How To (Not) Decode In the Rank Metric

Hugo Sauerbier Couvée

Technical University of Munich (TUM)

Joint work with
Alberto Ravagnani (TU/e), Antonia Wachter-Zeh (TUM), Violetta Weger (TUM)

15 February 2024

- Generic decoding: Rank Syndrome Decoding Problem (RSDP)
- Generic decoding: Rank Syndrome Decoding Problem (RSDP)
- Focus on combinatorial/geometric attacks, might also help hybrid attacks
- Generic decoding: Rank Syndrome Decoding Problem (RSDP)
- Focus on combinatorial/geometric attacks, might also help hybrid attacks
- Two potential approaches leading to open problems on rank-metric codes ${ }^{\mathrm{TM}}$

DECISION TREE:

Part

PROBLEM INTRODUCTION

Definition (SDP)

Given a parity-check matrix \mathbf{H} of a code \mathcal{C}, syndrome vector \mathbf{s}, target weight t, find an error vector \mathbf{e} such that

$$
\mathbf{H e}^{T}=\mathbf{s}^{T} \quad \text { and } \quad w t(\mathbf{e}) \leq t .
$$

Definition (SDP)

Given a parity-check matrix \mathbf{H} of a code \mathcal{C}, syndrome vector \mathbf{s}, target weight t, find an error vector \mathbf{e} such that

$$
\mathbf{H e}^{T}=\mathbf{s}^{T} \quad \text { and } \quad w t(\mathbf{e}) \leq t
$$

- \mathbb{F}_{q}-lin. vector code, Hamming weight $w t_{H}$, error $\mathbf{e} \in \mathbb{F}_{q}^{n}:$ HSDP

Definition (SDP)

Given a parity-check matrix \mathbf{H} of a code \mathcal{C}, syndrome vector \mathbf{s}, target weight t, find an error vector \mathbf{e} such that

$$
\mathbf{H e}^{T}=\mathbf{s}^{T} \quad \text { and } \quad w t(\mathbf{e}) \leq t
$$

- \mathbb{F}_{q}-lin. vector code, Hamming weight $w t_{H}$, error $\mathbf{e} \in \mathbb{F}_{q}^{n}:$ HSDP
- \mathbb{F}_{q}-lin. matrix code, rank weight $w t_{R}$, error $\mathbf{e} \in \mathbb{F}_{q}^{m \times n}: \mathbb{F}_{q}$-linear RSDP

Definition (SDP)

Given a parity-check matrix \mathbf{H} of a code \mathcal{C}, syndrome vector \mathbf{s}, target weight t, find an error vector \mathbf{e} such that

$$
\mathbf{H e}^{T}=\mathbf{s}^{T} \quad \text { and } \quad w t(\mathbf{e}) \leq t
$$

- \mathbb{F}_{q}-lin. vector code, Hamming weight $w t_{H}$, error $\mathbf{e} \in \mathbb{F}_{q}^{n}:$ HSDP
- \mathbb{F}_{q}-lin. matrix code, rank weight $w t_{R}$, error $\mathbf{e} \in \mathbb{F}_{q}^{m \times n}: \mathbb{F}_{q}$-linear RSDP
$-\mathbb{F}_{q^{m}}$-lin. vector code, rank weight $w t_{R}$, error $\mathbf{e} \in \mathbb{F}_{q^{m}}^{n}: \mathbb{F}_{q^{m}}$-linear RSDP

Definition (SDP)

Given a parity-check matrix \mathbf{H} of a code \mathcal{C}, syndrome vector \mathbf{s}, target weight t, find an error vector \mathbf{e} such that

$$
\mathbf{H e}^{T}=\mathbf{s}^{T} \quad \text { and } \quad w t(\mathbf{e}) \leq t
$$

