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Sum-rank metric and the size of sum-rank-metric code



Sum-rank metric

In general, sum-rank-metric space is

Fn1×m1
q × · · · × Fnt×mt

q

with sum-rank distance between A := (A1, . . . ,At) and
B := (B1, . . . ,Bt):

srkd(A,B) =
t∑

i=1

rk(Ai − Bi).

It is denoted by Mat(n,m,Fq) , where n = [n1, . . . , nt] and

m = [m1, . . . ,mt].
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Sum-rank metric

The sum-rank distance can also be calculated as a rank of a block matrix:
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Maximal size of sum-rank-metric code

A sum-rank-metric code C with minimum distance d is a
subset of Mat(n,m,Fq) such that:

min
X ,Y∈C

srkd(X ,Y ) = d .

NB! The code is non-linear in general.

Question: What is the maximal size of a
sum-rank-metric code with minimum distance d?
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Coding bounds

Several upper bounds were introduced in

E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties
of sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456–6475, 2021.

Bounds induced by Singleton, Hamming, Plotkin, and Elias bounds from
Hamming-metric case.

Singleton bound: for j , δ such that d − 1 =
∑j−1

i=1 ni + δ and δ ∈ [0, nj − 1],

|C| ≤ q

t∑
i=j

mini−mjδ

.

In case of equality, C is an MSRD code (maximum sum-rank distance).

Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.
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Sum-rank-metric graph and eigenvalue bounds
joint work with Aida Abiad and Alberto Ravagnani



Sum-rank-metric graph

Sum-rank-metric graph Γ := Γ(n,m,Fq),
n = [n1, . . . , nt ], m = [m1, . . . ,mt ]:

vertices of Γ = t-tuples of matrices from Mat(n,m,Fq);

A := (A1, . . . ,At) and B := (B1, . . . ,Bt) form an edge iff the
sum-rank distance is 1:

srkd(A,B) =
t∑

i=1

rk(Ai − Bi) = 1.

We assume mi ≥ ni and m1 ≥ m2 ≥ · · · ≥ mt .
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Sum-rank-metric graph

Sum-rank-metric graph
Γ := Γ(2, 2,F2):

V (Γ) = matrices 2× 2
over F2.

A ∼ B if rk(A− B) = 1.

For t = 1 it is a bilinear
forms graph.
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Sum-rank-metric graph

Sum-rank-metric graph Γ := Γ([2, 1], [2, 1],F2):
vertices: (A1,A2), A1 is size 2× 2 over F2, A2 ∈ {0, 1};
edges: (A1,A2) ∼ (B1,B2) if rk(A1 − B1) + rk(A2 − B2) = 1.

Geodesic distance between A and B in Γ = sum-rank distance srkd(A,B).
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k-independence number

For a graph G , its k-independence number αk is the size of the
largest set of vertices S such that distance between any u, v ∈ S is
more than k :

min
u,v∈S

distG (u, v) > k .

It is easy to see that αd−1 of Γ(n,m,Fq) = the maximal size of a
code in Mat(n,m,Fq) with minimum distance d .

Question: What is an upper bound on αd−1 of the
sum-rank-metric graph?
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Ratio bound on α1

Let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix A of a graph G .

Ratio bound (Hoffman, 1974?): For a regular graph G , we have

α1 ≤ n
−λn

λ1 − λn
.
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Ratio bound: Example

The eigenvalues of Petersen graph (10 vertices) are

3, 1, 1, 1, 1, 1,−2,−2,−2,−2.

Then the Ratio bound is α1 ≤ 10 · 2
3+2 = 4, and it is tight:
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Eigenvalue bounds on αd−1

Let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix A of a graph G .

