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SHOULD YOU STUDY/CARE ABOUT RANK SYNDROME DECODING PROBLEM (RSDP)?
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DECISION TREE:

Do you like q-analogues? Yes

No

Do you like cryptography? Yes

No

Do you need to motivate - for funding - that your mathematical
research has potential applications, such as cryptography?

Yes

No

Do you agree we need more papers on the Rank SDP
than on the Restricted SDP to win the abbreviation battle?

Yes

No

Did your supervisors or colleagues
also bait you into studying RSDP?

Yes

No

Delsarte
?
> Hamming

Yes

No

Do you like conferences in Italy? Yes

Depends on how the pizza is made
in the region of the conference Nord è il peggiore, no?

Try some pizza this week Feel better

Try RSDP!
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Part

PROBLEM INTRODUCTION
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PROBLEM INTRODUCTION

Definition (SDP)

Given a parity-check matrix H of a code C, syndrome vector s, target weight t, find an error vector e such that

HeT = sT and wt(e) ≤ t.

I Fq-lin. vector code, Hamming weight wtH, error e ∈ Fn
q : HSDP

I Fq-lin. matrix code, rank weight wtR, error e ∈ Fm×n
q : Fq-linear RSDP

I Fqm-lin. vector code, rank weight wtR, error e ∈ Fn
qm : Fqm-linear RSDP

Slight abuse of notation: e for vector/matrix in Fn
qm
∼= Fm×n

q
∼= Fmn

q
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PROBLEM INTRODUCTION
I Fqm-lin. vector code C of length n and Fqm-dim k

I Regime: m ∼Mn, k ∼ Rn, t ∼ Tn for real M,R,T > 0

I Often interested in GV-bound: T = M+1
2 −

√
RM + (M−1)2

4 (merci Pierre!)

I ‘Combinatorial´ attacks:

• Enumerate over a lot (coordinates, bases, spaces, etc.)
• For every enumeration solve a system of linear equations.
• Success if solution has weight ≤ t.

I Complexity (up to polyn. and rounding) of best combinatorial attacks:

• Chabaud-Stern (1996): q(m−t)(t−1)

• Ourivski-Johansson (2002): q(k+1)(t−1)

• Gaborit-Ruatta-Schrek (2016): qkt, qMkt, qM(k+1)(t−1), q(k+1)(t+1)−(n+1)

• Aragon-Gaborit-Hauteville-Tillich (2018): qM(k+1)t−m

I Almost all:
qmin{M,1}RTn2 +O(n)

I
limn→∞

1
n2 logq(complexity)

= min{M, 1}RT

Can we improve
asymptotically?
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Part I

FIRST APPROACH
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HAMMING METRIC, PRANGE DECODER

Hn− k

n

·
eT

unknown

1

= sT

1

k What to try here? And
here?

0

1
1

1

1
1

−vi1−
−vi2−

...
−vik−1−
−vik−

0

−v1−
−v2−

...
−vk−1−
−vk−

Idea: êT :=

(
H

something

)−1

·
(

sT

something else

)
, try many times until wtH(ê) ≤ t → ê = e

One answer:

LEFT: rows that are orthogonal to many e’s with wt(e) ≤ t, RIGHT: 0’s.

Try space spanned by k indep. vectors vi ∈ Fn
q

→
[

n
k

]
q

choices,
[

n− t
k

]
q

successful if all vi ∈ RowSpanFq(e)⊥

HUGO SAUERBIER COUVÉE (TUM) HOW TO (NOT) DECODE IN THE RANK METRIC 8



HAMMING METRIC, PRANGE DECODER

Hn− k

n

·
eT

unknown

1

= sT

1

k

What to try here? And
here?

0

1
1

1

1
1

−vi1−
−vi2−

...
−vik−1−
−vik−

0

−v1−
−v2−

...
−vk−1−
−vk−

Idea: êT :=
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BOUNDS TO THIS APPROACH

Hn− k

n

·
eT

unknown

1

= sT

1

k

Ai bi

Test set T = {(Ai, bi) | i ∈ I}.

