Non-linear MRD codes from cones over exterior sets

Giovanni Giuseppe Grimaldi

joint work with Nicola Durante and Giovanni Longobardi

Dipartimento di Matematica e Applicazioni Renato Caccioppoli Università degli Studi di Napoli Federico II

Open Problems on Rank-Metric Codes Caserta February 14–16, 2024

The rank distance of $A, B \in \mathbb{F}_{a}^{m \times n}$ is defined by $d(A, B) = \operatorname{rk}(A - B)$.

The rank distance of $A, B \in \mathbb{F}_q^{m \times n}$ is defined by $d(A, B) = \mathsf{rk}(A - B)$. A rank distance code C is a subset of $\mathbb{F}_q^{m \times n}$ including at least two elements.

 $d(\mathcal{C}) = \min\{d(A, B) : A, B \in \mathcal{C}, A \neq B\}.$

 $d(\mathcal{C}) = \min\{d(A, B) : A, B \in \mathcal{C}, A \neq B\}.$

If d = d(C), we will say that C is an (m, n, q; d)-rank distance code, or (m, n, q; d)-RD code.

$$d(\mathcal{C}) = \min\{d(A, B) : A, B \in \mathcal{C}, A \neq B\}.$$

If d = d(C), we will say that C is an (m, n, q; d)-rank distance code, or (m, n, q; d)-RD code.

A code C is **additive** if it is an additive subgroup of $\mathbb{F}_{a}^{m \times n}$.

 $d(\mathcal{C}) = \min\{d(A, B) : A, B \in \mathcal{C}, A \neq B\}.$

If d = d(C), we will say that C is an (m, n, q; d)-rank distance code, or (m, n, q; d)-RD code.

A code C is **additive** if it is an additive subgroup of $\mathbb{F}_q^{m \times n}$.

A code C is **linear** if it is a subspace of $\mathbb{F}_q^{m \times n}$.

 $d(\mathcal{C}) = \min\{d(A, B) : A, B \in \mathcal{C}, A \neq B\}.$

If $d = d(\mathcal{C})$, we will say that \mathcal{C} is an (m, n, q; d)-rank distance code, or (m, n, q; d)-RD code. A code \mathcal{C} is additive if it is an additive subgroup of $\mathbb{F}_{q}^{m \times n}$.

A code C is **linear** if it is a subspace of $\mathbb{F}_q^{m \times n}$. Singleton-like bound:

$$|\mathcal{C}| \leq q^{\max\{m,n\}(\min\{m,n\}-d+1)}.$$

 $d(\mathcal{C}) = \min\{d(A, B) : A, B \in \mathcal{C}, A \neq B\}.$

If $d = d(\mathcal{C})$, we will say that \mathcal{C} is an (m, n, q; d)-rank distance code, or (m, n, q; d)-RD code. A code \mathcal{C} is additive if it is an additive subgroup of $\mathbb{F}_q^{m \times n}$. A code \mathcal{C} is linear if it is a subspace of $\mathbb{F}_q^{m \times n}$.

Singleton-like bound:

 $|\mathcal{C}| \leq q^{\max\{m,n\}(\min\{m,n\}-d+1)}.$

When this bound is achieved, C is called an (m, n, q; d)-maximum rank distance code, or (m, n, q; d)-MRD code.

The **adjoint code** of C is defined by $C^{\top} = \{X^t : X \in C\}$.

The **adjoint code** of C is defined by $C^{\top} = \{X^t : X \in C\}$. Two rank distance codes $C, C' \subseteq \mathbb{F}_q^{m \times n}$ are called **equivalent** if there exist $P \in GL(m,q), Q \in GL(n,q), R \in \mathbb{F}_q^{m \times n}$ and $\rho \in Aut(\mathbb{F}_q)$ s.t.

$$\mathcal{C}' = \mathcal{P}\mathcal{C}^{\rho}\mathcal{Q} + \mathcal{R} = \{\mathcal{P}X^{\rho}\mathcal{Q} + \mathcal{R} : X \in \mathcal{C}\}.$$

The **adjoint code** of C is defined by $C^{\top} = \{X^t : X \in C\}$. Two rank distance codes $C, C' \subseteq \mathbb{F}_q^{m \times n}$ are called **equivalent** if there exist $P \in GL(m,q), Q \in GL(n,q), R \in \mathbb{F}_q^{m \times n}$ and $\rho \in Aut(\mathbb{F}_q)$ s.t.

$$\mathcal{C}' = \mathcal{P}\mathcal{C}^{\rho}\mathcal{Q} + \mathcal{R} = \{\mathcal{P}X^{\rho}\mathcal{Q} + \mathcal{R} : X \in \mathcal{C}\}.$$

When m = n, two codes are said **adjointly equivalent** if

$$\mathcal{C}' = \mathcal{P}(\mathcal{C}^{\top})^{\rho}Q + R = \{\mathcal{P}(X^t)^{\rho}Q + R : X \in \mathcal{C}\}.$$

The **adjoint code** of C is defined by $C^{\top} = \{X^t : X \in C\}$. Two rank distance codes $C, C' \subseteq \mathbb{F}_q^{m \times n}$ are called **equivalent** if there exist $P \in GL(m,q), Q \in GL(n,q), R \in \mathbb{F}_q^{m \times n}$ and $\rho \in Aut(\mathbb{F}_q)$ s.t.

$$\mathcal{C}' = \mathcal{P}\mathcal{C}^{\rho}\mathcal{Q} + \mathcal{R} = \{\mathcal{P}X^{\rho}\mathcal{Q} + \mathcal{R} : X \in \mathcal{C}\}.$$

When m = n, two codes are said **adjointly equivalent** if

$$\mathcal{C}' = \mathcal{P}(\mathcal{C}^{\top})^{\rho} \mathcal{Q} + \mathcal{R} = \{\mathcal{P}(X^t)^{\rho} \mathcal{Q} + \mathcal{R} : X \in \mathcal{C}\}.$$

The code $\mathcal{C}' \subseteq \mathbb{F}_q^{(m-u) \times n}$ obtained from $\mathcal{C} \subseteq \mathbb{F}_q^{m \times n}$ by deleting the last u rows, $1 \leq u \leq m-1$, is called a **punctured code** of \mathcal{C} . If \mathcal{C} is an MRD code then \mathcal{C}' is MRD as well.

From now on, suppose m = n and let $\sigma : x \in \mathbb{F}_{q^n} \mapsto x^{q^s} \in \mathbb{F}_{q^n}$, (s, n) = 1.

