HOW TO (NOT) DECODE IN THE RANK METRIC

Hugo Sauerbier Couvée

Technical University of Munich (TUM)

Joint work with

Alberto Ravagnani (TU/e), Antonia Wachter-Zeh (TUM), Violetta Weger (TUM)

15 February 2024

• Generic decoding: Rank Syndrome Decoding Problem (RSDP)

- Generic decoding: Rank Syndrome Decoding Problem (RSDP)
- Focus on **combinatorial/geometric** attacks, might also help hybrid attacks

- Generic decoding: Rank Syndrome Decoding Problem (RSDP)
- Focus on **combinatorial/geometric** attacks, might also help hybrid attacks
- ► Two potential approaches leading to open problems on rank-metric codesTM

SHOULD YOU STUDY/CARE ABOUT RANK SYNDROME DECODING PROBLEM (RSDP)?

DECISION TREE:

Part

Given a parity-check matrix **H** of a code *C*, syndrome vector **s**, target weight *t*, find an error vector **e** such that

 $\mathbf{H}\mathbf{e}^{T} = \mathbf{s}^{T}$ and $wt(\mathbf{e}) \leq t$.

Given a parity-check matrix **H** of a code *C*, syndrome vector **s**, target weight *t*, find an error vector **e** such that

$$\mathbf{H}\mathbf{e}^T = \mathbf{s}^T$$
 and $wt(\mathbf{e}) \leq t$.

▶ \mathbb{F}_q -lin. vector code, Hamming weight wt_H , error $\mathbf{e} \in \mathbb{F}_q^n$: HSDP

Given a parity-check matrix **H** of a code *C*, syndrome vector **s**, target weight *t*, find an error vector **e** such that

$$\mathbf{H}\mathbf{e}^T = \mathbf{s}^T$$
 and $wt(\mathbf{e}) \leq t$.

- ▶ \mathbb{F}_q -lin. vector code, Hamming weight wt_H , error $\mathbf{e} \in \mathbb{F}_q^n$: HSDP
- ▶ \mathbb{F}_q -lin. matrix code, rank weight wt_R , error $\mathbf{e} \in \mathbb{F}_q^{m \times n}$: \mathbb{F}_q -linear RSDP

Given a parity-check matrix **H** of a code *C*, syndrome vector **s**, target weight *t*, find an error vector **e** such that

$$\mathbf{H}\mathbf{e}^T = \mathbf{s}^T$$
 and $wt(\mathbf{e}) \leq t$.

- ▶ \mathbb{F}_q -lin. vector code, Hamming weight wt_H , error $\mathbf{e} \in \mathbb{F}_q^n$: HSDP
- ▶ \mathbb{F}_q -lin. matrix code, rank weight wt_R , error $\mathbf{e} \in \mathbb{F}_q^{m \times n}$: \mathbb{F}_q -linear RSDP
- ▶ \mathbb{F}_{q^m} -lin. vector code, rank weight wt_R , error $\mathbf{e} \in \mathbb{F}_{q^m}^n$: \mathbb{F}_{q^m} -linear RSDP

Given a parity-check matrix **H** of a code *C*, syndrome vector **s**, target weight *t*, find an error vector **e** such that

$$\mathbf{H}\mathbf{e}^T = \mathbf{s}^T$$
 and $wt(\mathbf{e}) \leq t$.

- ▶ \mathbb{F}_q -lin. vector code, Hamming weight wt_H , error $\mathbf{e} \in \mathbb{F}_q^n$: HSDP
- ▶ \mathbb{F}_q -lin. matrix code, rank weight wt_R , error $\mathbf{e} \in \mathbb{F}_q^{m \times n}$: \mathbb{F}_q -linear RSDP
- ▶ \mathbb{F}_{q^m} -lin. vector code, rank weight wt_R , error $\mathbf{e} \in \mathbb{F}_{q^m}^n$: \mathbb{F}_{q^m} -linear RSDP

Slight abuse of notation: **e** for vector/matrix in $\mathbb{F}_{q^m}^n \cong \mathbb{F}_{q}^{m \times n} \cong \mathbb{F}_{q}^{mn}$

▶ \mathbb{F}_{q^m} -lin. vector code *C* of length *n* and \mathbb{F}_{q^m} -dim *k*

- ▶ \mathbb{F}_{q^m} -lin. vector code *C* of length *n* and \mathbb{F}_{q^m} -dim *k*
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)
 - For every enumeration solve a system of linear equations.

