

A geometric characterization of known maximum scattered linear sets of $PG(1, q^n)$ (joint work G.G. Grimaldi, G. Longobardi and R. Trombetti)

OpeRa 2024 - Caserta Open Problems on Rank-Metric Codes

Somi Gupta

February 16, 2024 — Università degli Studi di Napoli Federico II

Outline

Introduction

Some general results

Known families of MRD codes

Geometric Characterisation of known families

Let

- $r, n, t \in \mathbb{Z}^+$ and $q = p^r, p$ a prime number;
- \mathbb{F}_{q^n} Galois field with q^n elements;
- $PG(W, \mathbb{F}_{q^n}) = PG(r 1, q^n)$ projective space of dimension r 1 over \mathbb{F}_{q^n} .

Let

- $r, n, t \in \mathbb{Z}^+$ and $q = p^r, p$ a prime number;
- \mathbb{F}_{q^n} Galois field with q^n elements;
- $PG(W, \mathbb{F}_{q^n}) = PG(r-1, q^n)$ projective space of dimension r-1 over \mathbb{F}_{q^n} .

Theorem. [G. Lunardon, O. Polverino (2004)]

Every linear set is a subgeometry or projection of a canonical subgeometry.

A subset of $PG(W, \mathbb{F}_{q^n}) = PG(r - 1, q^n)$ is called a **linear set** L_U if its points are defined by non-zero elements of an \mathbb{F}_q -subspaces U of W.

$$L_U = \{\langle u \rangle_{\mathbb{F}_{q^n}} : u \in U^*\}.$$

A subset of $PG(W, \mathbb{F}_{q^n}) = PG(r - 1, q^n)$ is called a **linear set** L_U if its points are defined by non-zero elements of an \mathbb{F}_q -subspaces U of W.

$$L_U=\{\langle u\rangle_{\mathbb{F}_{q^n}}:u\in U^*\}.$$

If $\dim_{\mathbb{F}_a}(U) = t$, L_U is a linear set of **rank** t.

A subset of $PG(W, \mathbb{F}_{q^n}) = PG(r - 1, q^n)$ is called a **linear set** L_U if its points are defined by non-zero elements of an \mathbb{F}_q -subspaces U of W.

$$L_U = \{\langle u \rangle_{\mathbb{F}_{q^n}} : u \in U^* \}.$$

If $\dim_{\mathbb{F}_a}(U) = t$, L_U is a linear set of **rank** t.

•
$$|L_U| \le \frac{q^{t-1}}{q-1} = q^{t-1} + q^{t-2} + \dots + q + 1.$$

A subset of $PG(W, \mathbb{F}_{q^n}) = PG(r - 1, q^n)$ is called a **linear set** L_U if its points are defined by non-zero elements of an \mathbb{F}_q -subspaces U of W.

$$L_U = \{\langle u \rangle_{\mathbb{F}_{q^n}} : u \in U^* \}.$$

If $\dim_{\mathbb{F}_a}(U) = t$, L_U is a linear set of **rank** t.

- $|L_U| \le \frac{q^{t-1}}{q-1} = q^{t-1} + q^{t-2} + \dots + q + 1.$
- When the bound is attended, L_U is said to be a **scattered** linear set.

A (canonical) subgeometry Σ of $\Sigma^* = \mathrm{PG}(r-1,q^n) = \mathrm{PG}(W,q^n)$ is an \mathbb{F}_q -linear set of rank r and such that $\langle \Sigma \rangle = \Sigma^*$.

A (canonical) subgeometry Σ of $\Sigma^* = \mathrm{PG}(r-1,q^n) = \mathrm{PG}(W,q^n)$ is an \mathbb{F}_q -linear set of rank r and such that $\langle \Sigma \rangle = \Sigma^*$.

• Any two canonical subgeometries of Σ^* on the same field are isomorphic;

A (canonical) subgeometry Σ of $\Sigma^* = \operatorname{PG}(r-1,q^n) = \operatorname{PG}(W,q^n)$ is an \mathbb{F}_q -linear set of rank r and such that $\langle \Sigma \rangle = \Sigma^*$.

- Any two canonical subgeometries of Σ^* on the same field are isomorphic;
- Any canonical subgeometry $\Sigma \cong \mathrm{PG}(r-1,q)$ is isomorphic to the canonical subgeometry $\bar{\Sigma} = \{(x_0,...,x_{r-1}): x_i \in \mathbb{F}_q\}$;

A (canonical) subgeometry Σ of $\Sigma^* = \mathrm{PG}(r-1,q^n) = \mathrm{PG}(W,q^n)$ is an \mathbb{F}_q -linear set of rank r and such that $\langle \Sigma \rangle = \Sigma^*$.

- Any two canonical subgeometries of Σ^* on the same field are isomorphic;
- Any canonical subgeometry $\Sigma \cong PG(r-1,q)$ is isomorphic to the canonical subgeometry $\bar{\Sigma} = \{(x_0,...,x_{r-1}) : x_i \in \mathbb{F}_q\}$;
- If τ is the semilinear collineation $\tau:(x_0,...,x_{r-1})\mapsto (x_0^q,...,x_{r-1}^q)$, then $\bar{\Sigma}=\mathrm{Fix}(\tau)$;

A (canonical) subgeometry Σ of $\Sigma^* = \mathrm{PG}(r-1,q^n) = \mathrm{PG}(W,q^n)$ is an \mathbb{F}_q -linear set of rank r and such that $\langle \Sigma \rangle = \Sigma^*$.

- Any two canonical subgeometries of Σ^* on the same field are isomorphic;
- Any canonical subgeometry $\Sigma \cong \mathrm{PG}(r-1,q)$ is isomorphic to the canonical subgeometry $\bar{\Sigma} = \{(x_0,...,x_{r-1}): x_i \in \mathbb{F}_q\}$;
- If τ is the semilinear collineation $\tau:(x_0,...,x_{r-1})\mapsto (x_0^q,...,x_{r-1}^q)$, then $\bar{\Sigma}=\mathrm{Fix}(\tau)$;
- If $\Sigma \cong \mathrm{PG}(r-1,q)$ is a canonical subgeometry of Σ^* , there exists a semilinear collineation σ of Σ^* of order n such that $\Sigma = \mathrm{Fix}(\sigma)$.

• Let $\Sigma \cong PG(r-1,q)$ be a canonical subgeometry of $\Sigma^* \cong PG(r-1,q^n)$.

- Let $\Sigma \cong PG(r-1,q)$ be a canonical subgeometry of $\Sigma^* \cong PG(r-1,q^n)$.
- Suppose there is an (r m)- dimensional subspace Γ of Σ^* disjoint from Σ .

- Let $\Sigma \cong PG(r-1,q)$ be a canonical subgeometry of $\Sigma^* \cong PG(r-1,q^n)$.
- Suppose there is an (r m)- dimensional subspace Γ of Σ^* disjoint from Σ .
- Let $\Lambda = PG(m-2, q^n)$ be an (m-2)-dimensional subspace of Σ^* disjoint from Γ .