From now on, suppose m = n and let $\sigma : x \in \mathbb{F}_{q^n} \mapsto x^{q^s} \in \mathbb{F}_{q^n}$, (s, n) = 1. A σ -linearized polynomial over \mathbb{F}_{q^n} is a polynomial of the form

$$\alpha(x) = \sum_{i=0}^{l} \alpha_i x^{\sigma^i},$$

From now on, suppose m = n and let $\sigma : x \in \mathbb{F}_{q^n} \mapsto x^{q^s} \in \mathbb{F}_{q^n}$, (s, n) = 1. A σ -linearized polynomial over \mathbb{F}_{q^n} is a polynomial of the form

$$\alpha(x) = \sum_{i=0}^{l} \alpha_i x^{\sigma^i},$$

and if $\alpha_I \neq 0$ the integer *I* is called the σ -degree of $\alpha(x)$.

From now on, suppose m = n and let $\sigma : x \in \mathbb{F}_{q^n} \mapsto x^{q^s} \in \mathbb{F}_{q^n}$, (s, n) = 1. A σ -linearized polynomial over \mathbb{F}_{q^n} is a polynomial of the form

$$\alpha(x) = \sum_{i=0}^{l} \alpha_i x^{\sigma^i},$$

and if $\alpha_I \neq 0$ the integer *I* is called the σ -degree of $\alpha(x)$. The set

$$\mathcal{L}_{n,q,\sigma} = \left\{ \sum_{i=0}^{n-1} \alpha_i x^{\sigma^i} : \alpha_i \in \mathbb{F}_{q^n} \right\}$$

with the usual sum, the scalar multiplication by an element of \mathbb{F}_{q^n} , and the map composition modulo $x^{q^n} - x$ is an algebra isomorphic to the algebra $\mathbb{E} = \operatorname{End}(\mathbb{F}_{q^n}, \mathbb{F}_q)$ of the endomorphisms of \mathbb{F}_{q^n} seen as \mathbb{F}_q -vector space.

Then any rank distance code C can be seen as a subset of $\mathcal{L}_{n,q,\sigma}$.

Then any rank distance code C can be seen as a subset of $\mathcal{L}_{n,q,\sigma}$. The **adjoint polynomial** of $\alpha(x)$ is defined by

$$\hat{\alpha}(x) = \sum_{i=0}^{n-1} \alpha_i^{\sigma^{n-i}} x^{\sigma^{n-i}}$$

Then any rank distance code C can be seen as a subset of $\mathcal{L}_{n,q,\sigma}$. The **adjoint polynomial** of $\alpha(x)$ is defined by

$$\hat{\alpha}(x) = \sum_{i=0}^{n-1} \alpha_i^{\sigma^{n-i}} x^{\sigma^{n-i}}$$

The adjoint code of $\mathcal{C} \subseteq \mathcal{L}_{n,q,\sigma}$ is $\mathcal{C}^{\top} = \{\hat{\alpha}(x) : \alpha \in \mathcal{C}\}.$

Then any rank distance code C can be seen as a subset of $\mathcal{L}_{n,q,\sigma}$. The **adjoint polynomial** of $\alpha(x)$ is defined by

$$\hat{\alpha}(x) = \sum_{i=0}^{n-1} \alpha_i^{\sigma^{n-i}} x^{\sigma^{n-i}}$$

The adjoint code of $C \subseteq \mathcal{L}_{n,q,\sigma}$ is $C^{\top} = \{\hat{\alpha}(x) : \alpha \in C\}$. C and C' are **equivalent** or **adjointly equivalent** if there exist $f, g, h \in \mathcal{L}_{n,q,\sigma}$, with f and g permutation polynomials, and $\rho \in \operatorname{Aut}(\mathbb{F}_q)$ s.t.

$$\mathcal{C}' = \{ f \circ lpha^{
ho} \circ g + h : lpha \in \mathcal{C} \} \text{ or } \mathcal{C}' = \{ f \circ lpha^{
ho} \circ g + h : lpha \in \mathcal{C}^{ op} \},$$

where the automorphism ρ acts only over the coefficients of a polynomial $\alpha.$

$$\Omega = \big\{ \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(\mathbf{v} - 1, q^n) : \mathbf{u} \in U \setminus \{\mathbf{0}\} \big\}$$

is an \mathbb{F}_q -linear set of rank $u = \dim_{\mathbb{F}_q} U$.

$$\Omega = \left\{ \langle \mathbf{u}
angle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(\mathbf{v} - 1, q^n) : \mathbf{u} \in U \setminus \{\mathbf{0}\}
ight\}$$

is an \mathbb{F}_q -linear set of rank $u = \dim_{\mathbb{F}_q} U$. 1. $|\Omega| \leq \frac{q^u - 1}{q - 1}$.

$$\Omega = \big\{ \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(\nu - 1, q^n) : \mathbf{u} \in U \setminus \{\mathbf{0}\} \big\}$$

is an \mathbb{F}_q -linear set of rank $u = \dim_{\mathbb{F}_q} U$. 1. $|\Omega| \leq \frac{q^u - 1}{q - 1}$. 2. If $|\Omega| = \frac{q^u - 1}{q - 1}$, then Ω is called scattered \mathbb{F}_q -linear set.

$$\Omega = \left\{ \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(\mathbf{v} - 1, q^n) : \mathbf{u} \in U \setminus \{\mathbf{0}\} \right\}$$

is an \mathbb{F}_q -linear set of rank $u = \dim_{\mathbb{F}_q} U$. 1. $|\Omega| \leq \frac{q^u - 1}{q - 1}$. 2. If $|\Omega| = \frac{q^u - 1}{q - 1}$, then Ω is called scattered \mathbb{F}_q -linear set. 3. If u = v and $\langle \Omega \rangle = \operatorname{PG}(v - 1, q^n)$, then Ω is a subgeometry of $\operatorname{PG}(v - 1, q^n)$.

$$\Omega = \left\{ \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(\mathbf{v} - 1, q^n) : \mathbf{u} \in U \setminus \{\mathbf{0}\} \right\}$$

is an \mathbb{F}_q -linear set of rank $u = \dim_{\mathbb{F}_q} U$. 1. $|\Omega| \leq \frac{q^u - 1}{q - 1}$. 2. If $|\Omega| = \frac{q^u - 1}{q - 1}$, then Ω is called scattered \mathbb{F}_q -linear set. 3. If u = v and $\langle \Omega \rangle = PG(v - 1, q^n)$, then Ω is a subgeometry of $PG(v - 1, q^n)$.