- \mathbb{F}_{q}-lin. vector code, Hamming weight $w t_{H}$, error $\mathbf{e} \in \mathbb{F}_{q}^{n}:$ HSDP
- \mathbb{F}_{q}-lin. matrix code, rank weight $w t_{R}$, error $\mathbf{e} \in \mathbb{F}_{q}^{m \times n}: \mathbb{F}_{q}$-linear RSDP
$-\mathbb{F}_{q^{m}}$-lin. vector code, rank weight $w t_{R}$, error $\mathbf{e} \in \mathbb{F}_{q^{m}}^{n}: \mathbb{F}_{q^{m}}$-linear RSDP

Slight abuse of notation: \mathbf{e} for vector/matrix in $\mathbb{F}_{q^{m}}^{n} \cong \mathbb{F}_{q}^{m \times n} \cong \mathbb{F}_{q}^{m n}$

- $\mathbb{F}_{q^{m}}$-lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- $\mathbb{F}_{q^{m}}$-lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}$-dim k
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- $\mathbb{F}_{q^{m}}$-lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- $\mathbb{F}_{q^{m}}$-lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- $\mathbb{F}_{q^{m}}$-lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- $\mathbb{F}_{q^{m}}$-lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- For every enumeration solve a system of linear equations.
- $\mathbb{F}_{q^{m}}$ lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}$ - $\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- For every enumeration solve a system of linear equations.
- Success if solution has weight $\leq t$.
- $\mathbb{F}_{q^{m}}$-lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- For every enumeration solve a system of linear equations.
- Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
- $\mathbb{F}_{q^{m}}$ lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- For every enumeration solve a system of linear equations.
- Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
- Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
- $\mathbb{F}_{q^{m}}$ lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- For every enumeration solve a system of linear equations.
- Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
- Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
- Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$
- $\mathbb{F}_{q^{m}}$ lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- For every enumeration solve a system of linear equations.
- Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
- Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
- Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$
- Gaborit-Ruatta-Schrek (2016): $q^{k t}, q^{M k t}, q^{M(k+1)(t-1)}, q^{(k+1)(t+1)-(n+1)}$
- $\mathbb{F}_{q^{m}}$ lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- For every enumeration solve a system of linear equations.
- Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
- Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
- Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$
- Gaborit-Ruatta-Schrek (2016): $q^{k t}, q^{M k t}, q^{M(k+1)(t-1)}, q^{(k+1)(t+1)-(n+1)}$
- Aragon-Gaborit-Hauteville-Tillich (2018): $q^{M(k+1) t-m}$
- $\mathbb{F}_{q^{m}}$ lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- For every enumeration solve a system of linear equations.
- Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
- Almost all:
$q^{\min \{M, 1\} R T n^{2}+O(n)}$
- Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
- Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$
- Gaborit-Ruatta-Schrek (2016): $q^{k t}, q^{M k t}, q^{M(k+1)(t-1)}, q^{(k+1)(t+1)-(n+1)}$
- Aragon-Gaborit-Hauteville-Tillich (2018): $q^{M(k+1) t-m}$
- $\mathbb{F}_{q^{m}}$-lin. vector code \mathcal{C} of length n and $\mathbb{F}_{q^{m}}-\operatorname{dim} k$
- Regime: $m \sim M n, k \sim R n, t \sim T n$ for real $M, R, T>0$
- Often interested in GV-bound: $T=\frac{M+1}{2}-\sqrt{R M+\frac{(M-1)^{2}}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
- Enumerate over a lot (coordinates, bases, spaces, etc.)
- For every enumeration solve a system of linear equations.
- Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
- Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
- Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$
- Gaborit-Ruatta-Schrek (2016): $q^{k t}, q^{M k t}, q^{M(k+1)(t-1)}, q^{(k+1)(t+1)-(n+1)}$
- Almost all:
$q^{\min \{M, 1\} R T n^{2}+O(n)}$
- Aragon-Gaborit-Hauteville-Tillich (2018): $q^{M(k+1) t-m}$

$\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log _{q}($ complexity $)$
$=\min \{M, 1\} R T$

Can we improve asymptotically?