- Let $\Sigma \cong PG(r-1,q)$ be a canonical subgeometry of $\Sigma^* \cong PG(r-1,q^n)$.
- Suppose there is an (r m)- dimensional subspace Γ of Σ^* disjoint from Σ .
- Let $\Lambda = PG(m-2, q^n)$ be an (m-2)-dimensional subspace of Σ^* disjoint from Γ .

Then

$$L = p_{\Gamma, \Lambda}(\Sigma) = \{x \text{ is a point of } \Lambda | \exists y \in \Sigma \text{ such that } x = \langle \Gamma, y \rangle \cap \Lambda \}$$

is called **projection** of Σ from Γ to Λ (Λ and Γ the **center** and the **axis** of the projection, respectively).

A linear set $L_U \subset \operatorname{PG}(W, q^n)$ is said to be $(h, k)_q$ - **evasive** if $\dim \langle L_U \rangle \ge h$ - 1, and for every h-dimensional subspace T of W we have that $L_{U \cap T}$ has rank at most k.

A linear set $L_U \subset \operatorname{PG}(W, q^n)$ is said to be $(h, k)_q$ - **evasive** if $\dim \langle L_U \rangle \geq h - 1$, and for every h-dimensional subspace T of W we have that $L_{U \cap T}$ has rank at most k. If h = k = 1, then L_U is scattered.

A linear set $L_U \subset \operatorname{PG}(W, q^n)$ is said to be $(h, k)_q$ - **evasive** if $\dim \langle L_U \rangle \geq h - 1$, and for every h-dimensional subspace T of W we have that $L_{U \cap T}$ has rank at most k. If h = k = 1, then L_U is scattered.

Definition

A point P of Σ^* , one can define the subspace

$$\mathcal{L}_{P,\sigma} = \langle P, P^{\sigma}, \dots, P^{\sigma^{n-1}} \rangle.$$

A linear set $L_U \subset \operatorname{PG}(W, q^n)$ is said to be $(h, k)_q$ - **evasive** if $\dim \langle L_U \rangle \geq h - 1$, and for every h-dimensional subspace T of W we have that $L_{U \cap T}$ has rank at most k. If h = k = 1, then L_U is scattered.

Definition

A point P of Σ^* , one can define the subspace

$$\mathcal{L}_{P,\sigma} = \langle P, P^{\sigma}, \dots, P^{\sigma^{n-1}} \rangle.$$

• This is a projective subspace of Σ of dimension at most n-1.

A linear set $L_U \subset \operatorname{PG}(W, q^n)$ is said to be $(h, k)_q$ - **evasive** if $\dim \langle L_U \rangle \geq h$ - 1, and for every h-dimensional subspace T of W we have that $L_{U \cap T}$ has rank at most k. If h = k = 1, then L_U is scattered.

Definition

A point P of Σ^* , one can define the subspace

$$\mathcal{L}_{P,\sigma} = \langle P, P^{\sigma}, \dots, P^{\sigma^{n-1}} \rangle.$$

- This is a projective subspace of Σ of dimension at most n-1.
- The rank of $P \in \Sigma^*$ with respect to Σ , is given by $\mathrm{rk}P = 1 + \dim(\mathcal{L}_{P,\sigma})$.

A linear set $L_U \subset \operatorname{PG}(W, q^n)$ is said to be $(h, k)_q$ - **evasive** if $\dim \langle L_U \rangle \ge h - 1$, and for every h-dimensional subspace T of W we have that $L_{U \cap T}$ has rank at most k. If h = k = 1, then L_U is scattered.

Definition

A point P of Σ^* , one can define the subspace

$$\mathcal{L}_{P,\sigma} = \langle P, P^{\sigma}, \dots, P^{\sigma^{n-1}} \rangle.$$

- This is a projective subspace of Σ of dimension at most n-1.
- The rank of $P \in \Sigma^*$ with respect to Σ , is given by $\mathrm{rk}P = 1 + \dim(\mathcal{L}_{P,\sigma})$.
- If rkP = n, then P will be said to be an **imaginary** point of Σ^* with respect to Σ .

Let A, B, C, D be points of the line $PG(1, q^n)$ with A, B, C distinct. The cross-ratio is defined as

$$(ABCD) = \frac{\begin{vmatrix} c_0 & a_0 \\ c_1 & a_1 \end{vmatrix} \begin{vmatrix} d_0 & b_0 \\ d_1 & b_1 \end{vmatrix}}{\begin{vmatrix} c_0 & b_0 \\ c_1 & b_1 \end{vmatrix} \begin{vmatrix} d_0 & a_0 \\ d_1 & a_1 \end{vmatrix}},$$

where (a_0, a_1) , (b_0, b_1) , (c_0, c_1) , (d_0, d_1) are the homogeneous coordinates of the points A, B, C, D, respectively.

Let A, B, C, D be points of the line $PG(1, q^n)$ with A, B, C distinct. The cross-ratio is defined as

$$(ABCD) = \frac{\begin{vmatrix} c_0 & a_0 \\ c_1 & a_1 \end{vmatrix} \begin{vmatrix} d_0 & b_0 \\ d_1 & b_1 \end{vmatrix}}{\begin{vmatrix} c_0 & b_0 \\ c_1 & b_1 \end{vmatrix} \begin{vmatrix} d_0 & a_0 \\ d_1 & a_1 \end{vmatrix}},$$

where (a_0, a_1) , (b_0, b_1) , (c_0, c_1) , (d_0, d_1) are the homogeneous coordinates of the points A, B, C, D, respectively.

The pair $\{A, B\}$ separates the pair $\{C, D\}$ harmonically if the cross-ratio (ABCD) = -1

Let A, B, C, D be points of the line $PG(1, q^n)$ with A, B, C distinct. The cross-ratio is defined as

$$(ABCD) = \frac{\begin{vmatrix} c_0 & a_0 \\ c_1 & a_1 \end{vmatrix} \begin{vmatrix} d_0 & b_0 \\ d_1 & b_1 \end{vmatrix}}{\begin{vmatrix} c_0 & b_0 \\ c_1 & b_1 \end{vmatrix} \begin{vmatrix} d_0 & a_0 \\ d_1 & a_1 \end{vmatrix}},$$

where (a_0, a_1) , (b_0, b_1) , (c_0, c_1) , (d_0, d_1) are the homogeneous coordinates of the points A, B, C, D, respectively.

The pair $\{A, B\}$ separates the pair $\{C, D\}$ harmonically if the cross-ratio (ABCD) = -1

$$A = \langle \underline{v_0} \rangle_{\mathbb{F}_{q^n}} \qquad B = \langle v_1 \rangle_{\mathbb{F}_{q^n}}$$

Let A, B, C, D be points of the line $PG(1, q^n)$ with A, B, C distinct. The cross-ratio is defined as

$$(ABCD) = \frac{\begin{vmatrix} c_0 & a_0 \\ c_1 & a_1 \end{vmatrix} \begin{vmatrix} d_0 & b_0 \\ d_1 & b_1 \end{vmatrix}}{\begin{vmatrix} c_0 & b_0 \\ c_1 & b_1 \end{vmatrix} \begin{vmatrix} d_0 & a_0 \\ d_1 & a_1 \end{vmatrix}},$$

where (a_0, a_1) , (b_0, b_1) , (c_0, c_1) , (d_0, d_1) are the homogeneous coordinates of the points A, B, C, D, respectively.