We will consider the (canonical) subgeometry of $PG(n-1, q^n)$

$$\Sigma = \{(x, x^{\sigma}, \dots, x^{\sigma^{n-1}}) : x \in \mathbb{F}_{q^n}^*\} \cong \mathrm{PG}(n-1, q).$$

$$\Omega = \left\{ \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(\mathbf{v} - 1, q^n) : \mathbf{u} \in U \setminus \{\mathbf{0}\} \right\}$$

is an \mathbb{F}_q -linear set of rank $u = \dim_{\mathbb{F}_q} U$. 1. $|\Omega| \leq \frac{q^u - 1}{q - 1}$. 2. If $|\Omega| = \frac{q^u - 1}{q - 1}$, then Ω is called scattered \mathbb{F}_q -linear set. 3. If u = v and $\langle \Omega \rangle = PG(v - 1, q^n)$, then Ω is a subgeometry of $PG(v - 1, q^n)$.

We will consider the (canonical) subgeometry of $PG(n-1, q^n)$

$$\Sigma = \{(x, x^{\sigma}, \dots, x^{\sigma^{n-1}}) : x \in \mathbb{F}_{q^n}^*\} \cong \mathrm{PG}(n-1, q).$$

A subspace S of $PG(n-1, q^n)$ is called a subspace of Σ if

$$\dim_{\mathbb{F}_{q^n}} S = \dim_{\mathbb{F}_q} (S \cap \Sigma).$$

Let ξ be a root of an irreducible polynomial of degree n over \mathbb{F}_q .

 $x = x_0 + x_1 \xi + \ldots + x_{n-1} \xi^{n-1}$ for some $x_j \in \mathbb{F}_q$.

$$x = x_0 + x_1 \xi + \ldots + x_{n-1} \xi^{n-1}$$
 for some $x_j \in \mathbb{F}_q$.

The map

$$\Phi:(x_1,\ldots,x_m)\in\mathbb{F}_{q^n}^m\mapsto(x_{1,0},\ldots,x_{1,n-1},\ldots,x_{m,0},\ldots,x_{m,n-1})\in\mathbb{F}_q^{mn},$$

where

$$x_j = x_{j,0} + x_{j,1}\xi + \ldots + x_{j,n-1}\xi^{n-1}$$
 for some $x_{j,i} \in \mathbb{F}_q$,

is the **field reduction** of $\mathbb{F}_{q^n}^m$ in \mathbb{F}_q^{mn} .

$$x = x_0 + x_1 \xi + \ldots + x_{n-1} \xi^{n-1}$$
 for some $x_j \in \mathbb{F}_q$.

The map

$$\Phi:(x_1,\ldots,x_m)\in\mathbb{F}_{q^n}^m\mapsto(x_{1,0},\ldots,x_{1,n-1},\ldots,x_{m,0},\ldots,x_{m,n-1})\in\mathbb{F}_q^{mn},$$

where

$$x_j = x_{j,0} + x_{j,1}\xi + \ldots + x_{j,n-1}\xi^{n-1}$$
 for some $x_{j,i} \in \mathbb{F}_q$,

is the **field reduction** of $\mathbb{F}_{q^n}^m$ in \mathbb{F}_{q}^{mn} . 1. Φ maps *h*-dim. subspaces of $\mathbb{F}_{q^n}^m$ to *hn*-dim. subspaces of \mathbb{F}_{q}^{mn} .

$$x = x_0 + x_1 \xi + \ldots + x_{n-1} \xi^{n-1}$$
 for some $x_j \in \mathbb{F}_q$.

The map

$$\Phi:(x_1,\ldots,x_m)\in\mathbb{F}_{q^n}^m\mapsto(x_{1,0},\ldots,x_{1,n-1},\ldots,x_{m,0},\ldots,x_{m,n-1})\in\mathbb{F}_q^{mn},$$

where

$$x_j = x_{j,0} + x_{j,1}\xi + \ldots + x_{j,n-1}\xi^{n-1}$$
 for some $x_{j,i} \in \mathbb{F}_q$,

is the **field reduction** of $\mathbb{F}_{q^n}^m$ in \mathbb{F}_{q}^{mn} . 1. Φ maps *h*-dim. subspaces of $\mathbb{F}_{q^n}^m$ to *hn*-dim. subspaces of \mathbb{F}_{q}^{mn} . 2. Φ induces a map $\Phi' : \mathrm{PG}(m-1, q^n) \longrightarrow \mathrm{PG}(mn-1, q)$ sending (h-1)-dim. proj. subspaces to (hn-1)-dim. proj. subspaces. The Segre variety $S_{m-1,n-1}$ of $\operatorname{PG}(\mathbb{F}_q^{m \times n}) = \operatorname{PG}(mn-1,q)$, $m \leq n$, is the set of all points $\langle M \rangle \in \operatorname{PG}(\mathbb{F}_q^{m \times n})$ s.t. $\operatorname{rk} M = 1$.

The **Segre variety** $S_{m-1,n-1}$ of $\operatorname{PG}(\mathbb{F}_q^{m \times n}) = \operatorname{PG}(mn-1,q)$, $m \le n$, is the set of all points $\langle M \rangle \in \operatorname{PG}(\mathbb{F}_q^{m \times n})$ s.t. $\operatorname{rk} M = 1$. $S_{m-1,n-1}$ can be seen as the field reduction of the set

$$\Sigma_{m,n} = \{(x, x^{\sigma}, \ldots, x^{\sigma^{m-1}}) : x \in \mathbb{F}_{q^n}^*\} \cong \mathrm{PG}(n-1, q).$$

The **Segre variety** $S_{m-1,n-1}$ of $\operatorname{PG}(\mathbb{F}_q^{m \times n}) = \operatorname{PG}(mn-1,q)$, $m \leq n$, is the set of all points $\langle M \rangle \in \operatorname{PG}(\mathbb{F}_q^{m \times n})$ s.t. $\operatorname{rk} M = 1$. $S_{m-1,n-1}$ can be seen as the field reduction of the set

$$\Sigma_{m,n} = \{(x, x^{\sigma}, \ldots, x^{\sigma^{m-1}}) : x \in \mathbb{F}_{q^n}^*\} \cong \mathrm{PG}(n-1, q).$$

Let \mathcal{A} be a subset of PG(r-1, q) and denote by $\Omega_h(\mathcal{A})$ the *h*-secant variety of \mathcal{A} , i.e. the union of the *h*-dimensional projective subspaces spanned by collections of h+1 independent points of \mathcal{A} .

