Exceptional and indecomposable scattered sequences of order m > 2(joint work with Daniele Bartoli and Giuseppe Marino)

#### Alessandro Giannoni

University Federico II of Napoli

OpeRa 2024 - Caserta

February 14, 2024



## $\mathcal{F} = (f_1, \ldots, f_m)$ exceptional scattered, indecomposable and cutting

 $\mathcal{F} = (f_1, \dots, f_m)$  exceptional scattered, indecomposable and cutting  $\downarrow$ 

#### $\mathcal{C}_\mathcal{F}$ minimal and indecomposable MRD code



#### • Network coding

D. Silva, F. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding, IEEE Trans. Inform. Theory, Volume 54, 2008

#### • Cryptography

 P. Loidreau, A new rank metric codes based encryption scheme, Post-quantum cryptography, Volume 10346 of Lecture Notes in Comput. Sci., 2017 Pages 507-534



Let 
$$q = p^h, n, k \in \mathbb{N}$$
.

#### Definition

 $U \subset \mathbb{F}_{q^n}^k$  is said  $\mathbb{F}_q$ -subspace if it's closed under linear combination with coefficients in  $\mathbb{F}_q$ .



Let 
$$q = p^h, n, k \in \mathbb{N}$$
.

#### Definition

 $U \subset \mathbb{F}_{q^n}^k$  is said  $\mathbb{F}_q$ -subspace if it's closed under linear combination with coefficients in  $\mathbb{F}_q$ .

#### Definition

A  $\mathbb{F}_q$ -subspace U of dimension  $\ell$  is said to be scattered if  $|L(U)| = \frac{q^{\ell}-1}{q-1}$ .

# $\mathbb{F}_q$ -subspaces

## Definition

Let  $h, t \in \mathbb{N}$ , such that h < k and  $h \leq t$ . An  $\mathbb{F}_q$ -subspace  $U \subseteq \mathbb{F}_{q^n}^k$  is said to be (h, t)-evasive if for every *h*-dimensional  $\mathbb{F}_{q^n}$ -subspace  $H \subseteq \mathbb{F}_{q^n}^k$ , it holds  $\dim_{\mathbb{F}_q}(U \cap H) \leq t$ . When h = t, an (h, h)-evasive subspace is called *h*-scattered.

Let  $f \in \mathcal{L}_{n,q}[X]$ , we can consider

$$U_f := \{ (x, f(x)) : x \in \mathbb{F}_{q^n} \}.$$

Let 
$$\mathcal{F} = (f_1, \dots, f_s)$$
, with  $f_1, \dots, f_s \in \mathcal{L}_{n,q}[X_1, \dots, X_m]$   
 $U_{\mathcal{F}} = \{(x_1, \dots, x_m, f_1(\underline{x}), \dots, f_s(\underline{x})) : x_1, \dots, x_m \in \mathbb{F}_{q^n}\},$   
where  $\underline{x} = (x_1, \dots, x_m).$ 

- m = 1 Scattered Polynomials,  $\{(x, f(x)) : x \in \mathbb{F}_{q^n}\}$ 
  - D. Bartoli and Y. Zhou, *Exceptional scattered polynomials*, Journal of Algebra, Volume 509, 2018 Pages 507-534

- m = 1 Scattered Polynomials,  $\{(x, f(x)) : x \in \mathbb{F}_{q^n}\}$ 
  - D. Bartoli and Y. Zhou, *Exceptional scattered polynomials*, Journal of Algebra, Volume 509, 2018 Pages 507-534

• 
$$m = 2\left\{\left(x, y, x^{q^{I}} + \alpha y^{q^{J}}, x^{q^{J}} + \beta y^{q^{I}} + \gamma y^{q^{J}}\right) : x, y \in \mathbb{F}_{q^{n}}\right\}$$

D. Bartoli and G. Marino and A. Neri and L. Vicino, *Exceptional scattered sequences*, arXiv preprint arXiv:2211.11477 (2022)

## Let $J, I \in \mathbb{N}, J > I, \mathbf{A} = (\alpha_1, \dots, \alpha_m)$ with $\alpha_1, \dots, \alpha_m \in \mathbb{F}_{q^n}$ .