The pair $\{A, B\}$ separates the pair $\{C, D\}$ harmonically if the cross-ratio (ABCD) = -1

$$A = \langle v_0 \rangle_{\mathbb{F}_{q^n}} \qquad D = \langle v_0 - v_1 \rangle_{\mathbb{F}_{q^n}} \qquad B = \langle v_1 \rangle_{\mathbb{F}_{q^n}} \qquad C = \langle v_0 + v_1 \rangle_{\mathbb{F}_{q^n}}$$

Up to a suitable projectivity, any linear set L of rank n(r-1) in $\operatorname{PG}(r-1,q^n)$ can be written in the following form

$$L = L_F = \{ \langle (\mathbf{x}, F(\mathbf{x})) \rangle_{\mathbb{F}_{q^n}} : \mathbf{x} = (x_0, x_1, ..., x_{r-2}) \in \mathbb{F}_{q^n}^{r-1}, \mathbf{x} \neq \mathbf{0} \}$$

Up to a suitable projectivity, any linear set L of rank n(r-1) in $\operatorname{PG}(r-1,q^n)$ can be written in the following form

$$L = L_F = \{ \langle (\mathbf{x}, F(\mathbf{x})) \rangle_{\mathbb{F}_{q^n}} : \mathbf{x} = (x_0, x_1, ..., x_{r-2}) \in \mathbb{F}_{q^n}^{r-1}, \mathbf{x} \neq \mathbf{0} \}$$

•
$$F(\mathbf{x}) = \sum_{j=0}^{r-2} f_j(x_j)$$

Up to a suitable projectivity, any linear set L of rank n(r-1) in $PG(r-1,q^n)$ can be written in the following form

$$L = L_F = \{ \langle (\mathbf{x}, F(\mathbf{x})) \rangle_{\mathbb{F}_{q^n}} : \mathbf{x} = (x_0, x_1, ..., x_{r-2}) \in \mathbb{F}_{q^n}^{r-1}, \mathbf{x} \neq \mathbf{0} \}$$

- $F(\mathbf{x}) = \sum_{j=0}^{r-2} f_j(x_j)$
- $f_j(x_j) = \sum_{i=1}^{n-1} a_{ij} x_j^{q^i}$ is an \mathbb{F}_q -linearized polynomial with coefficients over \mathbb{F}_{q^n} in the indeterminate x_j for each $j \in \{0, 1, ..., r-2\}$.

Introduction

Up to a suitable projectivity, any linear set L of rank n(r-1) in $PG(r-1,q^n)$ can be written in the following form

$$L = L_F = \{ \langle (\mathbf{x}, F(\mathbf{x})) \rangle_{\mathbb{F}_{q^n}} : \mathbf{x} = (x_0, x_1, ..., x_{r-2}) \in \mathbb{F}_{q^n}^{r-1}, \mathbf{x} \neq \mathbf{0} \}$$

- $F(\mathbf{x}) = \sum_{j=0}^{r-2} f_j(x_j)$
- $f_j(x_j) = \sum_{i=1}^{n-1} a_{ij} x_j^{q^i}$ is an \mathbb{F}_q -linearized polynomial with coefficients over \mathbb{F}_{q^n} in the indeterminate x_j for each $j \in \{0, 1, ..., r-2\}$.

Notation:

a) $m_j = \max\{i \in \{1, 2, ..., n-1\} \mid a_{ij} \neq 0\}$, i.e., the q-degree of $f_j(x_j)$, and

Introduction

Up to a suitable projectivity, any linear set L of rank n(r-1) in $PG(r-1,q^n)$ can be written in the following form

$$L = L_F = \{ \langle (\mathbf{x}, F(\mathbf{x})) \rangle_{\mathbb{F}_{q^n}} : \mathbf{x} = (x_0, x_1, ..., x_{r-2}) \in \mathbb{F}_{q^n}^{r-1}, \mathbf{x} \neq \mathbf{0} \}$$

- $F(\mathbf{x}) = \sum_{j=0}^{r-2} f_j(x_j)$
- $f_j(x_j) = \sum_{i=1}^{n-1} a_{ij} x_j^{q^i}$ is an \mathbb{F}_q -linearized polynomial with coefficients over \mathbb{F}_{q^n} in the indeterminate x_j for each $j \in \{0, 1, ..., r-2\}$.

Notation:

- a) $m_j = \max\{i \in \{1, 2, ..., n-1\} \mid a_{ij} \neq 0\}$, i.e., the q-degree of $f_j(x_j)$, and
- b) $I_j = \{i \in \{1, 2, ..., n-1\} : a_{ij} \neq 0\}$, i.e. the **support** of $f_j(x_j)$ (supp $f_j(x_j)$).

• Let $\Sigma^* = PG(n(r-1) - 1, q^n)$,

- Let $\Sigma^* = PG(n(r-1) 1, q^n)$,
- Let the homogeneous coordinates of Σ^* be

$$(x_{00}, x_{10}, \dots, x_{r-2,0}, x_{01}, x_{11}, \dots, x_{r-2,1}, \dots, x_{0,n-1}, x_{1,n-1}, \dots, x_{r-2,n-1}),$$

- Let $\Sigma^* = PG(n(r-1) 1, q^n)$,
- Let the homogeneous coordinates of Σ^* be

$$(x_{00}, x_{10}, \dots, x_{r-2,0}, x_{01}, x_{11}, \dots, x_{r-2,1}, \dots, x_{0,n-1}, x_{1,n-1}, \dots, x_{r-2,n-1}),$$

• Let canonical subgeometry of Σ^* be $\Sigma \cong \mathrm{PG}(n(r-1)-1,q)$ defined by

$$\Sigma = \{\langle (\mathbf{x}, \mathbf{x}^q, ..., \mathbf{x}^{q^{n-1}}) \rangle_{\mathbb{F}_{q^n}} : \mathbf{x} \in \mathbb{F}_{q^n}^{r-1}, \mathbf{x} \neq \mathbf{0} \},$$

where $\mathbf{x}^{q^m} = (x_0^{q^m}, x_1^{q^m}, ..., x_{r-2}^{q^m})$, for each $m \in \{0, 1, ..., n-1\}$

- Let $\Sigma^* = PG(n(r-1) 1, q^n)$,
- Let the homogeneous coordinates of Σ^* be

$$(x_{00}, x_{10}, \dots, x_{r-2,0}, x_{01}, x_{11}, \dots, x_{r-2,1}, \dots, x_{0,n-1}, x_{1,n-1}, \dots, x_{r-2,n-1}),$$

• Let canonical subgeometry of Σ^* be $\Sigma \cong \mathrm{PG}(n(r-1)-1,q)$ defined by

$$\Sigma = \{\langle (\mathbf{x}, \mathbf{x}^q, ..., \mathbf{x}^{q^{n-1}}) \rangle_{\mathbb{F}_{q^n}} : \mathbf{x} \in \mathbb{F}_{q^n}^{r-1}, \mathbf{x} \neq \mathbf{0} \},$$

where $\mathbf{x}^{q^m} = (x_0^{q^m}, x_1^{q^m}, \dots, x_{r-2}^{q^m})$, for each $m \in \{0, 1, \dots, n-1\}$