The **Segre variety** $S_{m-1,n-1}$ of $\operatorname{PG}(\mathbb{F}_q^{m \times n}) = \operatorname{PG}(mn-1,q)$, $m \le n$, is the set of all points $\langle M \rangle \in \operatorname{PG}(\mathbb{F}_q^{m \times n})$ s.t. $\operatorname{rk} M = 1$. $S_{m-1,n-1}$ can be seen as the field reduction of the set

$$\Sigma_{m,n} = \{(x, x^{\sigma}, \dots, x^{\sigma^{m-1}}) : x \in \mathbb{F}_{q^n}^*\} \cong \mathrm{PG}(n-1, q).$$

Let \mathcal{A} be a subset of PG(r-1, q) and denote by $\Omega_h(\mathcal{A})$ the *h*-secant variety of \mathcal{A} , i.e. the union of the *h*-dimensional projective subspaces spanned by collections of h+1 independent points of \mathcal{A} .

A set of points $\mathcal{E} \subseteq PG(r-1, q)$ is called **exterior set** with respect to $\Omega_h(\mathcal{A})$ if any line joining two distinct points of \mathcal{E} is disjoint from $\Omega_h(\mathcal{A})$.

The **Segre variety** $S_{m-1,n-1}$ of $\operatorname{PG}(\mathbb{F}_q^{m \times n}) = \operatorname{PG}(mn-1,q)$, $m \leq n$, is the set of all points $\langle M \rangle \in \operatorname{PG}(\mathbb{F}_q^{m \times n})$ s.t. $\operatorname{rk} M = 1$. $S_{m-1,n-1}$ can be seen as the field reduction of the set

$$\Sigma_{m,n} = \{(x, x^{\sigma}, \dots, x^{\sigma^{m-1}}) : x \in \mathbb{F}_{q^n}^*\} \cong \mathrm{PG}(n-1, q).$$

Let \mathcal{A} be a subset of PG(r-1, q) and denote by $\Omega_h(\mathcal{A})$ the *h*-secant variety of \mathcal{A} , i.e. the union of the *h*-dimensional projective subspaces spanned by collections of h+1 independent points of \mathcal{A} .

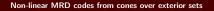
A set of points $\mathcal{E} \subseteq PG(r-1,q)$ is called **exterior set** with respect to $\Omega_h(\mathcal{A})$ if any line joining two distinct points of \mathcal{E} is disjoint from $\Omega_h(\mathcal{A})$.

Theorem (N. Durante, G.G.G., G. Longobardi - 202x)

Let $\mathcal{A} \subseteq \mathrm{PG}(r-1,q)$ such that $\langle \mathcal{A} \rangle = \mathrm{PG}(r-1,q)$. Let $\mathcal{E} \subseteq \mathrm{PG}(r-1,q)$ be an exterior set with respect to $\Omega_h(\mathcal{A})$, $0 \leq h \leq r-1$. Then

$$|\mathcal{E}| \leq \frac{q^{r-h-1}-1}{q-1}$$

Given M, N two sets of points of PG(r - 1, q), with $M \cap N = \emptyset$, we will denote by $\mathcal{K}(M, N)$ the cone with vertex M and base N.



Given M, N two sets of points of PG(r - 1, q), with $M \cap N = \emptyset$, we will denote by $\mathcal{K}(M, N)$ the cone with vertex M and base N.

Corollary (N. Durante, G.G.G., G. Longobardi - 202x)

Let $\mathcal{A} \subseteq \operatorname{PG}(r-1,q)$ such that $\langle \mathcal{A} \rangle = \operatorname{PG}(t-1,q)$, $1 \leq t < r$, and let $\mathcal{E} \subseteq \operatorname{PG}(r-1,q)$ be an exterior set with respect to $\Omega_h(\mathcal{A})$, $0 \leq h \leq t-1$. Then \mathcal{E} is contained in a cone $\mathcal{K} = \mathcal{K}(S_{r-t-1}, \overline{\mathcal{E}})$ with base $\overline{\mathcal{E}} = \mathcal{E} \cap \langle \mathcal{A} \rangle$ and vertex an (r-t-1)-dimensional subspace S_{r-t-1} complementary with $\langle \mathcal{A} \rangle$. Moreover,

$$|\mathcal{E}| \leq rac{q^{r-h-1}-1}{q-1}$$

Given M, N two sets of points of PG(r - 1, q), with $M \cap N = \emptyset$, we will denote by $\mathcal{K}(M, N)$ the cone with vertex M and base N.

Corollary (N. Durante, G.G.G., G. Longobardi - 202x)

Let $\mathcal{A} \subseteq \operatorname{PG}(r-1,q)$ such that $\langle \mathcal{A} \rangle = \operatorname{PG}(t-1,q)$, $1 \leq t < r$, and let $\mathcal{E} \subseteq \operatorname{PG}(r-1,q)$ be an exterior set with respect to $\Omega_h(\mathcal{A})$, $0 \leq h \leq t-1$. Then \mathcal{E} is contained in a cone $\mathcal{K} = \mathcal{K}(S_{r-t-1}, \overline{\mathcal{E}})$ with base $\overline{\mathcal{E}} = \mathcal{E} \cap \langle \mathcal{A} \rangle$ and vertex an (r-t-1)-dimensional subspace S_{r-t-1} complementary with $\langle \mathcal{A} \rangle$. Moreover,

$$|\mathcal{E}| \leq rac{q^{r-h-1}-1}{q-1}$$

When this bound is achieved the set \mathcal{E} will be called **maximum exterior** set.

The image of $\Omega_h(\Sigma_{m,n}) \subseteq \operatorname{PG}(m-1,q^n)$ under the field reduction is the *h*-secant variety $\Omega_h(\mathcal{S}_{m-1,n-1})$ of the points whose representative matrices in $\mathbb{F}_q^{m \times n}$ have rank at most h+1.

The image of $\Omega_h(\Sigma_{m,n}) \subseteq \operatorname{PG}(m-1,q^n)$ under the field reduction is the *h*-secant variety $\Omega_h(\mathcal{S}_{m-1,n-1})$ of the points whose representative matrices in $\mathbb{F}_q^{m \times n}$ have rank at most h+1.

Theorem

Let $\mathcal{E} \subseteq PG(m-1, q^n)$ be an exterior set with respect to $\Omega_h(\Sigma_{m,n})$ and denote by \mathcal{E}' the image of \mathcal{E} under the field reduction. Then, the set

$$\mathcal{C} = \{\rho M : \langle M \rangle_{\mathbb{F}_q} \in \mathcal{E}', \rho \in \mathbb{F}_q\}$$

is an (m, n, q; h + 2)-RD code closed under \mathbb{F}_q -multiplication. In addition, if \mathcal{E} is maximum then \mathcal{C} is MRD.

Let A and B be two distinct points of $PG(d, q^n)$, $d \ge 2$, S_A and S_B be the stars of lines (pencils of lines if d = 2) through A and B, respectively.

