Algebraic^{*} bounds for sum-rank-metric codes

Aida Abiad, <u>Antonina P. Khramova</u>, Alberto Ravagnani, Alexander Gavrilyuk, Ilia Ponomarenko

Eindhoven University of Technology

February 16, 2024

Open Problems on Rank-Metric Codes (OpeRa-2024) Caserta, Italy

Sum-rank metric and the size of sum-rank-metric code

In general, sum-rank-metric space is

$$\mathbb{F}_q^{n_1 imes m_1} imes \cdots imes \mathbb{F}_q^{n_t imes m_t}$$

with sum-rank distance between $A := (A_1, \ldots, A_t)$ and $B := (B_1, \ldots, B_t)$:

$$\operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i).$$

It is denoted by $Mat(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$, where $\mathbf{n} = [n_1, \dots, n_t]$ and $\mathbf{m} = [m_1, \dots, m_t]$.

SUM-RANK METRIC

The sum-rank distance can also be calculated as a rank of a block matrix:

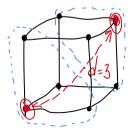
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \end{pmatrix}, 1 \longleftrightarrow \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \end{pmatrix}, 0$$

A sum-rank-metric code C with minimum distance d is a <u>subset</u> of Mat $(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ such that:

 $\min_{X,Y\in\mathcal{C}}\operatorname{srkd}(X,Y)=d.$

NB! The code is non-linear in general.

Question: What is the maximal size of a sum-rank-metric code with minimum distance *d*?



Several upper bounds were introduced in

- E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. *IEEE Trans. Inf. Theory*, 67(10):6456–6475, 2021.
 - Bounds *induced* by Singleton, Hamming, Plotkin, and Elias bounds from Hamming-metric case.

• Singleton bound: for j, δ such that $d - 1 = \sum_{i=1}^{j-1} n_i + \delta$ and $\delta \in [0, n_j - 1]$,

$$|\mathcal{C}| \leq q^{\sum\limits_{i=j}^t m_i n_i - m_j \delta}.$$

In case of equality, C is an **MSRD code** (maximum sum-rank distance).

• Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Several upper bounds were introduced in

- E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. *IEEE Trans. Inf. Theory*, 67(10):6456–6475, 2021.
 - Bounds *induced* by Singleton, Hamming, Plotkin, and Elias bounds from Hamming-metric case.
 - Singleton bound: for j, δ such that $d 1 = \sum_{i=1}^{j-1} n_i + \delta$ and $\delta \in [0, n_j 1]$,

$$\mathcal{C}|\leq q^{\sum\limits_{i=j}^t m_i n_i-m_j\delta}.$$

In case of equality, C is an **MSRD code** (maximum sum-rank distance).

• Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Several upper bounds were introduced in

- E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. *IEEE Trans. Inf. Theory*, 67(10):6456–6475, 2021.
 - Bounds *induced* by Singleton, Hamming, Plotkin, and Elias bounds from Hamming-metric case.
 - Singleton bound: for j, δ such that $d 1 = \sum_{i=1}^{j-1} n_i + \delta$ and $\delta \in [0, n_j 1]$,

$$\mathcal{C}|\leq q^{\sum\limits_{i=j}^t m_i n_i-m_j\delta}.$$

In case of equality, C is an **MSRD code** (maximum sum-rank distance).

• Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Sum-rank-metric graph and eigenvalue bounds joint work with Aida Abiad and Alberto Ravagnani

Sum-rank-metric graph $\Gamma := \Gamma(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$, $\mathbf{n} = [n_1, \dots, n_t]$, $\mathbf{m} = [m_1, \dots, m_t]$:

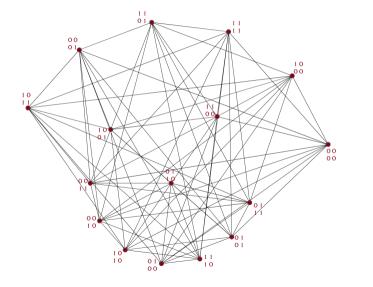
• vertices of $\Gamma = t$ -tuples of matrices from $Mat(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$;

• A := (A_1, \ldots, A_t) and B := (B_1, \ldots, B_t) form an *edge* iff the sum-rank distance is 1:

$$\operatorname{srkd}(A,B) = \sum_{i=1}^{t} \operatorname{rk}(A_i - B_i) = 1.$$

We assume $m_i \ge n_i$ and $m_1 \ge m_2 \ge \cdots \ge m_t$.