• If σ is a collineation of Σ^* of order n, defined as

- Let $\Sigma^* = PG(n(r-1) 1, q^n)$,
- Let the homogeneous coordinates of Σ^* be

$$(x_{00}, x_{10}, \dots, x_{r-2,0}, x_{01}, x_{11}, \dots, x_{r-2,1}, \dots, x_{0,n-1}, x_{1,n-1}, \dots, x_{r-2,n-1}),$$

• Let canonical subgeometry of Σ^* be $\Sigma \cong \mathrm{PG}(n(r-1)-1,q)$ defined by

$$\Sigma = \{\langle (\mathbf{x}, \mathbf{x}^q, ..., \mathbf{x}^{q^{n-1}}) \rangle_{\mathbb{F}_{q^n}} : \mathbf{x} \in \mathbb{F}_{q^n}^{r-1}, \mathbf{x} \neq \mathbf{0} \},$$

where $\mathbf{x}^{q^m} = (x_0^{q^m}, x_1^{q^m}, \dots, x_{r-2}^{q^m})$, for each $m \in \{0, 1, \dots, n-1\}$

• If σ is a collineation of Σ^* of order n, defined as

$$\sigma: (x_{00},x_{10},\ldots,x_{r-2,0},x_{01},x_{11},\ldots,x_{r-2,1},\ldots,x_{0,n-1},x_{1,n-1},\ldots,x_{r-2,n-1}) \mapsto (x_{0,n-1}^q,x_{1,n-1}^q,\ldots,x_{r-2,n-1}^q,x_{00}^q,x_{10}^q,\ldots,x_{r-2,0}^q,\ldots,x_{0,n-2}^q,x_{1,n-2}^q,\ldots,x_{r-2,n-2}^q),$$

- Let $\Sigma^* = PG(n(r-1) 1, q^n)$,
- Let the homogeneous coordinates of Σ^* be

$$(x_{00}, x_{10}, \dots, x_{r-2,0}, x_{01}, x_{11}, \dots, x_{r-2,1}, \dots, x_{0,n-1}, x_{1,n-1}, \dots, x_{r-2,n-1}),$$

• Let canonical subgeometry of Σ^* be $\Sigma \cong \mathrm{PG}(n(r-1)-1,q)$ defined by

$$\Sigma = \{\langle (\mathbf{x}, \mathbf{x}^q, ..., \mathbf{x}^{q^{n-1}}) \rangle_{\mathbb{F}_{q^n}} : \mathbf{x} \in \mathbb{F}_{q^n}^{r-1}, \mathbf{x} \neq \mathbf{0} \},$$

where $\mathbf{x}^{q^m} = (x_0^{q^m}, x_1^{q^m}, \dots, x_{r-2}^{q^m})$, for each $m \in \{0, 1, \dots, n-1\}$

• If σ is a collineation of Σ^* of order n, defined as

$$\sigma: (x_{00}, x_{10}, \dots, x_{r-2,0}, x_{01}, x_{11}, \dots, x_{r-2,1}, \dots, x_{0,n-1}, x_{1,n-1}, \dots, x_{r-2,n-1}) \mapsto (x_{0,n-1}^q, x_{1,n-1}^q, \dots, x_{r-2,n-1}^q, x_{00}^q, x_{10}^q, \dots, x_{r-2,0}^q, \dots, x_{0,n-2}^q, x_{1,n-2}^q, \dots, x_{r-2,n-2}^q),$$

then $Fix(\sigma) = \Sigma$.

Let L_f be a linear set of rank n on the projective line $PG(1, q^n)$ with $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ with $m = \deg_q f(x)$ and $I = \operatorname{supp} f(x)$.

Let L_f be a linear set of rank n on the projective line $\operatorname{PG}(1,q^n)$ with $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ with $m = \deg_{\alpha} f(x)$ and $l = \operatorname{supp} f(x)$.

Then there exists an imaginary point P and a line Λ through P such that L_f is equivalent to $p_{\Gamma,\Lambda}(\Sigma)$ with

Let L_f be a linear set of rank n on the projective line $\operatorname{PG}(1,q^n)$ with $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ with $m = \deg_{\alpha} f(x)$ and $l = \operatorname{supp} f(x)$.

Then there exists an imaginary point P and a line Λ through P such that L_f is equivalent to $p_{\Gamma,\Lambda}(\Sigma)$ with

$$\Gamma = \langle P^{\sigma^j}, Q_i : j \notin I, i \in I/\{m\} \rangle$$

Let L_f be a linear set of rank n on the projective line $\operatorname{PG}(1,q^n)$ with $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ with $m = \deg_{\alpha} f(x)$ and $l = \operatorname{supp} f(x)$.

Then there exists an imaginary point P and a line Λ through P such that L_f is equivalent to $p_{\Gamma,\Lambda}(\Sigma)$ with

$$\Gamma = \langle P^{\sigma^j}, Q_i : j \notin I, i \in I/\{m\} \rangle$$

where $Q_i \in \langle P^{\sigma^i}, P^{\sigma^m} \rangle$ with $i \in I$, and $\Lambda = \langle P, P^{\sigma^m} \rangle$.

• Let Σ be a canonical subgeometry, Λ be a line and Γ be an (n-3) dimensional subspace of $PG(n-1,q^n)$ such that $\Gamma \cap \Sigma = \emptyset = \Lambda \cap \Gamma$.

- Let Σ be a canonical subgeometry, Λ be a line and Γ be an (n-3) dimensional subspace of $PG(n-1,q^n)$ such that $\Gamma \cap \Sigma = \emptyset = \Lambda \cap \Gamma$.
- Let $L = p_{\Gamma, \Lambda}(\Sigma)$ be a linear set in $\Lambda = \operatorname{PG}(1, q^n)$ such that it is defined by an (1, n-2)-evasive \mathbb{F}_q -linear subspace of $V(2, q^n)$.

- Let Σ be a canonical subgeometry, Λ be a line and Γ be an (n-3) dimensional subspace of $PG(n-1,q^n)$ such that $\Gamma \cap \Sigma = \emptyset = \Lambda \cap \Gamma$.
- Let $L = p_{\Gamma, \Lambda}(\Sigma)$ be a linear set in $\Lambda = \operatorname{PG}(1, q^n)$ such that it is defined by an (1, n-2)-evasive \mathbb{F}_q -linear subspace of $V(2, q^n)$.
- Let $I \subseteq \{1, ..., n-1\}$ and denote by m the maximum integer in I.

- Let Σ be a canonical subgeometry, Λ be a line and Γ be an (n-3) dimensional subspace of $PG(n-1,q^n)$ such that $\Gamma \cap \Sigma = \emptyset = \Lambda \cap \Gamma$.
- Let $L = p_{\Gamma, \Lambda}(\Sigma)$ be a linear set in $\Lambda = \mathrm{PG}(1, q^n)$ such that it is defined by an (1, n-2)-evasive \mathbb{F}_q -linear subspace of $V(2, q^n)$.
- Let $I \subseteq \{1, ..., n-1\}$ and denote by m the maximum integer in I.