Let A and B be two distinct points of $PG(d, q^n)$, $d \ge 2$, S_A and S_B be the stars of lines (pencils of lines if d = 2) through A and B, respectively. Let Φ be a σ -collineation between S_A and S_B which does not map the line AB into itself and dim $\langle \Phi^{-1}(AB), AB, \Phi(AB) \rangle = \min\{3, d\}$.

Let A and B be two distinct points of $PG(d, q^n)$, $d \ge 2$, S_A and S_B be the stars of lines (pencils of lines if d = 2) through A and B, respectively. Let Φ be a σ -collineation between S_A and S_B which does not map the line AB into itself and dim $\langle \Phi^{-1}(AB), AB, \Phi(AB) \rangle = \min\{3, d\}$. The set

 $\mathcal{X} = \{\ell \cap \Phi(\ell) : \ell \in \mathcal{S}_A\}$

is called C_F^{σ} -set.

Let A and B be two distinct points of $PG(d, q^n)$, $d \ge 2$, S_A and S_B be the stars of lines (pencils of lines if d = 2) through A and B, respectively. Let Φ be a σ -collineation between S_A and S_B which does not map the line AB into itself and dim $\langle \Phi^{-1}(AB), AB, \Phi(AB) \rangle = \min\{3, d\}$. The set

 $\mathcal{X} = \{\ell \cap \Phi(\ell) : \ell \in \mathcal{S}_A\}$

is called C_F^{σ} -set.

Theorem (G. Donati, N. Durante - 2018)

Any C_F^{σ} -set is projectively equivalent to the set

$$\mathcal{X} = \{A, B\} \cup \bigcup_{a \in \mathbb{F}_q^*} \mathcal{X}_a,$$

• A = (0, ..., 0, 1), B = (1, 0, ..., 0) vertices of \mathcal{X} • $\mathcal{X}_a = \{(1, t, t^{\sigma+1}, ..., t^{\sigma^{d-1}+...+\sigma+1}) : N_{q^n/q}(t) = a\}$ components of \mathcal{X} Any component \mathcal{X}_a is a scattered \mathbb{F}_q -linear set of rank n. In particular, $\mathcal{X}_a \cong PG(n-1,q)$.

Any component \mathcal{X}_a is a scattered \mathbb{F}_q -linear set of rank n. In particular, $\mathcal{X}_a \cong PG(n-1,q)$. Moreover,

$$AB = \{A, B\} \cup \bigcup_{a \in \mathbb{F}_q^*} J_a$$

where any J_a is a scattered \mathbb{F}_q -linear set of rank *n* defined by

$$J_a = \{(1, 0, \dots, 0, (-1)^{d+1}t) : N_{q^n/q}(t) = a\}.$$

Any component \mathcal{X}_a is a scattered \mathbb{F}_q -linear set of rank n. In particular, $\mathcal{X}_a \cong PG(n-1,q)$. Moreover,

$$AB = \{A, B\} \cup \bigcup_{a \in \mathbb{F}_q^*} J_a$$

where any J_a is a scattered \mathbb{F}_q -linear set of rank *n* defined by

$$J_a = \{(1, 0, \dots, 0, (-1)^{d+1}t) : N_{q^n/q}(t) = a\}.$$

Note that

$$\mathcal{X}_1 = \{(x, x^{\sigma}, \dots, x^{\sigma^d}) : x \in \mathbb{F}_{q^n}^*\} \cong \mathrm{PG}(n-1, q)$$

and let $\Pi \cong PG(d, q)$ be a subgeometry of \mathcal{X}_1 .

For any $T \subseteq \mathbb{F}_q^*$, $1 \in T$, the set

$$\mathcal{E} = \left(\mathcal{X} \setminus \bigcup_{a \in T} \mathcal{X}_a \right) \cup \bigcup_{a \in T} J_a$$

is a maximum exterior set with respect to $\Omega_{d-2}(\Pi)$.

For any $T \subseteq \mathbb{F}_q^*$, $1 \in T$, the set

$$\mathcal{E} = \left(\mathcal{X} \setminus \bigcup_{a \in T} \mathcal{X}_a \right) \cup \bigcup_{a \in T} J_a$$

is a maximum exterior set with respect to $\Omega_{d-2}(\Pi)$.

Corollary (G. Donati, N. Durante - 2018)

To the set \mathcal{E} corresponds a (d + 1, n, q; d)-MRD code \mathcal{C} , with $q > 2, n \ge 3$ and $2 \le d \le n - 1$.

For any $T \subseteq \mathbb{F}_q^*$, $1 \in T$, the set

$$\mathcal{E} = \left(\mathcal{X} \setminus \bigcup_{a \in T} \mathcal{X}_a
ight) \cup \bigcup_{a \in T} J_a$$

is a maximum exterior set with respect to $\Omega_{d-2}(\Pi)$.

Corollary (G. Donati, N. Durante - 2018)

To the set \mathcal{E} corresponds a (d + 1, n, q; d)-MRD code \mathcal{C} , with $q > 2, n \ge 3$ and $2 \le d \le n - 1$.

 $d = 2, n = 3 \implies$ A. Cossidente, G. Marino, F. Pavese (2016)

For any $T \subseteq \mathbb{F}_q^*$, $1 \in T$, the set

$$\mathcal{E} = \left(\mathcal{X} \setminus \bigcup_{a \in T} \mathcal{X}_a \right) \cup \bigcup_{a \in T} J_a$$

is a maximum exterior set with respect to $\Omega_{d-2}(\Pi)$.

Corollary (G. Donati, N. Durante - 2018)

To the set \mathcal{E} corresponds a (d + 1, n, q; d)-MRD code \mathcal{C} , with $q > 2, n \ge 3$ and $2 \le d \le n - 1$.

 $d = 2, n = 3 \implies A.$ Cossidente, G. Marino, F. Pavese (2016) $d = n - 1, n \ge 3 \implies A.$ Siciliano, N. Durante (2018)

Let $\Sigma \cong PG(n-1,q)$ be a canonical subgeometry of $PG(n-1,q^n)$ and consider a (k-3)-subspace Λ^* disjoint from Σ and Λ an (n-k+1)-subspace of $PG(n-1,q^n)$ disjoint from Λ^* .

Let $\Sigma \cong PG(n-1,q)$ be a canonical subgeometry of $PG(n-1,q^n)$ and consider a (k-3)-subspace Λ^* disjoint from Σ and Λ an (n-k+1)-subspace of $PG(n-1,q^n)$ disjoint from Λ^* .