Expected number of pairs to try is NT (e) :=
|T |

|{(Ai, bi) ∈ T |AieT = bi}|

Average of NT (e) over all e’s of weight t:

NT = expected run-time/complexity.

Lemma

NT ≥
|{e | wt(e) = t}|

max(A,b)∈T |{e | wt(e) = t, AeT = b}|

Open Problem

v.1: Let A ∈ Fmk×mn
q , b ∈ Fmk

q . Give an upper-bound on the maximum cardinality of

{e | wtR(e) = t, AeT = b}.

Any upper bound on Wt(S) will imply a lower bound on the complexity possible with this approach.
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Part II

SECOND APPROACH
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GRS-LIKE DECODER

Hn− k

n

·
eT

unknown

1

= sT

1

k 0

−v1−
−v2−

...
−vk−1−
−vk−

Try space spanned by k indep. vectors vi ∈ Fn
q →

[
n
k

]
q

choices,
[

n− t
k

]
q

successful if Span(vi) ⊆ RowSpanFq(e)⊥

Equivalent: choosing an (n− k)-dim space W = Span(vi)
⊥, successful if W ⊇ RowSpanFq(e)
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GRS-LIKE DECODER

Normal algorithm

1. Choose random (n− k)-dim space W
2. Solve system lin. equations with vi ∈W⊥

3. Check if solution has wtR ≤ t.
If not, go back to 1.

Idea: learn from each failed solution→ requires magic!
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ADAPTIVE DECODER APPROACH

Adaptive algorithm
1. Choose random (n− k)-dim space W
2. Solve system lin. equations with vi ∈W⊥

3. Check if solution has wtR ≤ t.
If not, learn from solution, go back to 1. and choose more effectively/narrow down your search

Idea: learn from each failed solution

→ requires magic!
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ADAPTIVE DECODER APPROACH

Open Problem (Magic1 Step)

Let (H, s, t) be an instance of RSDP with unique solution e satisfying wtR(e) = t.
Let x be a solution to HxT = sT (without weight constraint).

Give an algorithm to decide if the intersection

RowSpan(x) ∩ RowSpan(e)

is non-trivial (dim > 0) with probability ≥ p, for some fixed p ∈ [0, 1].

Magically enhanced algorithm idea

1. Choose random (n− k)-dim space W
2. Solve system lin. equations with vi ∈W⊥

3. Check if solution x has wtR ≤ t.

If not, and MagicStep outputs “trivial", go back to 1.
If not, and MagicStep outputs “non-trivial", let U := RowSpan(x).

Go back to 1. but narrow down the search to only spaces W with W ∩U non-trivial.

1Official terminology by V. Weger (2023)
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RowSpan(x) ∩ RowSpan(e)

is non-trivial (dim > 0) with probability ≥ p, for some fixed p ∈ [0, 1].

Magically enhanced algorithm idea

1. Choose random (n− k)-dim space W
2. Solve system lin. equations with vi ∈W⊥
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Give an algorithm to decide if the intersection

RowSpan(x) ∩ RowSpan(e)

is non-trivial (dim > 0) with probability ≥ p, for some fixed p ∈ [0, 1].

For some trivial magic steps (slow & large p or fast & small p), we get GRS up to polynomial factor.

Can we do better?
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THANK YOU FOR LISTENING! AND FOR YOUR SOLUTIONS TO:

Open Problem (Magic Step)

Let (H, s, t) be an instance of RSDP with unique solution e satisfying wtR(e) = t.
Let x be a solution to HxT = sT (without weight constraint).

Give an algorithm to decide if the intersection

RowSpan(x) ∩ RowSpan(e)

is non-trivial (dim > 0) with probability ≥ p, for some fixed p ∈ [0, 1].

Open Problem (Weight Upper-Bound)

Let S = D (+ v) ⊂ Fm×n
q be a (translated) matrix code with |S| = qm(n−k). Give an upper-bound on

Wt(S) := |{X ∈ S | wtR(X) = t}|,

in terms of q,m,n, k, t that holds for all S .
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