The following result which generalizes Hoffman’s bound is
introduced in:

A. Abiad, G. Coutinho, and M. A. Fiol. On the k-independence number of graphs.
Discrete Math., 342(10):2875–2885, 2019.

Ratio-type bound: For a regular graph G and p ∈ Rd−1[x ] let
W (p) be the largest element of the diagonal of p(A). Then

αd−1 ≤ n
W (p)−mini∈[2,n] p(λi)

p(λ1)−mini∈[2,n] p(λi)
.
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Calculating the Ratio-type bound, d = 3, 4

How to obtain the best polynomial p ∈ Rd−1[x ] for the bound?

For d = 3 and d = 4, the best polynomial for Ratio-type bound is known:

Ratio-type bound, d = 3 (Abiad, Coutinho, Fiol, 2019)

Let G be regular and θ0 > · · · > θr be its distinct eigenvalues with r ≥ 2 and
θi ≤ −1 < θi−1. Then

α2 ≤ n
θ0 + θiθi−1

(θ0 − θi)(θ0 − θi−1)
.
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Calculating the Ratio-type bound, d = 3, 4

How to obtain the best polynomial p ∈ Rd−1[x ] for the bound?

For d = 3 and d = 4, the best polynomial for Ratio-type bound is known:

Ratio-type bound, d = 4 (Kavi, Newman, 2023)

Let G be a regular graph and θ0 > θ1 > · · · > θr its distinct eigenvalues with

r ≥ 3 and θs ≥ − θ20+θ0θr−∆

θ0(θr+1)
, where ∆ = maxu∈V{(A3)uu}. Then

α3 ≤ n
∆− θ0(θs + θs+1 + θr )− θsθs+1θr

(θ0 − θs)(θ0 − θs+1)(θ0 − θr )
.
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Calculating the Ratio-type bound, d ≥ 5

A graph is d-partially walk-regular if for any k ≤ d the number of closed
k-walks that start in u does not depend on the choice of u.

In general, the polynomial p can be obtained for any given d-partially
walk-regular graph G using the Linear Program from:

M.A. Fiol, A new class of polynomials from the spectrum of a graph, and its application to bound
the k-independence number. Linear Algebra Appl., 605:1–20, 2020.

Can these methods for calculating p be applied to sum-rank metric graph?
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Properties of sum-rank-metric graphs

The Ratio-type bound is only applicable to regular graphs.

(Abiad, K, Ravagnani, 2023)
The sum-rank-metric graph Γ(n,m,Fq) is regular.

⇒ We can apply the Ratio-type bound and calculate it for d = 3, 4.

A graph is d-partially walk-regular if for any k ≤ d the number of closed
k-walks that start in u does not depend on the choice of u.

The sum-rank-metric graph Γ(n,m,Fq) is d-partially walk-regular for any d .

⇒ We can use Fiol’s LP to calculate the bound for d ≥ 5.
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Connection to bilinear forms graphs

Let n = [n1, . . . , nt ], m = [m1, . . . ,mt ].

(Abiad, K, Ravagnani, 2023) The sum-rank-metric graph Γ(n,m,Fq) is the
Cartesian product of graphs Γ(ni ,mi ,Fq) for i = 1, . . . , t.

The graph Γ(n,m,Fq) is a bilinear forms graph, with eigenvalues given by

θi =
(qn−i − 1)(qm − qi)− qi + 1

q − 1
, i = 0, . . . , n.

The eigenvalues of the Cartesian product are all possible sums of eigenvalues of
the product’s factors.
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Connection to bilinear forms graphs

Bilinear forms graph, vertices are 2× 2 matrices over F2:
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Connection to bilinear forms graphs

Sum-rank-metric graph, each vertex is a 2× 2 and 1× 1 matrix over F2:
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Using spectrum to apply eigenvalue bounds

The Eigenvalue Formula

The graph Γ(n,m,Fq) has the eigenvalues

λ(i1,...,it) =
t∑

j=1

(qnj−ij − 1)(qmj − qij)− qij + 1

q − 1

with ij = 0, . . . , nj for each j ∈ [t].