Let $\Gamma = p_{\Lambda^*,\Lambda}(\Sigma) = \{ \langle \Lambda^*, P \rangle \cap \Lambda : P \in \Sigma \}$ be the projection of Σ from Λ^* to Λ .

Let $\Sigma \cong PG(n-1,q)$ be a canonical subgeometry of $PG(n-1,q^n)$ and consider a (k-3)-subspace Λ^* disjoint from Σ and Λ an (n-k+1)-subspace of $PG(n-1,q^n)$ disjoint from Λ^* . Let $\Gamma = p_{\Lambda^*,\Lambda}(\Sigma) = \{\langle \Lambda^*, P \rangle \cap \Lambda : P \in \Sigma\}$ be the projection of Σ from Λ^* to Λ .

Definition (G. Lunardon - 2017)

Let $\Gamma = p_{\Lambda^*,\Lambda}(\Sigma)$ be an \mathbb{F}_q -linear set of rank *n*. It is called (n - k + 1)embedding of Σ if any (n - k + 1)-subspace of Σ is disjoint from Λ^* .

Let $\Sigma \cong PG(n-1,q)$ be a canonical subgeometry of $PG(n-1,q^n)$ and consider a (k-3)-subspace Λ^* disjoint from Σ and Λ an (n-k+1)-subspace of $PG(n-1,q^n)$ disjoint from Λ^* . Let $\Gamma = p_{\Lambda^*,\Lambda}(\Sigma) = \{\langle \Lambda^*, P \rangle \cap \Lambda : P \in \Sigma\}$ be the projection of Σ from Λ^* to Λ .

Definition (G. Lunardon - 2017)

Let $\Gamma = p_{\Lambda^*,\Lambda}(\Sigma)$ be an \mathbb{F}_q -linear set of rank *n*. It is called (n - k + 1)embedding of Σ if any (n - k + 1)-subspace of Σ is disjoint from Λ^* .

Theorem (N. Durante, G.G.G., G. Longobardi - 202x)

Let $\Sigma \cong PG(n-1,q)$ be a canonical subgeometry of $PG(n-1,q^n)$ and let Λ^* and Λ be subspaces of $PG(n-1,q^n)$ of dimension k-3 and n-k+1, respectively, such that $\Lambda^* \cap \Sigma = \emptyset = \Lambda^* \cap \Lambda$. Let $\Gamma = p_{\Lambda^*,\Lambda}(\Sigma)$ be an (n-k+1)-embedding of Σ . Let $\mathcal{E} \subseteq \Lambda$ be a (maximum) exterior set with respect to $\Omega_{n-k-1}(\Gamma)$. Then $\mathcal{K} = \mathcal{K}(\Lambda^*, \mathcal{E})$ is a (maximum) exterior set with respect to $\Omega_{n-k-1}(\Sigma)$.

 $\ln \mathrm{PG}(n-1,q^n)$, let

$$\Lambda^*: X_0=X_1=\ldots=X_{n-k+1}=0$$

$$\Lambda: X_{n-k+2} = X_{n-k+3} = \ldots = X_{n-1} = 0$$

be disjoint subspaces of dimension k - 3 and n - k + 1, respectively.

 $\ln \mathrm{PG}(n-1,q^n)$, let

$$\Lambda^*: X_0 = X_1 = \ldots = X_{n-k+1} = 0$$

$$\Lambda: X_{n-k+2} = X_{n-k+3} = \ldots = X_{n-1} = 0$$

be disjoint subspaces of dimension k-3 and n-k+1, respectively. Consider the linear set of rank n

$$\mathsf{\Gamma} = \mathsf{p}_{\mathsf{\Lambda}^*,\mathsf{\Lambda}}(\mathsf{\Sigma}) = \{(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{n-k+1}}, 0, \dots, 0) : \alpha \in \mathbb{F}_{q^n}^*\}.$$

In $PG(n-1, q^n)$, let

$$\Lambda^*: X_0 = X_1 = \ldots = X_{n-k+1} = 0$$

$$\Lambda: X_{n-k+2} = X_{n-k+3} = \ldots = X_{n-1} = 0$$

be disjoint subspaces of dimension k - 3 and n - k + 1, respectively. Consider the linear set of rank n

$$\Gamma = p_{\Lambda^*,\Lambda}(\Sigma) = \{(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{n-k+1}}, 0, \dots, 0) : \alpha \in \mathbb{F}_{q^n}^*\}.$$

Then Γ is an (n - k + 1)-embedding of Σ .

 $\ln \mathrm{PG}(n-1,q^n)$, let

$$\Lambda^*: X_0 = X_1 = \ldots = X_{n-k+1} = 0$$

$$\Lambda: X_{n-k+2} = X_{n-k+3} = \ldots = X_{n-1} = 0$$

be disjoint subspaces of dimension k - 3 and n - k + 1, respectively. Consider the linear set of rank n

$$\mathsf{\Gamma} = \mathsf{p}_{\mathsf{\Lambda}^*,\mathsf{\Lambda}}(\mathsf{\Sigma}) = \{(\alpha, \alpha^{\sigma}, \dots, \alpha^{\sigma^{n-k+1}}, 0, \dots, 0) : \alpha \in \mathbb{F}_{q^n}^*\}.$$

Then Γ is an (n - k + 1)-embedding of Σ . Let $\mathcal{X} = \bigcup_{a \in \mathbb{F}_a^*} \mathcal{X}_a \cup \{A, B\}$ be a C_F^{σ} -set of Λ where

$$A = (\underbrace{0, \dots, 0}_{n-k+1}, 1, \dots, 0), \quad B = (1, 0, \dots, 0),$$

$$\mathcal{X}_{a} = \{(1, t, t^{\sigma}, \ldots, t^{\sigma^{n-k}+\ldots+\sigma+1}, 0, \ldots, 0) : N_{q^{n}/q}(t) = a\}.$$

For any $T\subseteq \mathbb{F}_q^*, \ 1\in T$, the set

$$\mathcal{E} = \left(\mathcal{X} \setminus \bigcup_{a \in T} \mathcal{X}_a \right) \cup \bigcup_{a \in T} J_a$$

where

$$J_{a} = \left\{ (1, \underbrace{0, \dots, 0}_{n-k}, (-1)^{n-k}t, 0, \dots, 0) : N_{q^{n}/q}(t) = a \right\}$$

is a maximum exterior set with respect to $\Omega_{n-k-1}(\Gamma)$.