Let  $J, I \in \mathbb{N}, J > I, \mathbf{A} = (\alpha_1, \dots, \alpha_m)$  with  $\alpha_1, \dots, \alpha_m \in \mathbb{F}_{q^n}$ .

$$f_1(x_1, \dots, x_m) := x_1^{q^I} + \alpha_2 x_2^{q^J}$$
$$f_2(x_1, \dots, x_m) := x_2^{q^I} + \alpha_3 x_3^{q^J}$$

$$f_{m-1}(x_1, \dots, x_m) := x_{m-1}{}^{q^I} + \alpha_m x_m{}^{q^J}$$
$$f_m(x_1, \dots, x_m) := x_m{}^{q^I} + \alpha_1 x_1{}^{q^J}.$$

:

Alessandro Giannoni

Let 
$$J, I \in \mathbb{N}, J > I, \mathbf{A} = (\alpha_1, \dots, \alpha_m)$$
 with  $\alpha_1, \dots, \alpha_m \in \mathbb{F}_{q^n}$   

$$f_1(x_1, \dots, x_m) := x_1^{q^I} + \alpha_2 x_2^{q^J}$$

$$f_2(x_1, \dots, x_m) := x_2^{q^I} + \alpha_3 x_3^{q^J}$$

$$\vdots$$

$$f_{m-1}(x_1, \dots, x_m) := x_{m-1}^{q^I} + \alpha_m x_m^{q^J}$$

$$f_m(x_1, \dots, x_m) := x_m^{q^I} + \alpha_1 x_1^{q^J}.$$
Let  $\mathcal{F} := (f_1, \dots, f_m).$ 

#### Alessandro Giannoni

#### Scattered sequences of order m > 2

.

$$U_{\mathbf{A}}^{I,J} := \{(x_1,\ldots,x_m,f_1(\underline{x}),f_2(\underline{x}),\ldots,f_{m-1}(\underline{x}),f_m(\underline{x})) : \underline{x} \in (\mathbb{F}_{q^n})^m\},\$$



• 
$$C_{K,m} := \frac{q^{K} - 1}{q^{K} - 1}$$

Alessandro Giannoni

#### Theorem

If gcd(I, J) = 1 and  $K_{\mathbf{A}}^{I,J}$  is not a  $C_{K,m}$ -power in  $\mathbb{F}_{q^n}$ , then  $U_{\mathbf{A}}^{I,J}$  is maximum scattered.

## Proposition

Let  $B \in \mathbb{N}$  such that gcd(q, B) = 1, then there exist infinitely many  $h \in \mathbb{N}$  such that  $gcd(B, C_{n,h}) = 1$ .

#### Proposition

Let  $B \in \mathbb{N}$  such that gcd(q, B) = 1, then there exist infinitely many  $h \in \mathbb{N}$  such that  $gcd(B, C_{n,h}) = 1$ .

#### Observation

Let  $(h_k)_{k>0}$  be the sequence obtained by the previous proposition then given  $x \in \mathbb{F}_{q^n}$  such that is not a *B*-power in  $\mathbb{F}_{q^n}$  then *x* is not a *B*-power in  $\mathbb{F}_{q^{nh_k}}$  for any k > 0.

#### Corollary

If gcd(I, J) = 1 and  $K_{\mathbf{A}}^{I,J}$  is not a  $C_{K,m}$ -power in  $\mathbb{F}_{q^n}$ , then  $U_{\mathbf{A}}^{I,J}$  is exceptional scattered.

#### Lemma

Let  $\mathcal{F} := (f_1, \ldots, f_s)$  be an exceptional h-scattered sequence of order m. If  $U_{\mathcal{F}}$  is (t, tn/(h+1) - 1)-evasive for any  $t \in [h+1, \lfloor (m+s)/2 \rfloor]$  with  $(h+1) \mid tn$  then  $\mathcal{F}$  is indecomposable.