SUM-RANK-METRIC GRAPH



Sum-rank-metric graph $\Gamma := \Gamma(2,2,\mathbb{F}_2):$

 $V(\Gamma) = \text{matrices } 2 \times 2$ over \mathbb{F}_2 .

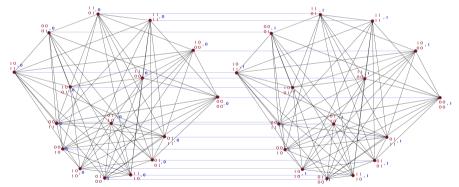
$$A \sim B$$
 if $rk(A - B) = 1$.

For t = 1 it is a **bilinear** forms graph.

SUM-RANK-METRIC GRAPH

Sum-rank-metric graph $\Gamma := \Gamma([2,1], [2,1], \mathbb{F}_2)$:

- vertices: (A₁, A₂), A₁ is size 2×2 over \mathbb{F}_2 , A₂ $\in \{0, 1\}$;
- edges: $(A_1, A_2) \sim (B_1, B_2)$ if $rk(A_1 B_1) + rk(A_2 B_2) = 1$.



Geodesic distance between A and B in Γ = sum-rank distance srkd(A, B).

For a graph G, its k-independence number α_k is the size of the largest set of vertices S such that distance between any $u, v \in S$ is more than k:

 $\min_{u,v\in S} \operatorname{dist}_G(u,v) > k.$

It is easy to see that α_{d-1} of $\Gamma(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ = the maximal size of a code in Mat $(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ with minimum distance d.

Question: What is an upper bound on α_{d-1} of the sum-rank-metric graph?

Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of the adjacency matrix A of a graph G.

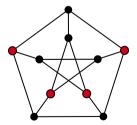
Ratio bound (Hoffman, 1974?): For a regular graph G, we have

$$\alpha_1 \le n \frac{-\lambda_n}{\lambda_1 - \lambda_n}.$$

The eigenvalues of Petersen graph (10 vertices) are

$$\mathbf{3}, 1, 1, 1, 1, 1, -2, -2, -2, -2, -2$$
.

Then the Ratio bound is $\alpha_1 \leq 10 \cdot \frac{2}{3+2} = 4$, and it is tight:



Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the eigenvalues of the adjacency matrix A of a graph G.

The following result which generalizes Hoffman's bound is introduced in:

A. Abiad, G. Coutinho, and M. A. Fiol. On the k-independence number of graphs. Discrete Math., 342(10):2875–2885, 2019.

Ratio-type bound: For a regular graph G and $p \in \mathbb{R}_{d-1}[x]$ let W(p) be the largest element of the diagonal of p(A). Then

$$lpha_{d-1} \leq n rac{\mathcal{W}(p) - \min_{i \in [2,n]} p(\lambda_i)}{p(\lambda_1) - \min_{i \in [2,n]} p(\lambda_i)}.$$

How to obtain the best polynomial $p \in \mathbb{R}_{d-1}[x]$ for the bound?

For d = 3 and d = 4, the best polynomial for Ratio-type bound is known:

RATIO-TYPE BOUND, d = 3 (ABIAD, COUTINHO, FIOL, 2019) Let G be regular and $\theta_0 > \cdots > \theta_r$ be its distinct eigenvalues with $r \ge 2$ and $\theta_i \le -1 < \theta_{i-1}$. Then

$$\alpha_2 \leq n \frac{\theta_0 + \theta_i \theta_{i-1}}{(\theta_0 - \theta_i)(\theta_0 - \theta_{i-1})}.$$

How to obtain the best polynomial $p \in \mathbb{R}_{d-1}[x]$ for the bound?