For any $T \subseteq \mathbb{F}_q^*$, $1 \in T$, the set

$$\mathcal{E} = \left(\mathcal{X} \setminus \bigcup_{a \in T} \mathcal{X}_a \right) \cup \bigcup_{a \in T} J_a$$

where

$$J_{a} = \left\{ (1, \underbrace{0, \dots, 0}_{n-k}, (-1)^{n-k}t, 0, \dots, 0) : N_{q^{n}/q}(t) = a \right\}$$

is a maximum exterior set with respect to $\Omega_{n-k-1}(\Gamma)$.

Corollary (N. Durante, G.G.G., G. Longobardi - 202x)

For any $T \subseteq \mathbb{F}_q^*$, $1 \in T$, the set $\mathcal{K} = \mathcal{K}(\Lambda^*, \mathcal{E})$ is a maximum exterior set with respect to $\Omega_{n-k-1}(\Sigma)$. Then the set

$$\mathcal{C}_{\sigma,T} = \{\rho M : \langle M \rangle_{\mathbb{F}_q} \in \mathcal{K}, \rho \in \mathbb{F}_q\}$$

is an (n, n, q; d = n - k + 1)-MRD code.

Known non-linear MRD codes:

- A. Cossidente, G. Marino, F. Pavese (2016)
- S. Siciliano, N. Durante (2018)
- G. Donati, N. Durante (2018): it is the punctured code
 C'_{σ,T} ⊆ 𝔽^{(n-k+2)×n} obtained from C_{σ,T} by deleting the last (k − 2) rows.
- K. Otal, F. Özbudak (2018)

The code $C_{\sigma,T}$ in terms of σ -linearized polynomials is given by the union of the sets

$$\left\{\sum_{i=0}^{d} \lambda \alpha^{\sigma^{i}} \xi^{\frac{\sigma^{i}-1}{\sigma-1}} x^{\sigma^{i}} + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \lambda, \alpha, \beta_{i} \in \mathbb{F}_{q^{n}}, \mathbb{N}_{q^{n}/q}(\xi) \in \mathbb{F}_{q}^{*} \setminus T\right\}$$
$$\left\{\lambda \alpha x + (-1)^{d+1} \lambda \alpha^{\sigma} \eta x^{\sigma^{d}} + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \lambda, \alpha, \beta_{i} \in \mathbb{F}_{q^{n}}, \mathbb{N}_{q^{n}/q}(\eta) \in T\right\}$$
$$\left\{\alpha x^{\sigma^{d}} + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \alpha, \beta_{i} \in \mathbb{F}_{q^{n}}\right\} \cup \left\{\alpha x + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \alpha, \beta_{i} \in \mathbb{F}_{q^{n}}\right\}$$

The code $C_{\sigma,T}$ in terms of σ -linearized polynomials is given by the union of the sets

$$\left\{\sum_{i=0}^{d} \lambda \alpha^{\sigma^{i}} \xi^{\frac{\sigma^{i}-1}{\sigma-1}} x^{\sigma^{i}} + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \lambda, \alpha, \beta_{i} \in \mathbb{F}_{q^{n}}, \mathbb{N}_{q^{n}/q}(\xi) \in \mathbb{F}_{q}^{*} \setminus T\right\}$$
$$\left\{\lambda \alpha x + (-1)^{d+1} \lambda \alpha^{\sigma} \eta x^{\sigma^{d}} + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \lambda, \alpha, \beta_{i} \in \mathbb{F}_{q^{n}}, \mathbb{N}_{q^{n}/q}(\eta) \in T\right\}$$
$$\left\{\alpha x^{\sigma^{d}} + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \alpha, \beta_{i} \in \mathbb{F}_{q^{n}}\right\} \cup \left\{\alpha x + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \alpha, \beta_{i} \in \mathbb{F}_{q^{n}}\right\}$$

Note that the code $C_{\sigma,T}$ is closed under \mathbb{F}_{q^n} -multiplication.

Let $1 \leq k \leq n$, the set

$$\mathcal{G}_{k,\sigma} = \left\{ \sum_{i=0}^{k-1} \alpha_i x^{\sigma^i} : \alpha_i \in \mathbb{F}_{q^n} \right\}$$

is a linear (n, n, q; n-k+1)-MRD code called generalized Gabidulin code.

Let $1 \leq k \leq n$, the set

$$\mathcal{G}_{k,\sigma} = \left\{ \sum_{i=0}^{k-1} \alpha_i x^{\sigma^i} : \alpha_i \in \mathbb{F}_{q^n} \right\}$$

is a linear (n, n, q; n-k+1)-MRD code called **generalized Gabidulin code**. Note that the sets

$$\mathcal{U} = \left\{ \alpha x^{\sigma^{d}} + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \alpha, \beta_{i} \in \mathbb{F}_{q^{n}} \right\} = \left\{ f \circ x^{\sigma^{d}} : f \in \mathcal{G}_{k-1,\sigma} \right\}$$
$$\mathcal{V} = \left\{ \alpha x + \sum_{i=d+1}^{n-1} \beta_{i} x^{\sigma^{i}} : \alpha, \beta_{i} \in \mathbb{F}_{q^{n}} \right\} = \left\{ f \circ x^{\sigma^{d+1}} : f \in \mathcal{G}_{k-1,\sigma} \right\}$$

contained in $\mathcal{C}_{\sigma,T}$ are equivalent to $\mathcal{G}_{k-1,\sigma}$.

K. Otal and F. $\ddot{O}zbudak$ (2018) constructed non-linear MRD codes for all n, d:

K. Otal and *F. Özbudak* (2018) constructed non-linear MRD codes for all n, d: let $I \subseteq \mathbb{F}_q$ and $1 \le k \le n - 1$

$$\mathcal{C}_{n,k,\sigma,I}^{(1)} = \left\{ \sum_{i=0}^{k-1} \alpha_i x^{\sigma^i} : \alpha_i \in \mathbb{F}_{q^n}, \mathrm{N}_{q^n/q}(\alpha_0) \in I \right\}$$

$$\mathcal{C}_{n,k,\sigma,l}^{(2)} = \left\{ \sum_{i=1}^{k} \alpha_i x^{\sigma^i} : \alpha_i \in \mathbb{F}_{q^n}, \mathbb{N}_{q^n/q}(\alpha_k) \notin (-1)^{k(n+1)} l \right\}$$

K. Otal and *F. Özbudak* (2018) constructed non-linear MRD codes for all n, d: let $I \subseteq \mathbb{F}_q$ and $1 \le k \le n - 1$

$$\mathcal{C}_{n,k,\sigma,I}^{(1)} = \left\{ \sum_{i=0}^{k-1} \alpha_i x^{\sigma^i} : \alpha_i \in \mathbb{F}_{q^n}, \mathrm{N}_{q^n/q}(\alpha_0) \in I \right\}$$

$$\mathcal{C}_{n,k,\sigma,l}^{(2)} = \left\{ \sum_{i=1}^{k} \alpha_i x^{\sigma^i} : \alpha_i \in \mathbb{F}_{q^n}, \mathbb{N}_{q^n/q}(\alpha_k) \notin (-1)^{k(n+1)} l \right\}$$

then $\mathcal{C}_{n,k,\sigma,I} = \mathcal{C}_{n,k,\sigma,I}^{(1)} \cup \mathcal{C}_{n,k,\sigma,I}^{(2)}$ is an (n, n, q; n - k + 1)-MRD code.