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)
 - For every enumeration solve a system of linear equations.
 - Success if solution has weight $\leq t$.

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)
 - For every enumeration solve a system of linear equations.
 - Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)
 - For every enumeration solve a system of linear equations.
 - Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
 - Chabaud-Stern (1996): $q^{(m-t)(t-1)}$

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- ► 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)
 - For every enumeration solve a system of linear equations.
 - Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
 - Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
 - Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)
 - For every enumeration solve a system of linear equations.
 - Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
 - Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
 - Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$
 - Gaborit-Ruatta-Schrek (2016): q^{kt} , q^{Mkt} , $q^{M(k+1)(t-1)}$, $q^{(k+1)(t+1)-(n+1)}$

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)
 - For every enumeration solve a system of linear equations.
 - Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
 - Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
 - Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$
 - Gaborit-Ruatta-Schrek (2016): q^{kt} , q^{Mkt} , $q^{M(k+1)(t-1)}$, $q^{(k+1)(t+1)-(n+1)}$
 - Aragon-Gaborit-Hauteville-Tillich (2018): $q^{M(k+1)t-m}$

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)
 - For every enumeration solve a system of linear equations.
 - Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
 - Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
 - Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$
 - Gaborit-Ruatta-Schrek (2016): q^{kt} , q^{Mkt} , $q^{M(k+1)(t-1)}$, $q^{(k+1)(t+1)-(n+1)}$
 - Aragon-Gaborit-Hauteville-Tillich (2018): $q^{M(k+1)t-m}$

Almost all:

 $a^{\min\{M,1\}RTn^2+O(n)}$

- \mathbb{F}_{q^m} -lin. vector code C of length n and \mathbb{F}_{q^m} -dim k
- ▶ Regime: $m \sim Mn$, $k \sim Rn$, $t \sim Tn$ for real M, R, T > 0
- Often interested in GV-bound: $T = \frac{M+1}{2} \sqrt{RM + \frac{(M-1)^2}{4}}$ (merci Pierre!)
- 'Combinatorial' attacks:
 - Enumerate over a lot (coordinates, bases, spaces, etc.)
 - For every enumeration solve a system of linear equations.
 - Success if solution has weight $\leq t$.
- Complexity (up to polyn. and rounding) of best combinatorial attacks:
 - Chabaud-Stern (1996): $q^{(m-t)(t-1)}$
 - Ourivski-Johansson (2002): $q^{(k+1)(t-1)}$
 - Gaborit-Ruatta-Schrek (2016): q^{kt} , q^{Mkt} , $q^{M(k+1)(t-1)}$, $q^{(k+1)(t+1)-(n+1)}$
 - Aragon-Gaborit-Hauteville-Tillich (2018): $q^{M(k+1)t-m}$

Almost all: $q^{\min\{M,1\}RTn^2 + O(n)}$

 $\boxed{\lim_{n \to \infty} \frac{1}{n^2} \log_q(complexity)}$ $= \min\{M, 1\}RT$

Can we improve asymptotically?

Part I

FIRST APPROACH

One answer: LEFT: rows that are orthogonal to many **e**'s with $wt_H(\mathbf{e}) \le t$, RIGHT: 0's.

LEFT: rows that are orthogonal to many \mathbf{e} 's with $wt_H(\mathbf{e}) \leq t$, RIGHT: 0's.