For d = 3 and d = 4, the best polynomial for Ratio-type bound is known:

RATIO-TYPE BOUND, d = 4 (KAVI, NEWMAN, 2023)

Let G be a regular graph and $\theta_0 > \theta_1 > \cdots > \theta_r$ its distinct eigenvalues with $r \ge 3$ and $\theta_s \ge -\frac{\theta_0^2 + \theta_0 \theta_r - \Delta}{\theta_0(\theta_r + 1)}$, where $\Delta = \max_{u \in V} \{(A^3)_{uu}\}$. Then

$$\alpha_3 \leq n \frac{\Delta - \theta_0(\theta_s + \theta_{s+1} + \theta_r) - \theta_s \theta_{s+1} \theta_r}{(\theta_0 - \theta_s)(\theta_0 - \theta_{s+1})(\theta_0 - \theta_r)}.$$

A graph is *d*-partially walk-regular if for any $k \le d$ the number of closed *k*-walks that start in *u* does not depend on the choice of *u*.

In general, the polynomial p can be obtained for any given d-partially walk-regular graph G using the Linear Program from:

M.A. Fiol, A new class of polynomials from the spectrum of a graph, and its application to bound the k-independence number. Linear Algebra Appl., 605:1–20, 2020.

Can these methods for calculating p be applied to sum-rank metric graph?

The Ratio-type bound is only applicable to regular graphs.

(Abiad, K, Ravagnani, 2023) The sum-rank-metric graph $\Gamma(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ is regular.

 \Rightarrow We can apply the Ratio-type bound and calculate it for d = 3, 4.

A graph is *d*-partially walk-regular if for any $k \le d$ the number of closed *k*-walks that start in *u* does not depend on the choice of *u*.

The sum-rank-metric graph $\Gamma(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ is *d*-partially walk-regular for any *d*.

 \Rightarrow We can use Fiol's LP to calculate the bound for $d \ge 5$.

The Ratio-type bound is only applicable to regular graphs.

(Abiad, K, Ravagnani, 2023) The sum-rank-metric graph $\Gamma(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ is regular.

 \Rightarrow We can apply the Ratio-type bound and calculate it for d = 3, 4.

A graph is *d*-partially walk-regular if for any $k \le d$ the number of closed *k*-walks that start in *u* does not depend on the choice of *u*.

The sum-rank-metric graph $\Gamma(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ is *d*-partially walk-regular for any *d*.

 \Rightarrow We can use Fiol's LP to calculate the bound for $d \ge 5$.

Let
$$\mathbf{n} = [n_1, \ldots, n_t]$$
, $\mathbf{m} = [m_1, \ldots, m_t]$.

(Abiad, K, Ravagnani, 2023) The sum-rank-metric graph $\Gamma(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ is the Cartesian product of graphs $\Gamma(n_i, m_i, \mathbb{F}_q)$ for i = 1, ..., t.

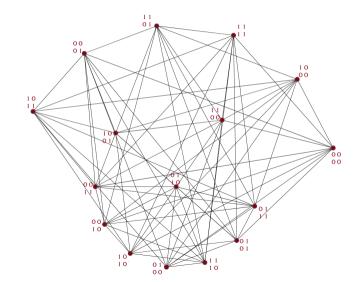
The graph $\Gamma(n, m, \mathbb{F}_q)$ is a *bilinear forms graph*, with eigenvalues given by

$$heta_i = rac{(q^{n-i}-1)(q^m-q^i)-q^i+1}{q-1}, \quad i=0,\ldots,n.$$

The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

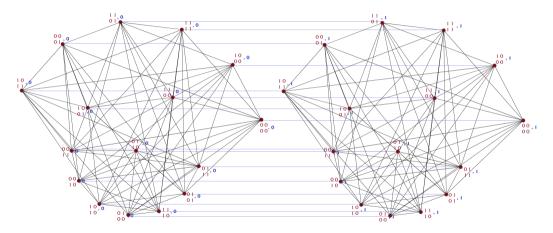
CONNECTION TO BILINEAR FORMS GRAPHS

Bilinear forms graph, vertices are 2×2 matrices over \mathbb{F}_2 :



CONNECTION TO BILINEAR FORMS GRAPHS

Sum-rank-metric graph, each vertex is a 2×2 and 1×1 matrix over \mathbb{F}_2 :



Let
$$\mathbf{n} = [n_1, \ldots, n_t]$$
, $\mathbf{m} = [m_1, \ldots, m_t]$.