Part I

FIRST APPROACH

Hamming metric, Prange decoder

Hamming metric, PRANGE DECODER

Idea: $\hat{\mathbf{e}}^{T}:=\left(\frac{\mathbf{H}}{\text { something }}\right)^{-1} \cdot\left(\frac{\mathbf{s}^{T}}{\text { something else }}\right)$, try many times until $w t_{H}(\hat{\mathbf{e}}) \leq t \quad \rightarrow \hat{\mathbf{e}}=\mathbf{e}$

Idea: $\hat{\mathbf{e}}^{T}:=\left(\frac{\mathbf{H}}{\text { something }}\right)^{-1} \cdot\left(\frac{\mathbf{s}^{T}}{\text { something else }}\right)$, try many times until $w t_{H}(\hat{\mathbf{e}}) \leq t \quad \rightarrow \hat{\mathbf{e}}=\mathbf{e}$

One answer: LEFT: rows that are orthogonal to many \mathbf{e}^{\prime} s with $w t_{H}(\mathbf{e}) \leq t$,

RIGHT: 0's.

LEFT: rows that are orthogonal to many \mathbf{e}^{\prime} s with $w t_{H}(\mathbf{e}) \leq t$,

RIGHT: 0's.

Try space spanned by k standard basis vectors v_{i}

LEFT: rows that are orthogonal to many \mathbf{e}^{\prime} s with $w t_{H}(\mathbf{e}) \leq t$,

RIGHT: 0's.

Try space spanned by k standard basis vectors $v_{i} \rightarrow\binom{n}{k}$ choices, $\binom{n-t}{k}$ successful if all $i \in \operatorname{Support}(\mathbf{e})^{\text {c }}$

LEFT: rows that are orthogonal to many \mathbf{e}^{\prime} s with $w t_{R}(\mathbf{e}) \leq t$,

RIGHT: 0's.

LEFT: rows that are orthogonal to many \mathbf{e}^{\prime} s with $w t_{R}(\mathbf{e}) \leq t$,

RIGHT: 0's.

Try space spanned by k indep. vectors $v_{i} \in \mathbb{F}_{q}^{n}$

LEFT: rows that are orthogonal to many \mathbf{e} 's with $w t_{R}(\mathbf{e}) \leq t$,

RIGHT: 0's.

Try space spanned by k indep. vectors $v_{i} \in \mathbb{F}_{q}^{n} \quad \rightarrow\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ choices, $\left[\begin{array}{c}n-t \\ k\end{array}\right]_{q}$ successful if all $v_{i} \in \operatorname{RowSpan}_{\mathbb{F}_{q}}(\mathbf{e})^{\perp}$

BOUNDS TO THIS APPROACH

For generality: transform into \mathbb{F}_{q}-linear problem using \mathbb{F}_{q}-basis Γ of $\mathbb{F}_{q^{m}}$

$=$
\mathbf{s}^{T}

For generality: transform into \mathbb{F}_{q}-linear problem using \mathbb{F}_{q}-basis Γ of $\mathbb{F}_{q^{m}}$
(Additional step: can use parity-check matrix of $\mathcal{C}+\langle\mathbf{e}\rangle$ instead of \mathcal{C})

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$.

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}):=\frac{|\mathcal{T}|}{\left|\left\{\left(A_{i}, b_{i}\right) \in \mathcal{T} \mid A_{i} \mathbf{e}^{T}=b_{i}\right\}\right|}$

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}):=\frac{|\mathcal{T}|}{\left|\left\{\left(A_{i}, b_{i}\right) \in \mathcal{T} \mid A_{i} \mathbf{e}^{T}=b_{i}\right\}\right|}$

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}):=\frac{|\mathcal{T}|}{\left|\left\{\left(A_{i}, b_{i}\right) \in \mathcal{T} \mid A_{i} \mathbf{e}^{T}=b_{i}\right\}\right|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e}^{\prime} s of weight t :

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}):=\frac{|\mathcal{T}|}{\left|\left\{\left(A_{i}, b_{i}\right) \in \mathcal{T} \mid A_{i} \mathbf{e}^{T}=b_{i}\right\}\right|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all e's of weight $t: \quad N_{\mathcal{T}}=$ expected run-time/complexity.