Try space spanned by k standard basis vectors v_i

LEFT: rows that are orthogonal to many **e**'s with $wt_R(\mathbf{e}) \leq t$, RIGHT: 0's.

LEFT: rows that are orthogonal to many **e**'s with $wt_R(\mathbf{e}) \leq t$, RIGHT: 0's.

Try space spanned by *k* indep. vectors $v_i \in \mathbb{F}_q^n$

For generality: transform into \mathbb{F}_q -linear problem using \mathbb{F}_q -basis Γ of \mathbb{F}_{q^m}

For generality: transform into \mathbb{F}_q -linear problem using \mathbb{F}_q -basis Γ of \mathbb{F}_{q^m}

(Additional step: can use parity-check matrix of $\mathcal{C} + \langle e \rangle$ instead of \mathcal{C})

HUGO SAUERBIER COUVÉE (TUM)

Test set $\mathcal{T} = \{(A_i, b_i) \mid i \in \mathcal{I}\}.$

Test set $\mathcal{T} = \{(A_i, b_i) \mid i \in \mathcal{I}\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}) := \frac{|\mathcal{T}|}{|\{(A_i, b_i) \in \mathcal{T} \mid A_i \mathbf{e}^T = b_i\}|}$

Test set $\mathcal{T} = \{(A_i, b_i) \mid i \in \mathcal{I}\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}) := \frac{|\mathcal{T}|}{|\{(A_i, b_i) \in \mathcal{T} \mid A_i \mathbf{e}^T = b_i\}|}$

Test set $\mathcal{T} = \{(A_i, b_i) | i \in \mathcal{I}\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}) := \frac{|\mathcal{T}|}{|\{(A_i, b_i) \in \mathcal{T} | A_i \mathbf{e}^T = b_i\}|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e} 's of weight t:

Test set $\mathcal{T} = \{(A_i, b_i) | i \in \mathcal{I}\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}) := \frac{|\mathcal{T}|}{|\{(A_i, b_i) \in \mathcal{T} | A_i \mathbf{e}^T = b_i\}|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e} 's of weight t: $N_{\mathcal{T}}$ = expected run-time/complexity.

Test set $\mathcal{T} = \{(A_i, b_i) | i \in \mathcal{I}\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}) := \frac{|\mathcal{T}|}{|\{(A_i, b_i) \in \mathcal{T} | A_i \mathbf{e}^T = b_i\}|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e} 's of weight t: $N_{\mathcal{T}}$ = expected run-time/complexity.

Lemma

$$N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid wt(\mathbf{e}) = t\}|}{\max_{(A,b)\in\mathcal{T}} |\{\mathbf{e} \mid wt(\mathbf{e}) = t, A\mathbf{e}^{T} = b\}|}$$

Test set $\mathcal{T} = \{(A_i, b_i) | i \in \mathcal{I}\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}) := \frac{|\mathcal{T}|}{|\{(A_i, b_i) \in \mathcal{T} | A_i \mathbf{e}^T = b_i\}|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e} 's of weight t: $N_{\mathcal{T}}$ = expected run-time/complexity.

Lemma

$$N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid wt(\mathbf{e}) = t\}|}{\max_{(A,b)\in\mathcal{T}} |\{\mathbf{e} \mid wt(\mathbf{e}) = t, A\mathbf{e}^{T} = b\}|}$$

Open Problem

v.1: Let $A \in \mathbb{F}_q^{mk \times mn}$, $b \in \mathbb{F}_q^{mk}$. Give an upper-bound on the maximum cardinality of

$$\{\mathbf{e} \mid wt_R(\mathbf{e}) = t, A\mathbf{e}^T = b\}.$$

Test set $\mathcal{T} = \{(A_i, b_i) | i \in \mathcal{I}\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}) := \frac{|\mathcal{T}|}{|\{(A_i, b_i) \in \mathcal{T} | A_i \mathbf{e}^T = b_i\}|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e} 's of weight t: $N_{\mathcal{T}}$ = expected run-time/complexity.