Once all of the eigenvalues are calculated, one can obtain the list of
distinct eigenvalues θ0 > · · · > θN .
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The method to calculate the Ratio-type bound

For d = 3:

Let θ0 be the largest eigenvalue and θi ≤ −1 < θi−1. Then

α2 ≤ n
θ0 + θiθi−1

(θ0 − θi)(θ0 − θi−1)
.

Use The Eigenvalue Formula to calculate θj .

Find the specific eigenvalues θ0, θi , θi−1 requested by the bound.

Similarly for d ≥ 4, we calculate all the eigenvalues from the
formula and use them to obtain the bound (using LP for d ≥ 5).
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Applying the bound to a family of sum-rank-metric graphs



Example

Consider matrix space with one n ×m matrix (block) and t − 1 matrices 1× 1:

m

n ∗
∗

∗
∗

∗

O

O
1

1 1
1

1

1
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Example

m

n ∗
∗

∗
∗

∗
O

O
1

1 1
1

1
1

Kq × Kq × · · · × Kq

Hamming graph H(q, t − 1)

Γ(n,m,Fq)

bilinear forms graph
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Example: explicit bound for d = 3

α2 ≤ qmn+t−1 θ0 + θiθi−1

(θ0 − θi)(θ0 − θi−1)
.

For the family of matrices with blocks n ×m, 1× 1, . . . , 1× 1, the
three eigenvalues can be found explicitly:

θ0 =
(qn − 1)(qm − 1)

q − 1
+ (t − 1)(q − 1),

θi = −1− (t − 1 mod q), θi−1 = q − 1− (t − 1 mod q).

The bound on α2 can be calculated from q, t, n,m explicitly.
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Example: Ratio-type bound vs. Singleton bound

By analyzing the bounds, we can derive conditions under which
Ratio-type bound performs better than Singleton bound:

(Abiad, K, Ravagnani, 2023) Let Mat(n,m,Fq) be a matrix space with

n = [n, 1, . . . , 1] and m = [m, 1, . . . , 1] for some t. Then for a code C with

minimum distance d = 3 the Ratio-type bound performs better than the

Singleton bound if

t >


1 + qm, n = 1,
q2m−qm+1−qm+2q−1

q−1 , n = 2,
q2m+1−q2m−qm+n+qm+qn+q2−3q+1

(q−1)2 , n > 2.
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Example: Ratio-type bound vs. other bounds

These conditions extend to other known bounds on code size:

(Abiad, K, Ravagnani, 2023) Let Mat(n,m,Fq) be a matrix space with

n = [n, 1, . . . , 1] and m = [m, 1, . . . , 1] for some t. Then for a code C with

minimum distance d = 3 Ratio-type bound performs better than Singleton

bound, Sphere-Packing bound, Total Distance bound, Induced Singleton,

Hamming, and Plotkin bounds, if

t >


1 + qm, n = 1,
q2m−qm+1−qm+2q−1

q−1 , n = 2,
q2m+1−q2m−qm+n+qm+qn+q2−3q+1

(q−1)2 , n > 2.
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Example: application to MSRD codes

A MSRD code (maximum sum-rank distance) is a code of the size that
achieves Singleton bound.

(Abiad, K, Ravagnani, 2023) Let Mat(n,m,Fq) be a matrix space with

n = [n, 1, . . . , 1] and m = [m, 1, . . . , 1] for some t. Suppose there exists an

MSRD code C of minimum distance d = 3. Then

t ≤


1 + qm, n = 1,
q2m−qm+1−qm+2q−1

q−1 , n = 2,
q2m+1−q2m−qm+n+qm+qn+q2−3q+1

(q−1)2 , > 2.
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Non-existence of MSRD codes

Sum-rank-metric graphs on N < 50000 vertices for which an MSRD
code cannot exist.