(Abiad, K, Ravagnani, 2023) The sum-rank-metric graph $\Gamma(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ is the Cartesian product of graphs $\Gamma(n_i, m_i, \mathbb{F}_q)$ for i = 1, ..., t.

The graph $\Gamma(n, m, \mathbb{F}_q)$ is a *bilinear forms graph*, with eigenvalues given by

$$heta_i = rac{(q^{n-i}-1)(q^m-q^i)-q^i+1}{q-1}, \quad i=0,\ldots,n.$$

The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

THE EIGENVALUE FORMULA

The graph $\Gamma(\mathbf{n}, \mathbf{m}, \mathbb{F}_q)$ has the eigenvalues

$$\lambda_{(i_1,...,i_t)} = \sum_{j=1}^t rac{(q^{n_j-i_j}-1)(q^{m_j}-q^{i_j})-q^{i_j}+1}{q-1}$$

with $i_j = 0, \ldots, n_j$ for each $j \in [t]$.

Once all of the eigenvalues are calculated, one can obtain the list of distinct eigenvalues $\theta_0 > \cdots > \theta_N$.

For d = 3:

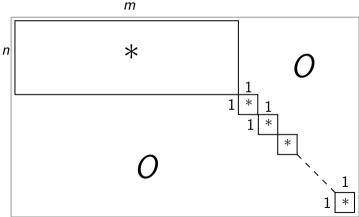
Let θ_0 be the largest eigenvalue and $\theta_i \leq -1 < \theta_{i-1}$. Then $\alpha_2 \leq n \frac{\theta_0 + \theta_i \theta_{i-1}}{(\theta_0 - \theta_i)(\theta_0 - \theta_{i-1})}.$

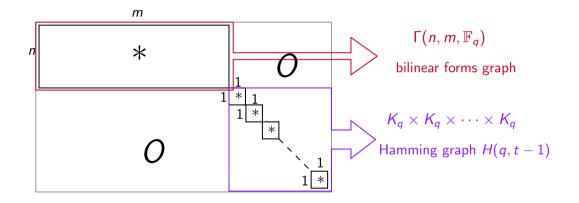
- Use The EIGENVALUE FORMULA to calculate θ_j .
- Find the specific eigenvalues θ_0 , θ_i , θ_{i-1} requested by the bound.

Similarly for $d \ge 4$, we calculate all the eigenvalues from the formula and use them to obtain the bound (using LP for $d \ge 5$).

Applying the bound to a family of sum-rank-metric graphs

Consider matrix space with one $n \times m$ matrix (block) and t - 1 matrices 1×1 :





$$\alpha_2 \leq q^{mn+t-1} \frac{\theta_0 + \theta_i \theta_{i-1}}{(\theta_0 - \theta_i)(\theta_0 - \theta_{i-1})}$$

For the family of matrices with blocks $n \times m$, $1 \times 1, \ldots, 1 \times 1$, the three eigenvalues can be found explicitly:

$$egin{aligned} & heta_0 = rac{(q^n-1)(q^m-1)}{q-1} + (t-1)(q-1), \ & heta_i = -1 - (t-1 \mod q), \quad & heta_{i-1} = q-1 - (t-1 \mod q). \end{aligned}$$

The bound on α_2 can be calculated from q, t, n, m explicitly.

By analyzing the bounds, we can derive conditions under which Ratio-type bound performs better than Singleton bound:

(Abiad, K, Ravagnani, 2023) Let $Mat(n, m, \mathbb{F}_q)$ be a matrix space with n = [n, 1, ..., 1] and m = [m, 1, ..., 1] for some t. Then for a code C with minimum distance d = 3 the Ratio-type bound performs better than the Singleton bound if

$$t> egin{cases} 1+q^m, & n=1,\ rac{q^{2m}-q^{m+1}-q^m+2q-1}{q-1}, & n=2,\ rac{q^{2m+1}-q^{2m}-q^{m+n}+q^m+q^n+q^2-3q+1}{(q-1)^2}, & n>2. \end{cases}$$

These conditions extend to other known bounds on code size:

(Abiad, K, Ravagnani, 2023) Let $Mat(n, m, \mathbb{F}_q)$ be a matrix space with n = [n, 1, ..., 1] and m = [m, 1, ..., 1] for some t. Then for a code C with minimum distance d = 3 Ratio-type bound performs better than Singleton bound, Sphere-Packing bound, Total Distance bound, Induced Singleton, Hamming, and Plotkin bounds, if

$$t> egin{cases} 1+q^m, & n=1,\ rac{q^{2m}-q^{m+1}-q^m+2q-1}{q-1}, & n=2,\ rac{q^{2m+1}-q^{2m}-q^{m+n}+q^m+q^n+q^2-3q+1}{(q-1)^2}, & n>2. \end{cases}$$

A **MSRD code** (maximum sum-rank distance) is a code of the size that achieves Singleton bound.

(Abiad, K, Ravagnani, 2023) Let $Mat(n, m, \mathbb{F}_q)$ be a matrix space with n = [n, 1, ..., 1] and m = [m, 1, ..., 1] for some t. Suppose there exists an MSRD code C of minimum distance d = 3. Then

$$t \leq egin{cases} 1+q^m, & n=1, \ rac{q^{2m}-q^{m+1}-q^m+2q-1}{q-1}, & n=2, \ rac{q^{2m+1}-q^{2m}-q^{m+n}+q^m+q^n+q^2-3q+1}{(q-1)^2}, &>2. \end{cases}$$

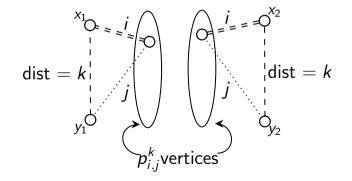
NON-EXISTENCE OF MSRD CODES

Sum-rank-metric graphs on N < 50000 vertices for which an MSRD code cannot exist.

t	q	n	m	d	N	RT_{d-1}	iS _d	iH _d	iE _d	Sd	SP _d	PSP _d
3	2	[3, 2, 1]	[3, 2, 2]	3	32768	494	4096	6096	15362	512	528	528
4	2	[2, 2, 2, 1]	[2, 2, 2, 1]	4	8192	98	256	744	407	128	282	204
5	2	[2, 2, 1, 1, 1]	[2, 2, 2, 2, 1]	4	8192	107	256	744	407	128	315	292
5	2	[2, 2, 2, 1, 1]	[2, 2, 2, 1, 1]	4	16384	193	1024	2621	1419	256	546	409
5	2	[2, 2, 2, 1, 1]	[2, 2, 2, 2, 1]	4	32768	338	1024	2621	1419	512	1024	819
6	2	[2, 1, 1, 1, 1, 1]	[2, 2, 2, 2, 2, 1]	4	8192	119	256	744	407	128	356	512
6	2	[2, 2, 1, 1, 1, 1]	[2, 2, 2, 1, 1, 1]	4	8192	123	1024	2621	1419	128	327	292
6	2	[2, 2, 1, 1, 1, 1]	[2, 2, 2, 2, 1, 1]	4	16384	212	1024	2621	1419	256	606	585
6	2	[2, 2, 1, 1, 1, 1]	[2, 2, 2, 2, 2, 1]	4	32768	371	1024	2621	1419	512	1129	1170
6	2	[2, 2, 2, 1, 1, 1]	[2, 2, 2, 1, 1, 1]	4	32768	378	4096	9362	5026	512	1057	819
7	2	$[2, 1, \ldots, 1]$	$[2, 1, \ldots, 1]$	4	1024	30	1024	1024	1024	32	64	64
7	2	$[2, 1, \ldots, 1]$	$\left[2,\ldots,2,1,1 ight]$	4	16384	235	1024	2621	1419	256	682	1024
7	2	$[2, 1, \ldots, 1]$	$[2,\ldots,2,1]$	4	32768	397	1024	2621	1419	512	1260	2048
7	2	$[2,2,1,\ldots,1]$	$[2, 2, 2, 1, \ldots, 1]$	4	16384	246	4096	9362	5026	256	630	585
7	2	$[2, 2, 1, \ldots, 1]$	$[2,\ldots,2,1,1,1]$	4	32768	422	4096	9362	5026	512	1170	1170
8	2	$[2, 1, \ldots, 1]$	$[2, 1, \ldots, 1]$	4	2048	57	2048	2048	2048	64	120	128
8	2	$[2, 1, \ldots, 1]$	$[2,\ldots,2,1,1,1]$	4	32768	459	4096	9362	5026	512	1310	2048
8	2	$[2, 2, 1, \ldots, 1]$	$[2, 2, 2, 1, \ldots, 1]$	4	32768	467	16384	32768	18037	512	1213	1170
9	2	$[2, 1, \ldots, 1]$	$[2, 1, \ldots, 1]$	4	4096	107	4096	4096	4096	128	227	256
10	2	$[2, 1, \ldots, 1]$	$[2, 1, \ldots, 1]$	4	8192	204	8192	8192	8192	256	431	512
11	2	$[2, 1, \ldots, 1]$	$[2, 1, \ldots, 1]$	4	16384	384	16384	16384	16384	512	819	1024
12	2	$[2, 1, \ldots, 1]$	$[2,1,\ldots,1]$	4	32768	738	32768	32768	32768	1024	1560	2048