Lemma

$$N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid wt(\mathbf{e}) = t\}|}{\max_{(A,b)\in\mathcal{T}} |\{\mathbf{e} \mid wt(\mathbf{e}) = t, A\mathbf{e}^{T} = b\}|}$$

Open Problem

v.2: Let $S = \{x \mid Ax = b\} \subset \mathbb{F}_q^{mn}$ be a translated subspace/coset with $|S| = q^{m(n-k)}$. Give an upper-bound on the maximum cardinality of

$$\mathcal{S} \cap \{\mathbf{e} \mid wt_R(\mathbf{e}) = t\}.$$

Test set $\mathcal{T} = \{(A_i, b_i) | i \in \mathcal{I}\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}) := \frac{|\mathcal{T}|}{|\{(A_i, b_i) \in \mathcal{T} | A_i \mathbf{e}^T = b_i\}|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e} 's of weight t: $N_{\mathcal{T}}$ = expected run-time/complexity.

Lemma

$$N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid wt(\mathbf{e}) = t\}|}{\max_{(A,b)\in\mathcal{T}} |\{\mathbf{e} \mid wt(\mathbf{e}) = t, A\mathbf{e}^T = b\}|}$$

Open Problem

v.3: Let $S = D(+v) \subset \mathbb{F}_a^{m \times n}$ be a (translated) matrix code with $|S| = q^{m(n-k)}$. Give an upper-bound on

$$W_t(\mathcal{S}) := |\{X \in \mathcal{S} \mid wt_R(X) = t\}|,$$

in terms of q, m, n, k, t *that holds for all* S.

Test set $\mathcal{T} = \{(A_i, b_i) | i \in \mathcal{I}\}$. Expected number of pairs to try is $N_{\mathcal{T}}(\mathbf{e}) := \frac{|\mathcal{T}|}{|\{(A_i, b_i) \in \mathcal{T} | A_i \mathbf{e}^T = b_i\}|}$ Average of $N_{\mathcal{T}}(\mathbf{e})$ over all \mathbf{e} 's of weight t: $N_{\mathcal{T}}$ = expected run-time/complexity.

Lemma

$$N_{\mathcal{T}} \geq \frac{|\{\mathbf{e} \mid wt(\mathbf{e}) = t\}|}{\max_{(A,b)\in\mathcal{T}} |\{\mathbf{e} \mid wt(\mathbf{e}) = t, A\mathbf{e}^T = b\}|}$$

Open Problem

v.3: Let $S = D(+v) \subset \mathbb{F}_a^{m \times n}$ be a (translated) matrix code with $|S| = q^{m(n-k)}$. Give an upper-bound on

$$W_t(\mathcal{S}) := |\{X \in \mathcal{S} \mid wt_R(X) = t\}|,$$

in terms of q, m, n, k, t *that holds for all* S.

Any upper bound on $W_t(S)$ will imply a **lower bound on the complexity** possible with this approach.

HUGO SAUERBIER COUVÉE (TUM)

Part II

SECOND APPROACH

Equivalent: choosing an (n - k)-dim space $W = \text{Span}(v_i)^{\perp}$, successful if $W \supseteq \text{RowSpan}_{\mathbb{F}_d}(\mathbf{e})$

HUGO SAUERBIER COUVÉE (TUM)

Normal algorithm

Normal algorithm

1. Choose random (n - k)-dim space W

Normal algorithm

- 1. Choose random (n k)-dim space W
- 2. Solve system lin. equations with $v_i \in W^{\perp}$

Normal algorithm

- 1. Choose random (n k)-dim space W
- 2. Solve system lin. equations with $v_i \in W^{\perp}$
- 3. Check if solution has $wt_R \leq t$. If not, go back to 1.

Normal algorithm

- 1. Choose random (n k)-dim space W
- 2. Solve system lin. equations with $v_i \in W^{\perp}$
- 3. Check if solution has $wt_R \leq t$. If not, go back to 1.