If there exist a point $P \in \mathrm{PG}(n-1,q^n)$ with the property that $P,P^{\sigma^m} \notin \Gamma$ and $\Gamma = \langle P^{\sigma^j},Q_i \mid j \notin I,j \neq 0 \text{ and } i \in I/\{m\}\rangle$,

- Let Σ be a canonical subgeometry, Λ be a line and Γ be an (n-3) dimensional subspace of $PG(n-1,q^n)$ such that $\Gamma \cap \Sigma = \emptyset = \Lambda \cap \Gamma$.
- Let $L = p_{\Gamma, \Lambda}(\Sigma)$ be a linear set in $\Lambda = \operatorname{PG}(1, q^n)$ such that it is defined by an (1, n-2)-evasive \mathbb{F}_q -linear subspace of $V(2, q^n)$.
- Let $I \subseteq \{1, ..., n-1\}$ and denote by m the maximum integer in I.

If there exist a point $P \in \mathrm{PG}(n-1,q^n)$ with the property that $P,P^{\sigma^m} \notin \Gamma$ and $\Gamma = \langle P^{\sigma^j},Q_i \mid j \notin I,j \neq 0 \text{ and } i \in I/\{m\}\rangle$,

where $Q_i \in \langle P^{\sigma^m}, P^{\sigma^i} \rangle$.

- Let Σ be a canonical subgeometry, Λ be a line and Γ be an (n-3) dimensional subspace of $PG(n-1,q^n)$ such that $\Gamma \cap \Sigma = \emptyset = \Lambda \cap \Gamma$.
- Let $L = p_{\Gamma, \Lambda}(\Sigma)$ be a linear set in $\Lambda = \mathrm{PG}(1, q^n)$ such that it is defined by an (1, n-2)-evasive \mathbb{F}_q -linear subspace of $V(2, q^n)$.
- Let $I \subseteq \{1, ..., n-1\}$ and denote by m the maximum integer in I.

If there exist a point $P \in \mathrm{PG}(n-1,q^n)$ with the property that $P, P^{\sigma^m} \notin \Gamma$ and $\Gamma = \langle P^{\sigma^j}, Q_i \mid j \notin I, j \neq 0 \text{ and } i \in I/\{m\}\rangle$,

where $Q_i \in \langle P^{\sigma^m}, P^{\sigma^i} \rangle$. Then the following holds 1. the point P is an imaginary point.

- Let Σ be a canonical subgeometry, Λ be a line and Γ be an (n-3) dimensional subspace of $PG(n-1,q^n)$ such that $\Gamma \cap \Sigma = \emptyset = \Lambda \cap \Gamma$.
- Let $L = p_{\Gamma, \Lambda}(\Sigma)$ be a linear set in $\Lambda = \operatorname{PG}(1, q^n)$ such that it is defined by an (1, n-2)-evasive \mathbb{F}_q -linear subspace of $V(2, q^n)$.
- Let $I \subseteq \{1, ..., n-1\}$ and denote by m the maximum integer in I.

If there exist a point $P \in \mathrm{PG}(n-1,q^n)$ with the property that $P, P^{\sigma^m} \notin \Gamma$ and $\Gamma = \langle P^{\sigma^j}, Q_i \mid j \notin I, j \neq 0 \text{ and } i \in I/\{m\}\rangle$,

where $Q_i \in \langle P^{\sigma^m}, P^{\sigma^i} \rangle$. Then the following holds

- 1. the point P is an imaginary point.
- 2. $L \cong L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}^*} x \in \mathbb{F}_{q^n} / \{0\} \}$ where $f(x) = \sum_{i=1}^m a_i x^{q^i}$ with $a_m \neq 0$.

- Let Σ be a canonical subgeometry, Λ be a line and Γ be an (n-3) dimensional subspace of $PG(n-1,q^n)$ such that $\Gamma \cap \Sigma = \emptyset = \Lambda \cap \Gamma$.
- Let $L = p_{\Gamma, \Lambda}(\Sigma)$ be a linear set in $\Lambda = \operatorname{PG}(1, q^n)$ such that it is defined by an (1, n-2)-evasive \mathbb{F}_q -linear subspace of $V(2, q^n)$.
- Let $I \subseteq \{1, ..., n-1\}$ and denote by m the maximum integer in I.

If there exist a point $P \in PG(n-1,q^n)$ with the property that $P, P^{\sigma^m} \notin \Gamma$ and

$$\Gamma = \langle P^{\sigma^j}, Q_i \mid j \notin I, j \neq 0 \text{ and } i \in I/\{m\} \rangle,$$

where $Q_i \in \langle P^{\sigma^m}, P^{\sigma^i} \rangle$. Then the following holds

- 1. the point P is an imaginary point.
- 2. $L \cong L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}^*} x \in \mathbb{F}_{q^n} / \{0\} \}$ where $f(x) = \sum_{i=1}^m a_i x^{q^i}$ with $a_m \neq 0$.
- 3. If f is a permutation polynomial then $\Sigma \cap \langle P, P^{\sigma^j}, Q_i \mid j \notin I$ and $i \in I/\{m\} \rangle = \emptyset$. Somi Gupta

 Università degli Studi di Napoli Federico II

Theorem [G.G. Grimaldi, G., G. Longobardi, Trombetti, In Preparation]

Let L_F be a linear set of rank n(r-1) of $PG(r-1,q^n)$ with $F(\mathbf{x})$, a multivariate polynomial. Let $\Sigma^* = PG(n(r-1)-1,q^n)$ and Σ be the subgeometry of Σ^* . Then, there exist

- 1. r-1 imaginary points P_0, P_1, \dots, P_{r-2} of Σ^* (wrt Σ),
- 2. an (n(r-1)-(r+1))-dimensional subspace Γ of Σ^* fulfilling
 - i) $P_k^{\sigma^{j_k}} \in \Gamma$ for any $j_k \notin I_k$, $j_k \neq 0$ and $k \in \{0, ..., r-2\}$,
 - ii) any line

$$\langle P_{\ell}^{\sigma^{j_{\ell}}}, P_{\ell}^{\sigma^{m_{\ell}}} \rangle$$

with $j_{\ell} \in I_{\ell}/\{m_{\ell}\}$ for $\ell \in \{0, 1, ..., r-2\}$ meets Γ ,

iii) if r > 2, any line

$$\langle P_i^{\sigma^{m_i}}, P_{r-2}^{\sigma^{m_{r-2}}} \rangle$$

with $i \in \{0, 1, ..., r - 3\}$ meets Γ .

3. an (r-1)-dimensional subspace Λ of Σ^* through the points P_i , $i \in \{0, ..., r-2\}$, such that $\Gamma \cap \Sigma = \Gamma \cap \Lambda = \emptyset$ and $p_{\Gamma,\Lambda}(\Sigma)$ is equivalent to L_F .