Delsarte's LP approach for sum-rank-metric codes joint work with Aida Abiad, Alexander Gavrilyuk, and Ilia Ponomarenko

The graph G is **distance-regular** if for any two vertices x, y at distance k from each other the number of vertices at distance i from x and at distance j from y is a constant $p_{i,j}^k$ that does not depend on the choice of x, y.



 $\mathcal{A} = (X, \mathcal{R})$ is a **symmetric association scheme** on set X with relations $\mathcal{R} = \{R_0, \ldots, R_D\}$ that form a partition of $X \times X$ such that:

- R_0 consists of all $(x, x) \in X$ for $x \in X$.
- $(x, y) \in R_i$ means $(y, x) \in R_i$ for any R_i, x, y .
- If (x, y) ∈ R_k, then the number of z such that (x, z) ∈ R_i and (y, z) ∈ R_j is a constant p^k_{i,j} that does not depend on the choice of x, y.

If G is a distance-regular graph, then $(V(G), \mathcal{R})$ is a symmetric association scheme with relations:

 $(x, y) \in R_i \Leftrightarrow x$ and y are at distance i from each other.

It is well-known that *bilinear forms graphs are distance-regular*. A symmetric association scheme defined on a bilinear forms graph is called a **bilinear scheme**. When an association scheme is defined, one can use *Delsarte's LP* to upper bound the size of the code with given minimum distance.

 \Rightarrow We can use Delsarte's LP bound if the graph is distance-regular.

Is sum-rank-metric graph distance-regular?

(Abiad, K, Ravagnani, 2023) A sum-rank-graph on $t \ge 2$ blocks is distance-regular if and only if all of the blocks are of size $1 \times m$ for some positive integer m.

Hence *sum-rank-graph is not distance-regular in general*.

But can we still apply Delsarte's LP bound?

When an association scheme is defined, one can use *Delsarte's LP* to upper bound the size of the code with given minimum distance.

 \Rightarrow We can use Delsarte's LP bound if the graph is distance-regular.

Is sum-rank-metric graph distance-regular?

(Abiad, K, Ravagnani, 2023) A sum-rank-graph on $t \ge 2$ blocks is distance-regular if and only if all of the blocks are of size $1 \times m$ for some positive integer m.

Hence *sum-rank-graph is not distance-regular in general*.

But can we still apply Delsarte's LP bound?

Given two association schemes $A_i = (X_i, \mathcal{R}_i)$ with $D_i + 1$ relations R_j^i for $j = 0, \ldots, D_i$, i = 1, 2, the **tensor product** $A_1 \otimes A_2$ is the association scheme $(X_1 \times X_2, \mathcal{R})$ such that:

- $\mathcal{R} = \{R_{0,0}, R_{0,1}, \dots, R_{0,D_2}, R_{1,0}, \dots, R_{D_1,D_2}\};$
- If $(x_1, y_1) \in R_i^1$ and $(x_2, y_2) \in R_j^2$, then $((x_1, x_2), (y_1, y_2)) \in R_{i,j}$.