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}):=\frac{|\mathcal{T}|}{\left|\left\{\left(A_{i}, b_{i}\right) \in \mathcal{T} \mid A_{i} \mathbf{e}^{T}=b_{i}\right\}\right|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all e's of weight $t: \quad N_{\mathcal{T}}=$ expected run-time/complexity.

Lemma

$$
N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid w t(\mathbf{e})=t\}|}{\max _{(A, b) \in \mathcal{T}}\left|\left\{\mathbf{e} \mid w t(\mathbf{e})=t, A \mathbf{e}^{T}=b\right\}\right|}
$$

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}):=\frac{|\mathcal{T}|}{\left|\left\{\left(A_{i}, b_{i}\right) \in \mathcal{T} \mid A_{i} \mathbf{e}^{T}=b_{i}\right\}\right|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all e's of weight $t: \quad N_{\mathcal{T}}=$ expected run-time/complexity.

Lemma

$$
N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid w t(\mathbf{e})=t\}|}{\max _{(A, b) \in \mathcal{T}}\left|\left\{\mathbf{e} \mid w t(\mathbf{e})=t, A \mathbf{e}^{T}=b\right\}\right|}
$$

Open Problem

v.1: Let $A \in \mathbb{F}_{q}^{m k \times m n}, b \in \mathbb{F}_{q}^{m k}$. Give an upper-bound on the maximum cardinality of

$$
\left\{\mathbf{e} \mid w t_{R}(\mathbf{e})=t, A \mathbf{e}^{T}=b\right\}
$$

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}):=\frac{|\mathcal{T}|}{\left|\left\{\left(A_{i}, b_{i}\right) \in \mathcal{T} \mid A_{i} \mathbf{e}^{T}=b_{i}\right\}\right|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e} 's of weight $t: \quad N_{\mathcal{T}}=$ expected run-time/complexity.

Lemma

$$
N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid w t(\mathbf{e})=t\}|}{\max _{(A, b) \in \mathcal{T}}\left|\left\{\mathbf{e} \mid w t(\mathbf{e})=t, A \mathbf{e}^{T}=b\right\}\right|}
$$

Open Problem

v.2: Let $\mathcal{S}=\{x \mid A x=b\} \subset \mathbb{F}_{q}^{m n}$ be a translated subspace/coset with $|\mathcal{S}|=q^{m(n-k)}$. Give an upper-bound on the maximum cardinality of

$$
\mathcal{S} \cap\left\{\mathbf{e} \mid w t_{R}(\mathbf{e})=t\right\} .
$$

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}):=\frac{|\mathcal{T}|}{\left|\left\{\left(A_{i}, b_{i}\right) \in \mathcal{T} \mid A_{i} \mathbf{e}^{T}=b_{i}\right\}\right|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e}^{\prime} s of weight $t: \quad N_{\mathcal{T}}=$ expected run-time/complexity.

Lemma

$$
N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid w t(\mathbf{e})=t\}|}{\max _{(A, b) \in \mathcal{T}}\left|\left\{\mathbf{e} \mid w t(\mathbf{e})=t, A \mathbf{e}^{T}=b\right\}\right|}
$$

Open Problem

v.3: Let $\mathcal{S}=\mathcal{D}(+v) \subset \mathbb{F}_{q}^{m \times n}$ be a (translated) matrix code with $|\mathcal{S}|=q^{m(n-k)}$. Give an upper-bound on

$$
W_{t}(\mathcal{S}):=\left|\left\{X \in \mathcal{S} \mid w t_{R}(X)=t\right\}\right|
$$

in terms of q, m, n, k, t that holds for all \mathcal{S}.