K. Otal and *F. Özbudak* (2018) constructed non-linear MRD codes for all n, d: let $I \subseteq \mathbb{F}_q$ and $1 \le k \le n - 1$

$$\mathcal{C}_{n,k,\sigma,l}^{(1)} = \left\{ \sum_{i=0}^{k-1} \alpha_i x^{\sigma^i} : \alpha_i \in \mathbb{F}_{q^n}, \mathrm{N}_{q^n/q}(\alpha_0) \in I \right\}$$

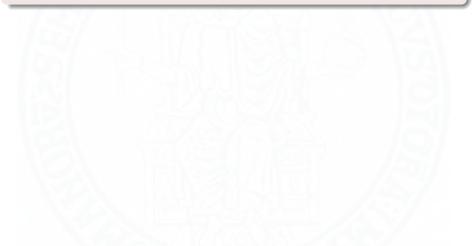
$$\mathcal{C}_{n,k,\sigma,l}^{(2)} = \left\{ \sum_{i=1}^{k} \alpha_i x^{\sigma^i} : \alpha_i \in \mathbb{F}_{q^n}, \mathbb{N}_{q^n/q}(\alpha_k) \notin (-1)^{k(n+1)} l \right\}$$

then $\mathcal{C}_{n,k,\sigma,I} = \mathcal{C}_{n,k,\sigma,I}^{(1)} \cup \mathcal{C}_{n,k,\sigma,I}^{(2)}$ is an (n, n, q; n - k + 1)-MRD code.

Corollary (K. Otal, F. Özbudak - 2018)

- **1.** If q = 2 or $l \in \{\emptyset, \{0\}, \mathbb{F}_q^*, \mathbb{F}_q\}$, then $\mathcal{C}_{n,k,\sigma,l}$ is equivalent to a generalized Gabidulin code.
- **2.** If q > 2 and $I \notin \{\emptyset, \{0\}, \mathbb{F}_q^*, \mathbb{F}_q\}$, then $\mathcal{C}_{n,k,\sigma,l}$ is not an affine code (i.e., not a translated version of an additively closed code)

If q = 2 or $T = \mathbb{F}_q^*$ and $I \in \{\{0\}, \mathbb{F}_q, \mathbb{F}_q^*, \emptyset\}$, then the codes of type $\mathcal{C}_{n,k,\sigma,I}$ and $\mathcal{C}_{\sigma,T}$ are both equivalent to a $\mathcal{G}_{k,\sigma}$.



If q = 2 or $T = \mathbb{F}_q^*$ and $I \in \{\{0\}, \mathbb{F}_q, \mathbb{F}_q^*, \emptyset\}$, then the codes of type $\mathcal{C}_{n,k,\sigma,I}$ and $\mathcal{C}_{\sigma,T}$ are both equivalent to a $\mathcal{G}_{k,\sigma}$.

The non-linear (n, n, q; n - k + 1)-MRD code $C_{n,k,\sigma,l}$ contains the set

$$\mathcal{W} = \left\{ \sum_{i=1}^{k-1} \gamma_i x^{\sigma^i} : \gamma_i \in \mathbb{F}_{q^n} \right\} = \left\{ f \circ x^{\sigma} : f \in \mathcal{G}_{k-1,\sigma} \right\}.$$

If q = 2 or $T = \mathbb{F}_q^*$ and $I \in \{\{0\}, \mathbb{F}_q, \mathbb{F}_q^*, \emptyset\}$, then the codes of type $C_{n,k,\sigma,I}$ and $C_{\sigma,T}$ are both equivalent to a $\mathcal{G}_{k,\sigma}$.

The non-linear (n, n, q; n - k + 1)-MRD code $C_{n,k,\sigma,l}$ contains the set

$$\mathcal{W} = \left\{ \sum_{i=1}^{k-1} \gamma_i x^{\sigma^i} : \gamma_i \in \mathbb{F}_{q^n} \right\} = \left\{ f \circ x^{\sigma} : f \in \mathcal{G}_{k-1,\sigma} \right\}.$$

Theorem (N. Durante, G.G.G., G. Longobardi - 202x)

Let $I \notin \{\{0\}, \mathbb{F}_q, \mathbb{F}_q^*, \emptyset\}$, the code $C_{n,k,\sigma,I}$ contains a unique subspace equivalent to $\mathcal{G}_{k-1,\sigma}$.

If q = 2 or $T = \mathbb{F}_q^*$ and $I \in \{\{0\}, \mathbb{F}_q, \mathbb{F}_q^*, \emptyset\}$, then the codes of type $\mathcal{C}_{n,k,\sigma,I}$ and $\mathcal{C}_{\sigma,T}$ are both equivalent to a $\mathcal{G}_{k,\sigma}$.

The non-linear (n, n, q; n - k + 1)-MRD code $C_{n,k,\sigma,l}$ contains the set

$$\mathcal{W} = \left\{ \sum_{i=1}^{k-1} \gamma_i x^{\sigma^i} : \gamma_i \in \mathbb{F}_{q^n} \right\} = \left\{ f \circ x^{\sigma} : f \in \mathcal{G}_{k-1,\sigma} \right\}.$$

Theorem (N. Durante, G.G.G., G. Longobardi - 202x)

Let $I \notin \{\{0\}, \mathbb{F}_q, \mathbb{F}_q^*, \emptyset\}$, the code $C_{n,k,\sigma,I}$ contains a unique subspace equivalent to $\mathcal{G}_{k-1,\sigma}$.

Theorem (N. Durante, G.G.G., G. Longobardi - 202x)

Let $I \notin \{\{0\}, \mathbb{F}_q, \mathbb{F}_q^*, \emptyset\}$, $1 \in T \subseteq \mathbb{F}_q^*$ and $\sigma, \tau \in Aut(\mathbb{F}_{q^n})$. Then the codes of type $\mathcal{C}_{n,k,\tau,I}$ and $\mathcal{C}_{\sigma,T}$ are neither equivalent nor adjointly equivalent.

Thanks for your attention!