Idea: learn from each failed solution

Adaptive algorithm

- 1. Choose random (n k)-dim space W
- 2. Solve system lin. equations with $v_i \in W^{\perp}$
- 3. Check if solution has $wt_R \leq t$.

If not, learn from solution, go back to 1. and choose more effectively/narrow down your search

Idea: learn from each failed solution

Adaptive algorithm

- 1. Choose random (n k)-dim space W
- 2. Solve system lin. equations with $v_i \in W^{\perp}$
- 3. Check if solution has $wt_R \leq t$.

If not, learn from solution, go back to 1. and choose more effectively/narrow down your search

Idea: learn from each failed solution \rightarrow requires magic!

Let $(\mathbf{H}, \mathbf{s}, t)$ *be an instance of RSDP with unique solution* \mathbf{e} *satisfying* $wt_R(\mathbf{e}) = t$.

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x)\ \cap\ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x)\ \cap\ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

Magically enhanced algorithm idea

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x)\ \cap\ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

Magically enhanced algorithm idea

1. Choose random (n - k)-dim space W

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x)\ \cap\ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

Magically enhanced algorithm idea

- 1. Choose random (n k)-dim space W
- 2. Solve system lin. equations with $v_i \in W^{\perp}$

¹Official terminology by V. Weger (2023) Hugo Sauerbier Couvée (TUM)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x) \ \cap \ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

Magically enhanced algorithm idea

- 1. Choose random (n k)-dim space W
- 2. Solve system lin. equations with $v_i \in W^{\perp}$
- 3. Check if solution **x** has $wt_R \leq t$.

¹Official terminology by V. Weger (2023) HUGO SAUERBIER COUVÉE (TUM)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x) \ \cap \ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

Magically enhanced algorithm idea

- 1. Choose random (n k)-dim space W
- 2. Solve system lin. equations with $v_i \in W^{\perp}$
- 3. Check if solution **x** has $wt_R \le t$. If not, and MagicStep outputs "*trivial*", go back to 1.

¹Official terminology by V. Weger (2023) Hugo Sauerbier Couvée (TUM)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x)\ \cap\ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

Magically enhanced algorithm idea

- 1. Choose random (n k)-dim space W
- 2. Solve system lin. equations with $v_i \in W^{\perp}$
- 3. Check if solution **x** has $wt_R \leq t$.

If not, and MagicStep outputs "*trivial*", go back to 1.

If not, and MagicStep outputs "non-trivial", let $U := RowSpan(\mathbf{x})$.

Go back to 1. but narrow down the search to only spaces *W* with $W \cap U$ non-trivial.

Open Problem (Magic Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x) \ \cap \ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

Open Problem (Magic Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x) \ \cap \ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

For some trivial magic steps (slow & large *p* or fast & small *p*), we get GRS up to polynomial factor.

Can we do better?
Open Problem (Magic Step)

Let $(\mathbf{H}, \mathbf{s}, t)$ be an instance of RSDP with unique solution \mathbf{e} satisfying $wt_R(\mathbf{e}) = t$. Let \mathbf{x} be a solution to $\mathbf{H}\mathbf{x}^T = \mathbf{s}^T$ (without weight constraint).

Give an algorithm to decide if the intersection

 $\operatorname{RowSpan}(x)\ \cap\ \operatorname{RowSpan}(e)$

is non-trivial (dim > 0) with probability $\ge p$, for some fixed $p \in [0, 1]$.

Open Problem (Weight Upper-Bound)

Let $S = D(+v) \subset \mathbb{F}_q^{m \times n}$ *be a (translated) matrix code with* $|S| = q^{m(n-k)}$ *. Give an upper-bound on*

$$W_t(\mathcal{S}) := |\{X \in \mathcal{S} \mid wt_R(X) = t\}|,$$

in terms of q, m, n, k, t *that holds for all* S.