Test set $\mathcal{T}=\left\{\left(A_{i}, b_{i}\right) \mid i \in \mathcal{I}\right\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}):=\frac{|\mathcal{T}|}{\left|\left\{\left(A_{i}, b_{i}\right) \in \mathcal{T} \mid A_{i} \mathbf{e}^{T}=b_{i}\right\}\right|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e}^{\prime} s of weight $t: \quad N_{\mathcal{T}}=$ expected run-time/complexity.

Lemma

$$
N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid w t(\mathbf{e})=t\}|}{\max _{(A, b) \in \mathcal{T}}\left|\left\{\mathbf{e} \mid w t(\mathbf{e})=t, A \mathbf{e}^{T}=b\right\}\right|}
$$

Open Problem

v.3: Let $\mathcal{S}=\mathcal{D}(+v) \subset \mathbb{F}_{q}^{m \times n}$ be a (translated) matrix code with $|\mathcal{S}|=q^{m(n-k)}$. Give an upper-bound on

$$
W_{t}(\mathcal{S}):=\left|\left\{X \in \mathcal{S} \mid w t_{R}(X)=t\right\}\right|
$$

in terms of q, m, n, k, t that holds for all \mathcal{S}.

Any upper bound on $W_{t}(\mathcal{S})$ will imply a lower bound on the complexity possible with this approach.

Part II

SECOND Approach

Try space spanned by k indep. vectors $v_{i} \in \mathbb{F}_{q}^{n} \rightarrow\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ choices, $\left[\begin{array}{c}n-t \\ k\end{array}\right]_{q}$ successful if $\operatorname{Span}\left(v_{i}\right) \subseteq \operatorname{RowSpan}_{\mathbb{F}_{q}}(\mathbf{e})^{\perp}$

Try space spanned by k indep. vectors $v_{i} \in \mathbb{F}_{q}^{n} \rightarrow\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ choices, $\left[\begin{array}{c}n-t \\ k\end{array}\right]_{q}$ successful if $\operatorname{Span}\left(v_{i}\right) \subseteq \operatorname{RowSpan}_{\mathbb{F}_{q}}(\mathbf{e})^{\perp}$

Equivalent: choosing an $(n-k)$-dim space $W=\operatorname{Span}\left(v_{i}\right)^{\perp}, \quad$ successful if $W \supseteq \operatorname{RowSpan}_{\mathbb{F}_{q}}(\mathbf{e})$

Normal algorithm

Normal algorithm
 1. Choose random $(n-k)$-dim space W

Normal algorithm

1. Choose random $(n-k)$-dim space W
2. Solve system lin. equations with $v_{i} \in W^{\perp}$

Normal algorithm

1. Choose random $(n-k)$-dim space W
2. Solve system lin. equations with $v_{i} \in W^{\perp}$
3. Check if solution has $w t_{R} \leq t$.

If not, go back to 1 .

Normal algorithm

1. Choose random $(n-k)$-dim space W
2. Solve system lin. equations with $v_{i} \in W^{\perp}$
3. Check if solution has $w t_{R} \leq t$.

If not, go back to 1 .

Idea: learn from each failed solution

Adaptive algorithm

1. Choose random $(n-k)$-dim space W
2. Solve system lin. equations with $v_{i} \in W^{\perp}$
3. Check if solution has $w t_{R} \leq t$.

If not, learn from solution, go back to 1 . and choose more effectively/narrow down your search

Idea: learn from each failed solution

Adaptive algorithm

1. Choose random $(n-k)$-dim space W
2. Solve system lin. equations with $v_{i} \in W^{\perp}$
3. Check if solution has $w t_{R} \leq t$.