D. Bartoli and G. Marino and A. Neri and L. Vicino, *Exceptional scattered sequences*, arXiv preprint arXiv:2211.11477 (2022)

#### Lemma

Let  $\mathcal{F} := (f_1, \ldots, f_m)$  be an exceptional scattered sequence of order m. If  $U_{\mathcal{F}}$  is  $(t, \frac{tn}{2} - 1)$ -evasive for any  $t \in [2, m]$  with tn even, then  $\mathcal{F}$  is indecomposable.

#### Theorem

# If $n \ge 2(mJ + J + 1)$ then $U_{\mathbf{A}}^{I,J}$ is $(t, \frac{tn}{2} - 1)$ -evasive for any odd $t \in [2, \ldots, m]$ .

$$\Pi_{i} = \alpha_{i}^{q^{(m-1)K}} \alpha_{i-1}^{q^{(m-2)K}} \cdots \alpha_{i+2}^{q^{K}} \alpha_{i+1} \quad \text{with } i = 1, \dots, m$$

## Theorem

If 
$$n \geq 2(mJ + J + 1)$$
 and  $\frac{\Pi_{\delta+2}}{\Pi_2}$  is not a  $(q^{mK} - 1)$ -power in  $\mathbb{F}_{q^n}$  for  
any  $\delta = 1, \ldots, m-1$ , then  $U_{\mathbf{A}}^{I,J}$  is  $(t, \frac{tn}{2} - 1)$ -evasive for any even  
 $t \in [2, \ldots, m]$ .

#### Theorem

If  $n \geq 2(mJ + J + 1)$  and  $\frac{\Pi_{\delta+2}}{\Pi_2}$  is not a  $(q^{mK} - 1)$ -power in  $\mathbb{F}_{q^n}$  for any  $\delta = 1, \ldots, m-1$ , then  $U_{\mathbf{A}}^{I,J}$  is indecomposable.

#### Observation

If 
$$\frac{\Pi_{\delta+2}}{\Pi_2}$$
 is not a  $(q^{mK}-1)$ -power in  $\mathbb{F}_{q^n}$  for any  $\delta = 1, \ldots, m-1$  then  $m|n$ .

#### Theorem

Assume that gcd(I, J) = 1,  $K_{\mathbf{A}}^{I,J}$  is not a  $C_{K,m}$ -power, and  $\frac{\Pi_{\delta+2}}{\Pi_2}$  is not a  $(q^{mK} - 1)$ -power in  $\mathbb{F}_{q^n}$  for any  $\delta = 1, \ldots, m-1$ . Then  $U_{\mathbf{A}}^{I,J}$  is scattered and indecomposable in infinitely many extensions of  $\mathbb{F}_{q^n}$ .

## Proof Main result

By a previous Proposition there exists a sequence of positive integers  $(h_k)_k$  such that  $gcd(q^{mK} - 1, C_{n,h_k}) = 1$ . This implies  $gcd(C_{K,m}, C_{n,h_k}) = 1$ , so  $K_{\mathbf{A}}^{I,J}$  is not a  $C_{K,m}$ -power in  $\mathbb{F}_{q^{nh_k}}$  for any k > 0. So  $U_{\mathbf{A}}^{I,J}$  is scattered in  $\mathbb{F}_{q^{nh_k}}$  for any k > 0. Analogously we have that  $\frac{\Pi_{\delta+2}}{\Pi_2}$  is not a  $(q^{mK} - 1)$ -power in  $\mathbb{F}_{q^{nh_k}}$  for any k > 0 and  $\delta = 1, \ldots, m - 1$ . Also, there exists an  $h_{k_0}$  such that

$$nh_{k_0} \ge 2(mJ + J + 1).$$

So we obtain that  $U_{\mathbf{A}}^{I,J}$  is scattered and indecomposable in every extension  $\mathbb{F}_{q^{nh_k}}$  with  $h_k \geq h_{k_0}$ .