Lemma [G.G. Grimaldi, G., G. Longobardi, Trombetti, In Preparation]

- Let Σ be a subgeometry of $\Sigma^* = \operatorname{PG}(n(r-1)-1,q^n)$ and σ denote a semilinear collineation of order n of Σ^* such that $\operatorname{Fix}(\sigma) = \Sigma$.
- Let P_0, P_1, \dots, P_{r-2} and R_0, R_1, \dots, R_{r-2} imaginary points such that $\mathcal{L}_{P_i} = \mathcal{L}_{R_i}$ and $\langle \mathcal{L}_{P_0}, \mathcal{L}_{P_1}, \dots, \mathcal{L}_{P_{r-2}} \rangle = \Sigma^*$.

Then there exists a collineation $\varphi \in LAut(\Sigma)$ such that $\varphi(P_i) = R_i$ for $i \in \{0, 1, ..., r - 2\}$.

Lemma [G.G. Grimaldi, G., G. Longobardi, Trombetti, In Preparation]

- Let Σ be a subgeometry of $\Sigma^* = PG(n(r-1)-1,q^n)$ and σ denote a semilinear collineation of order n of Σ^* such that $Fix(\sigma) = \Sigma$.
- Let P_0, P_1, \dots, P_{r-2} and R_0, R_1, \dots, R_{r-2} imaginary points such that $\mathcal{L}_{P_i} = \mathcal{L}_{R_i}$ and $\langle \mathcal{L}_{P_0}, \mathcal{L}_{P_1}, \dots, \mathcal{L}_{P_{r-2}} \rangle = \Sigma^*.$

Then there exists a collineation $\varphi \in LAut(\Sigma)$ such that $\varphi(P_i) = R_i$ for $i \in \{0, 1, ..., r-2\}$.

Proposition [G.G. Grimaldi, G., G. Longobardi, Trombetti, In Preparation]

- Let Σ be a subgeometry of $\Sigma^* = PG(n(r-1)-1,q^n)$.
- Let σ denotes a semilinear collineation of order n of Σ^* such that $Fix(\sigma) = \Sigma$.

Then, the group LAut(Σ) acts (r – 1)-transitively on r – 1 independent points P_0, P_1, \dots, P_{r-2} such that $\langle \mathcal{L}_{P_0}, \mathcal{L}_{P_1}, \dots, \mathcal{L}_{P_{r-2}} \rangle = \Sigma^*$.
Università degli Studi di Napoli Federico II

Theorem [G.G. Grimaldi, G., G. Longobardi, Trombetti, In Preparation]

- Let $r, n \ge 2$, $I_j \subseteq \{1, ..., n-1\}$, with $j \in \{0, 1, ..., r-2\}$.
- Let Σ be a canonical subgeometry of Σ^* and consider Γ and Λ subspaces of Σ^* with dimensions (n(r-1)-(r+1)) and (r-1), respectively, such that $\Gamma \cap \Sigma = \emptyset = \Lambda \cap \Gamma$.
- Let $L = p_{\Gamma, \Lambda}(\Sigma) \subseteq \Lambda$ be a linear set of rank n(r-1) associated with an (r-1, n(r-1)-2)-evasive \mathbb{F}_q -linear subspace of $\mathbb{F}_{q^n}^r$.
- If there exist r 1 points P_0, P_1, \dots, P_{r-2} such that Γ is spanned by points defined above.

Then,

- 1. P_0, P_1, \dots, P_{r-2} are imaginary points (w.r.t. Σ), and
- 2. $L \cong L_F$, where supp $f_j(x_j) = I_j$ and $m_j = \deg_q f_j(x_j)$, j = 0, ..., r 2.

$$L \cong L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}} \mid x \in \mathbb{F}_{q^n}/\{0\} \}$$
 where $f(x) = \sum_{i=1}^m a_i x^{q^i}$ with $a_m \neq 0$

• $f_1(x) = x^{q^s}$, $1 \le s \le n - 1$, gcd(s, n) = 1, [Blokhuis, Lavrauw, 2000].

$$L \cong L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}} \mid x \in \mathbb{F}_{q^n}/\{0\} \}$$
 where $f(x) = \sum_{i=1}^m a_i x^{q^i}$ with $a_m \neq 0$

- $f_1(x) = x^{q^s}$, $1 \le s \le n 1$, gcd(s, n) = 1, [Blokhuis, Lavrauw, 2000].
- $f_2(x) = \delta x^{q^s} + x^{q^{(n-1)s}}$, $n \ge 4$, $N_{q^n/q}(\delta) \notin \{0, 1\}$, gcd(s, n) = 1, [Sheekey, 2016] and for s=1 [Lunardon, Polverino, 2001].

$$L \cong L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}} \mid x \in \mathbb{F}_{q^n}/\{0\} \}$$
 where $f(x) = \sum_{i=1}^m a_i x^{q^i}$ with $a_m \neq 0$

- $f_1(x) = x^{q^s}$, $1 \le s \le n 1$, gcd(s, n) = 1, [Blokhuis, Lavrauw, 2000].
- $f_2(x) = \delta x^{q^s} + x^{q^{(n-1)s}}$, $n \ge 4$, $N_{q^n/q}(\delta) \notin \{0, 1\}$, gcd(s, n) = 1, [Sheekey, 2016] and for s=1 [Lunardon, Polverino, 2001].
- $f_{3,n}(x) = \delta x^{q^s} + x^{q^{s+n/2}}$, $n \in \{6, 8\}$, $\gcd(s, n/2) = 1$, $N_{q^n/q^{n/2}}(\delta) \notin \{0, 1\}$, for some conditions on δ and q, [Csajbók, Marino, Polverino, Zanella, 2018].

• $f_4(x) = x^q + x^{q^3} + \zeta x^{q^5}$ where $\zeta \in \mathbb{F}_{q^6}^*$ such that $\zeta^2 + \zeta = 1$; ([Csajbók, Marino, Zullo, 2018] q odd, for $q = 0, \pm 1 \pmod{5}$, [Marino, Montanucci, Zullo, 2020] for the remaining congruences of q). [Bartoli, Longobardi, Marino, Timpanella, 2024] q even and some additional codintions.

- $f_4(x) = x^q + x^{q^3} + \zeta x^{q^5}$ where $\zeta \in \mathbb{F}_{q^6}^*$ such that $\zeta^2 + \zeta = 1$; ([Csajbók, Marino, Zullo, 2018] q odd, for $q \equiv 0, \pm 1 \pmod{5}$, [Marino, Montanucci, Zullo, 2020] for the remaining congruences of q). [Bartoli, Longobardi, Marino, Timpanella, 2024] q even and some additional codintions.
- $f_5(x) = x^q + x^{q^{t-1}} x^{q^{t+1}} + x^{q^{2t-1}}$, q odd, n = 2t with either $t \ge 3$ odd and $q = 1 \pmod{4}$, or t even. [Longobardi, Zanella, 2021], for n = 6 [Bartoli, Zanella, Zullo, 2020].