If not, learn from solution, go back to 1 . and choose more effectively/narrow down your search

Idea: learn from each failed solution \rightarrow requires magic!

Open Problem (Magic ${ }^{1}$ Step)

Open Problem (Magic ${ }^{1}$ Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$.

Open Problem (Magic ${ }^{1}$ Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H} \mathbf{x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Open Problem (Magic ${ }^{1}$ Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of $R S D P$ with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H} \mathbf{x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

[^0]
Open Problem (Magic ${ }^{1}$ Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of $R S D P$ with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H} \mathbf{x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

Magically enhanced algorithm idea

Open Problem (Magic ${ }^{1}$ Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of $R S D P$ with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H} \mathbf{x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

Magically enhanced algorithm idea

1. Choose random $(n-k)$-dim space W

Open Problem (Magic ${ }^{1}$ Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of $R S D P$ with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H} \mathbf{x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

Magically enhanced algorithm idea

1. Choose random $(n-k)$-dim space W
2. Solve system lin. equations with $v_{i} \in W^{\perp}$

Open Problem (Magic ${ }^{1}$ Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of $R S D P$ with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H} \mathbf{x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

Magically enhanced algorithm idea

1. Choose random $(n-k)$-dim space W
2. Solve system lin. equations with $v_{i} \in W^{\perp}$
3. Check if solution \mathbf{x} has $w t_{R} \leq t$.

Open Problem (Magic ${ }^{1}$ Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of $R S D P$ with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H} \mathbf{x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

Magically enhanced algorithm idea

1. Choose random $(n-k)$-dim space W
2. Solve system lin. equations with $v_{i} \in W^{\perp}$
3. Check if solution \mathbf{x} has $w t_{R} \leq t$.

If not, and MagicStep outputs "trivial", go back to 1.

Open Problem (Magic ${ }^{1}$ Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of $R S D P$ with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H} \mathbf{x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

Magically enhanced algorithm idea

1. Choose random $(n-k)$-dim space W
2. Solve system lin. equations with $v_{i} \in W^{\perp}$
3. Check if solution \mathbf{x} has $w t_{R} \leq t$.

If not, and MagicStep outputs "trivial", go back to 1.
If not, and MagicStep outputs "non-trivial", let $U:=$ RowSpan(\mathbf{x}).
Go back to 1 . but narrow down the search to only spaces W with $W \cap U$ non-trivial.

[^1]
Open Problem (Magic Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

Open Problem (Magic Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$.
Let \mathbf{x} be a solution to $\mathbf{H x}^{T}=\mathbf{s}^{T}$ (without weight constraint).
Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

For some trivial magic steps (slow \& large p or fast \& small p), we get GRS up to polynomial factor.
Can we do better?

Open Problem (Magic Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $w t_{R}(\mathbf{e})=t$. Let \mathbf{x} be a solution to $\mathbf{H} \mathbf{x}^{T}=\mathbf{s}^{T}$ (without weight constraint).

Give an algorithm to decide if the intersection

$$
\operatorname{RowSpan}(\mathbf{x}) \cap \operatorname{RowSpan}(\mathbf{e})
$$

is non-trivial $(\operatorname{dim}>0)$ with probability $\geq p$, for some fixed $p \in[0,1]$.

Open Problem (Weight Upper-Bound)

Let $\mathcal{S}=\mathcal{D}(+v) \subset \mathbb{F}_{q}^{m \times n}$ be a (translated) matrix code with $|\mathcal{S}|=q^{m(n-k)}$. Give an upper-bound on

$$
W_{t}(\mathcal{S}):=\left|\left\{X \in \mathcal{S} \mid w t_{R}(X)=t\right\}\right|
$$

in terms of q, m, n, k, t that holds for all \mathcal{S}.

[^0]: ${ }^{1}$ Official terminology by V. Weger (2023)

[^1]: ${ }^{1}$ Official terminology by V. Weger (2023)
 Hugo Sauerbier Couvée (TUM)