#### Theorem

If  $n \geq 2J + 1$ , and there exists  $\delta \in [1, \ldots, m-1]$  such that  $\frac{\Pi_{\delta+2}}{\Pi_2}$  is not a  $(q^{mK} - 1)$ -power in  $\mathbb{F}_{q^n}$ , then  $U_{\mathbf{A}}^{I,J}$  is (2m - 2, mn - n - 1)-evasive.

#### Theorem

Let U be an  $[n,k]_{q^m/q}$  system. Then, U is (k-2, n-m-1)-evasive if and only if it is cutting.

D. Bartoli and G. Marino and A. Neri, *New MRD codes from linear cutting blocking sets*, Ann. Mat. Pura Appl. (1923-), Springer (2022)

## Equivalence issue

#### Theorem

Let  $I, J, I_0, J_0$  be nonnegative integers, such that  $J + J_0 < n$ , I < J, and  $I_0 < J_0$ . The two sets  $U_{\mathbf{A}}^{I,J}$  and  $U_{\mathbf{A}_0}^{I_0,J_0}$  are not  $\Gamma L(2m, q^n)$ -equivalent if  $(I, J) \neq (I_0, J_0)$ .

## Equivalence issue

## Theorem

Let 
$$(I, J)$$
 be such that  $J < n/2$ . Given  $\mathbf{A} = (\alpha_1, \ldots, \alpha_m)$ ,  
 $\mathbf{A}_{\mathbf{0}} = (\beta_1, \ldots, \beta_m)$  then the sets  $U_{\mathbf{A}}^{I,J}$  and  $U_{\mathbf{A}_{\mathbf{0}}}^{I,J}$  are  
 $\Gamma L(2m, q^n)$ -equivalent if and only if  $\exists \sigma \in Aut(\mathbb{F}_{q^n})$  such that one  
among these m elements is a  $q^{mK} - 1$  power:

$$C_{1} := \left(\frac{\beta_{2}}{\alpha_{2}^{\sigma}}\right) \left(\frac{\beta_{3}}{\alpha_{3}^{\sigma}}\right)^{q^{K}} \cdots \left(\frac{\beta_{m}}{\alpha_{m}^{\sigma}}\right)^{q^{(m-2)K}} \left(\frac{\beta_{1}}{\alpha_{1}^{\sigma}}\right)^{q^{(m-1)K}}$$
$$C_{\delta} := \left(\frac{\beta_{\delta+1}}{\alpha_{2}^{\sigma}}\right) \cdots \left(\frac{\beta_{m}}{\alpha_{m-\delta+1}^{\sigma}}\right)^{q^{(m-\delta-1)K}} \left(\frac{\beta_{1}}{\alpha_{m-\delta+2}^{\sigma}}\right)^{q^{(m-\delta)K}} \cdots \left(\frac{\beta_{\delta}}{\alpha_{1}^{\sigma}}\right)^{q^{(m-1)K}}$$
$$C_{m} := \left(\frac{\beta_{1}}{\alpha_{2}^{\sigma}}\right) \cdots \left(\frac{\beta_{m-1}}{\alpha_{m}^{\sigma}}\right)^{q^{(m-2)K}} \left(\frac{\beta_{m}}{\alpha_{1}^{\sigma}}\right)^{q^{(m-1)K}},$$

with  $\delta = 2, ..., m - 1$ .

#### Alessandro Giannoni

#### Scattered sequences of order m > 2

## Equivalence issue

$$\left(1 - \frac{1}{\gcd(q^n - 1, \frac{q^{mK} - 1}{q^K - 1})} - \sum_{j=1}^{\lceil \frac{m-1}{2} \rceil} \frac{q^{\gcd(mn', j)} - 1}{q^{m \gcd(n', K)} - 1}\right) \cdot \frac{q^{m \gcd(n', K)} - 1}{mnh},$$
  
where  $q = p^h, n = mn'.$ 

- Study of the automorphism group of  $U_{\mathbf{A}}^{I,J}$ ;
- Change the binomials with trinomials  $f_i = x_i^{q^I} + \alpha_{i+1} x_{i+1}^{q^J} + \beta_{i+2} x_{i+2}^{q^K}$

## THANK YOU FOR YOUR ATTENTION