- $f_4(x) = x^q + x^{q^3} + \zeta x^{q^5}$ where $\zeta \in \mathbb{F}_{q^6}^*$ such that $\zeta^2 + \zeta = 1$; ([Csajbók, Marino, Zullo, 2018] q odd, for $q \equiv 0, \pm 1 \pmod{5}$, [Marino, Montanucci, Zullo, 2020] for the remaining congruences of q). [Bartoli, Longobardi, Marino, Timpanella, 2024] q even and some additional codintions.
- $f_5(x) = x^q + x^{q^{t-1}} x^{q^{t+1}} + x^{q^{2t-1}}$, q odd, n = 2t with either $t \ge 3$ odd and $q = 1 \pmod{4}$, or t even. [Longobardi, Zanella, 2021], for n = 6 [Bartoli, Zanella, Zullo, 2020].
- $f_6(x) = x^q + x^{q^{t-1}} h^{1-q^{t+1}} x^{q^{t+1}} + h^{1-q^{2t-1}} x^{q^{2t-1}}$ where q odd, n = 2t and $h \in \mathbb{F}_{q^{2t}} / \mathbb{F}_{q^t}$ such that $N_{q^{2t}/q^t}(h) = -1$. [Longobardi, Marino, Trombetti, Zhou, 2022].

Known Examples

- $f_4(x) = x^q + x^{q^3} + \zeta x^{q^5}$ where $\zeta \in \mathbb{F}_{q^6}^*$ such that $\zeta^2 + \zeta = 1$; ([Csajbók, Marino, Zullo, 2018] q odd, for $q \equiv 0, \pm 1 \pmod{5}$, [Marino, Montanucci, Zullo, 2020] for the remaining congruences of q). [Bartoli, Longobardi, Marino, Timpanella, 2024] q even and some additional codintions.
- $f_5(x) = x^q + x^{q^{t-1}} x^{q^{t+1}} + x^{q^{2t-1}}$, q odd, n = 2t with either $t \ge 3$ odd and $q = 1 \pmod{4}$, or t even. [Longobardi, Zanella, 2021], for n = 6 [Bartoli, Zanella, Zullo, 2020].
- $f_6(x) = x^q + x^{q^{t-1}} h^{1-q^{t+1}} x^{q^{t+1}} + h^{1-q^{2t-1}} x^{q^{2t-1}}$ where q odd, n = 2t and $h \in \mathbb{F}_{q^{2t}} / \mathbb{F}_{q^t}$ such that $N_{q^{2t}/q^t}(h) = -1$. [Longobardi, Marino, Trombetti, Zhou, 2022].
- $f_7(x) = x^{q^s} + x^{q^{s(t-1)}} + h^{1+q^s} x^{q^{s(t+1)}} + h^{1-q^{s(2t-1)}} x^{q^{s(2t-1)}}$, where q odd, n = 2t, (2t, s) = 1 and $h \in \mathbb{F}_{q^{2t}}$ such that $N_{q^{2t}/q^t}(h) = -1$. [Neri, Santonastaso, Zullo, 2022].

Theorem [Csajbok and Zanella, 2016]

Let Σ be a canonical subgeometry of $PG(n-1,q^n)$, q>2, $n\geq 3$. Assume that Γ and Λ are an (n-3)-subspace and a line of $PG(n-1,q^n)$, respectively, such that $\Sigma \cap \Gamma = \Lambda \cap \Gamma = \emptyset$. Then the following assertions are equivalent:

- 1. The set $p_{\Gamma, \Lambda}(\Sigma)$ is a scattered \mathbb{F}_q -linear set of pseudoregulus type;
- 2. A generator σ exists of the subgroup of $P\Gamma L(n, q^n)$ fixing Σ pointwise, such that $\dim(\Gamma \cap \Gamma^{\sigma}) = n 4$; furthermore Γ is not contained in the span of any hyperplane of Σ ;
- 3. There exists a point P and a generator σ of the subgroup of $P\Gamma L(n, q^n)$ fixing Σ pointwise, such that $\langle P, P^{\sigma}, \cdots, P^{\sigma^{n-1}} \rangle = PG(n-1, q^n)$, and

$$\Gamma = \langle P, P^{\sigma}, \cdots, P^{\sigma^{n-3}} \rangle.$$

Zanella and Zullo,2020

- Let Γ be a subspace of $PG(n-1,q^n)$, n odd of dimension $n-3 \ge 2$ and Σ a canonical subgeometry of $PG(n-1,q^n)$ such that $\Gamma \cap \Sigma = \emptyset$.
- Assume that a generator σ of the subgroup of $P\Gamma L(n, q^n)$ exists, fixing Σ pointwise, such that $intn_{\sigma}(\Gamma) = 2$

Then, there exists a point $R \in PG(n - 1, q^n)$ such that

$$R^{\sigma^2}$$
, R^{σ^3} , ..., $R^{\sigma^{n-2}} \in \Gamma$.

Furthermore,

- Assume that $\langle R^{\sigma}, R^{\sigma^{n-1}} \rangle$ and Γ meet in a point Q and $R^{\sigma} \neq Q \neq R^{\sigma^{n-1}}$.
- Let Q^* be the point such that the pair $\{R^{\sigma}, R^{\sigma^{n-1}}\}$ separates $\{Q, Q^*\}$ harmonically.
- Such Q^* is defined by the property that there are two representative vectors v_0 and v_1 for R^{σ} and $R^{\sigma^{n-1}}$, respectively, such that $\langle v_0 + v_1 \rangle_{\mathbb{F}_{q^n}} = Q$, $\langle v_0 v_1 \rangle_{\mathbb{F}_{q^n}} = Q^*$.

Under these assumptions the linear set $L = p_{\Gamma,\Lambda}(\Sigma)$, with Λ a line disjoint from Γ , is a maximum scattered linear set of LP-type if and only if

$$\Sigma \cap \langle R, R^{\sigma^2}, R^{\sigma^3}, \dots, R^{\sigma^{n-2}}, Q^* \rangle = \emptyset.$$

$$L_{f_1} = \{ \langle (x, \eta x^{q^s} + x^{q^{(n-1)s}}) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n} \}$$

$$\Gamma = \begin{cases} x_0 = 0 \\ x_s(n-1) = -\delta x_s. \end{cases} \text{ and } \Lambda = x_i = 0, i \in \{s, ..., s(n-2)\}$$

- Q^* be the point such that the pair $\{R^{\sigma}, R^{{\sigma}^{n-1}}\}$ separates $\{Q, Q^*\}$ harmonically.
- Two representative vectors v_0 and v_1 for R^{σ} and $R^{{\sigma}^{n-1}}$ respectively.
- $\langle v_0 + v_1 \rangle_{\mathbb{F}_{q^n}} = Q,$ $\langle v_0 - v_1 \rangle_{\mathbb{F}_{q^n}} = Q^*.$
- $L = p_{\Gamma,\Lambda}(\Sigma)$ is a maximum scattered linear set of LP-type if and only if

$$\Sigma \cap \langle R, R^{\sigma^2}, R^{\sigma^3}, \dots, R^{\sigma^{n-2}}, Q^* \rangle = \emptyset.$$

Let Γ be a solid, Λ a line and $\Sigma \cong PG(5,q)$ a canonical subgeometry of $PG(5,q^6)$ such that $\Gamma \cap \Lambda = \emptyset = \Gamma \cap \Sigma$ and let $L = p_{\Gamma,\Lambda}(\Sigma)$ be a maximum scattered linear set of Λ . Assume there exists a point $P = \langle v \rangle_{\mathbb{F}_{q^6}}$ such that

$$\Gamma = \langle P^{\sigma^i}, Q : i \notin \{0, 2, 5\} \rangle$$

with $Q \in \langle P^{\sigma^2}, P^{\sigma^5} \rangle$. Then the linear set L is equivalent to $L_{3,6} = \{(x, x^{q^2} + \delta x^{q^5}) : x \in \mathbb{F}_{q^6}^*\}$ if and only if the equation

$$Y^2 - (\text{Tr}_{q^3/q}(\gamma) - 1)Y +_{q^3/q} (\gamma) = 0$$

admits two solutions in \mathbb{F}_q where $\gamma = (Q, P^{\sigma^5}, P^{\sigma^2}, Q^{\sigma^3})$.

