser．A，25（3）：226－241， 1978.
（i．I．Duursma，＇From weight enumerators to zeta functions，＇Discrete Appl．Math．， 111（1－2）：55－73， 2001.

國 I．Duursma，＇Weight distributions of geometric Goppa codes，＇Trans．Amer．Math． Soc．，351（9）：3609－3639， 1999.

画 E．M．Gabidulin，＇Theory of codes with maximum rank distance，＇Problemy Peredachi Informatsii，21（1）：3－16， 1985.


[^0]:    P. Delsarte, 'Bilinear forms over a finite field, with applications to coding theory,' J. Combin. Theory Ser. A, 25(3):226-241, 1978.
    Bartz; Holzbaur; Liu; Puchinger; Renner; Wachter-Zeh, ‘Rank-Metric Codes and Their Applications,' 2022 http://ieeexplore.ieee.org/document/9767796