(Abiad, Gavrilyuk, K, Ponomarenko, 2024++) If the graph G is a sum-rank-metric graph which is a Cartesian product of bilinear forms graphs G_1, \ldots, G_t , then its association scheme is contained in the tensor product of bilinear schemes corresponding to G_1, \ldots, G_t .

 \Rightarrow We can *define an association scheme for a sum-rank-metric graph G* and apply Delsarte's LP bound.

BOUND COMPARISON: COMPUTATIONAL RESULTS

bold = best performing bound;

<u>underlined</u> = cases when Ratio-type bound outperforms coding bounds.

t	q	n	m	d	V	Ratio-type	Delsarte LP	iS _d	iH _d	iE _d	S _d	SP_d	PSP_d
2	2	[2, 2]	[2, 2]	3	256	<u>11</u>	10	16	19	34	16	13	13
3	2	[2, 2, 1]	[2, 2, 1]	3	512	25	20	64	64	151	32	25	25
3	2	[2, 2, 1]	[2, 2, 1]	4	512	10	6	16	64	27	8	25	18
3	2	[2, 2, 1]	[2, 2, 2]	3	1024	<u>38</u>	34	64	64	151	64	46	46
3	2	[2, 2, 1]	[2, 2, 2]	4	1024	$\frac{15}{28}$	8	16	64	27	16	46	36
4	2	[2, 1, 1, 1]	[2, 2, 2, 1]	3	512	28	24	64	64	151	32	30	30
4	2	[2, 1, 1, 1]	[2, 2, 2, 1]	4	512	11	6	16	64	27	8	30	32
4	2	[2, 1, 1, 1]	[2, 2, 2, 2]	3	1024	44	42	64	64	151	64	53	53
4	2	[2, 1, 1, 1]	[2, 2, 2, 2]	4	1024	18	10	16	64	27	16	53	64
4	2	[2, 2, 1, 1]	[2, 2, 1, 1]	3	1024	<u>46</u>	40	256	215	529	64	48	48
4	2	[2, 2, 1, 1]	[2, 2, 1, 1]	4	1024	19	12	64	215	119	16	48	36
5	2	[2, 1, 1, 1, 1]	[2, 1, 1, 1, 1]	5	256	5	2	16	26	19	4	4	3
5	2	[2, 1, 1, 1, 1]	[3, 1, 1, 1, 1]	5	1024	8	2	64	336	240	4	6	3
5	2	[2, 1, 1, 1, 1]	[2, 2, 2, 1, 1]	3	1024	56	49	256	215	529	64	56	56
5	2	[2, 1, 1, 1, 1]	[2, 2, 2, 1, 1]	4	1024	22	13	64	215	119	16	56	64
6	2	[2, 1, 1, 1, 1, 1]	[2, 1, 1, 1, 1, 1]	4	512	16	12	256	512	407	16	34	32
6	2	[2, 1, 1, 1, 1, 1]	[2, 1, 1, 1, 1, 1]	5	512	8	4	64	77	99	8	6	5
6	2	[2, 1, 1, 1, 1, 1]	[2, 2, 1, 1, 1, 1]	5	1024	11	6	64	77	99	8	9	8
6	2	[2, 1, 1, 1, 1, 1]	$\left[2, 2, 1, 1, 1, 1\right]$	6	1024	7	2	16	77	14	4	9	3

There is no example with $|V| \le 1024$ and $t \le 7$ when Delsarte's LP is strictly outperformed.

Conclusion and future research

- ? Calculation of Ratio-type bound: solutions for graphs which are not partially walk-regular; obtaining the polynomial p for $d \ge 5$.
- ? Can the Delsarte's LP approach be applied to other metrics? (In case the respective graph is not distance-regular.)

Thank you for your attention!

The talk is based on:

Abiad, A., Khramova, A.P., Ravagnani A. Eigenvalue bounds for sum-rank-metric codes. *IEEE Transactions in Information Theory.* https://doi.org/10.1109/TIT.2023.3339808

Abiad, A., Gavrilyuk A., Khramova, A.P., Ponomarenko I. The linear programming bound for sum-rank-metric codes. Work in progress (coming soon!)