Let Γ be a 5-dimensional subspace, Λ a line and $\Sigma \cong PG(7,q)$ a canonical subgeometry of $PG(7,q^8)$ such that $\Gamma \cap \Lambda = \emptyset = \Gamma \cap \Sigma$ and let $L = \mathrm{p}_{\Gamma,\Lambda}(\Sigma)$ be a maximum scattered linear set of Λ . If there exists a point $P = \langle v \rangle_{\mathbb{F}_{q^8}}$ such that

$$\Gamma = \langle P^{\sigma^i}, Q : i \notin \{0, s, s + 4\}, (s, 4) = 1 \rangle$$

with $Q \in \langle P^{\sigma^s}, P^{\sigma^{s+4}} \rangle$, then $L \cong L_{3,8}$ with $f_{3,8}(x) = x^{q^s} + \delta x^{q^{s+4}}$, $\delta \in \mathbb{F}_{q^8}$. Moreover, assume $q \le 11$ or $q \ge 1039891$ odd. Then, the linear set L is equivalent to $L_{3,8}$ if the pair $\{P^{\sigma^s}, P^{\sigma^{s+4}}\}$ separates $\{Q, Q^{\sigma^4}\}$ harmonically.

Let Γ be a solid, Λ a line and $\Sigma \cong PG(5,q)$ a canonical subgeometry of $PG(5,q^6)$ such that $\Gamma \cap \Lambda = \emptyset = \Gamma \cap \Lambda$ and let $L = p_{\Gamma,\Lambda}(\Sigma)$ be a maximum scattered linear set of Λ . If there exists a point $P = \langle v \rangle_{\mathbb{F}_{q^6}}$ such that

$$\Gamma = \langle P^{\sigma^2}, P^{\sigma^4}, Q, R \rangle$$

with $P^{\sigma^i} \notin \Gamma$, $i \in \{0, 1, 3, 5\}$, $Q \in \langle P^{\sigma}, P^{\sigma^5} \rangle$ and $R \in \langle P^{\sigma^3}, P^{\sigma^5} \rangle$, then $L \cong L_4$ with $f_4(x) = x^q + bx^{q^3} + cx^{q^5} \in \mathbb{F}_{q^n}[x]$. Moreover, the linear set $L \cong L_{f_4}$ if and only if

- i) the point $C = \langle v_1 v_3 \rangle_{\mathbb{F}_{q^6}} \in \Gamma$,
- ii) the cross-ratio $(P^{\sigma}, P^{\sigma^3}, Q^{\sigma^2}, C) \in \mathbb{F}_{q^2}$ and
- iii) the points C, P^{σ^5} and $(Q, Q^{\sigma^2}) \cap (R, R^{\sigma^2})$ are collinear.

 Somi Gupta

 Università degli Studi di Napoli Federico II

Let Γ be an (n-3)-dimensional subspace, n=2t. Let Λ be a line and $\Sigma \cong \mathrm{PG}(n-1,q)$ be a canonical subgeometry of PG(n - 1, q^n) such that $\Gamma \cap \Lambda = \emptyset = \Gamma \cap \Sigma$ and let $L = p_{\Gamma, \Lambda}(\Sigma)$ be a maximum scattered linear set of Λ .

If there exists a point $P = \langle v \rangle_{\mathbb{F}_{q^n}}$ such that

$$\Gamma = \langle P_i, Q, R, S : i \notin \{0, 1, t - 1, t + 1, 2t - 1\} \rangle$$

with $Q \in P_1 P_{2t-1}$, $R \in P_{t-1} P_{2t-1}$ and $S \in P_{t+1} P_{2t-1}$ then $L \cong L_f$ with $f(x) = x^q + ax^{q^{t-1}} + bx^{q^{t+1}} + cx^{q^{2t-1}} \in \mathbb{F}_{q^n}[x]$ for some $a, b, c \in \mathbb{F}_{q^n}$. Moreover, $L \cong L_{f_6}$ if and only if the pairs $\{P_1, P_{t-1}\}$ separates $\{P_1 + P_{t-1}, X\}$ harmonically where $X = QR \cap P_1P_{t-1}$ and there exists $h \in \{z \in \mathbb{F}_{q^n}/\mathbb{F}_{q^t}: N_{q^n/q^t}(z) = -1\}$ such that (i) the cross-ratio $(P_1, P_{2t-1}, P_1 + P_{2t-1}, Q) = -h^{1-q^{2t-1}}$

- (iii) the cross-ratio $(P_1, P_{t+1}, R_2, Y) = h^{1+q^2}$ where $Y = QS \cap P_1 P_{t+1}$.

Let Γ be an (n-3)-dimensional subspace, n=2t. Let Λ be a line and $\Sigma \cong \mathrm{PG}(n-1,q)$ be a canonical subgeometry of $\mathrm{PG}(n-1,q^n)$ such that $\Gamma \cap \Lambda = \emptyset = \Gamma \cap \Sigma$ and let $L = \mathrm{p}_{\Gamma,\Lambda}(\Sigma)$ be a maximum scattered linear set of Λ .

If there exists a point $P = \langle v \rangle_{\mathbb{F}_{q^n}}$ such that

$$\Gamma = \langle P_i, Q, R, S : i \notin \{0, 1, t - 1, t + 1, 2t - 1\} \rangle$$

with $Q \in P_1P_{2t-1}$, $R \in P_{t-1}P_{2t-1}$ and $S \in P_{t+1}P_{2t-1}$ then $L \cong L_f$ with $f(x) = x^q + ax^{q^{t-1}} + bx^{q^{t+1}} + cx^{q^{2t-1}} \in \mathbb{F}_{q^n}[x]$ for some $a,b,c \in \mathbb{F}_{q^n}$. Moreover, $L \cong L'_{f_5}$ if and only if

- (i) the pairs $\{P_1, P_{t-1}\}$ separates $\{P_1 + P_{t-1}, X\}$ harmonically where $X = QR \cap P_1P_{t-1}$.
- (ii) the pairs $\{P_1, P_{2t-1}\}$ and $\{P_1 + P_{2t-1}, Q\}$ harmonically.
- (iii) the pairs $\{P_1, P_{t+1}\}$ separates a $\{R_2, Y\}$ harmonically where $Y = QS \cap P_1P_{t+1}$.

That's all for today!