t q n m d N RTd−1 iSd iHd iEd Sd SPd PSPd
3 2 [3, 2, 1] [3, 2, 2] 3 32768 494 4096 6096 15362 512 528 528
4 2 [2, 2, 2, 1] [2, 2, 2, 1] 4 8192 98 256 744 407 128 282 204
5 2 [2, 2, 1, 1, 1] [2, 2, 2, 2, 1] 4 8192 107 256 744 407 128 315 292
5 2 [2, 2, 2, 1, 1] [2, 2, 2, 1, 1] 4 16384 193 1024 2621 1419 256 546 409
5 2 [2, 2, 2, 1, 1] [2, 2, 2, 2, 1] 4 32768 338 1024 2621 1419 512 1024 819
6 2 [2, 1, 1, 1, 1, 1] [2, 2, 2, 2, 2, 1] 4 8192 119 256 744 407 128 356 512
6 2 [2, 2, 1, 1, 1, 1] [2, 2, 2, 1, 1, 1] 4 8192 123 1024 2621 1419 128 327 292
6 2 [2, 2, 1, 1, 1, 1] [2, 2, 2, 2, 1, 1] 4 16384 212 1024 2621 1419 256 606 585
6 2 [2, 2, 1, 1, 1, 1] [2, 2, 2, 2, 2, 1] 4 32768 371 1024 2621 1419 512 1129 1170
6 2 [2, 2, 2, 1, 1, 1] [2, 2, 2, 1, 1, 1] 4 32768 378 4096 9362 5026 512 1057 819
7 2 [2, 1, . . . , 1] [2, 1, . . . , 1] 4 1024 30 1024 1024 1024 32 64 64
7 2 [2, 1, . . . , 1] [2, . . . , 2, 1, 1] 4 16384 235 1024 2621 1419 256 682 1024
7 2 [2, 1, . . . , 1] [2, . . . , 2, 1] 4 32768 397 1024 2621 1419 512 1260 2048
7 2 [2, 2, 1, . . . , 1] [2, 2, 2, 1, . . . , 1] 4 16384 246 4096 9362 5026 256 630 585
7 2 [2, 2, 1, . . . , 1] [2, . . . , 2, 1, 1, 1] 4 32768 422 4096 9362 5026 512 1170 1170
8 2 [2, 1, . . . , 1] [2, 1, . . . , 1] 4 2048 57 2048 2048 2048 64 120 128
8 2 [2, 1, . . . , 1] [2, . . . , 2, 1, 1, 1] 4 32768 459 4096 9362 5026 512 1310 2048
8 2 [2, 2, 1, . . . , 1] [2, 2, 2, 1, . . . , 1] 4 32768 467 16384 32768 18037 512 1213 1170
9 2 [2, 1, . . . , 1] [2, 1, . . . , 1] 4 4096 107 4096 4096 4096 128 227 256
10 2 [2, 1, . . . , 1] [2, 1, . . . , 1] 4 8192 204 8192 8192 8192 256 431 512
11 2 [2, 1, . . . , 1] [2, 1, . . . , 1] 4 16384 384 16384 16384 16384 512 819 1024
12 2 [2, 1, . . . , 1] [2, 1, . . . , 1] 4 32768 738 32768 32768 32768 1024 1560 2048



Delsarte’s LP approach for sum-rank-metric codes
joint work with Aida Abiad, Alexander Gavrilyuk, and Ilia Ponomarenko



Distance-regular graph

The graph G is distance-regular if for any two vertices x , y at
distance k from each other the number of vertices at distance i
from x and at distance j from y is a constant pki ,j that does not
depend on the choice of x , y .

x1

y1

x2

y2

dist = k

pki ,jvertices

dist = k
j j

i i
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Association schemes

A = (X ,R) is a symmetric association scheme on set X with
relations R = {R0, . . . ,RD} that form a partition of X × X such
that:

R0 consists of all (x , x) ∈ X for x ∈ X .

(x , y) ∈ Ri means (y , x) ∈ Ri for any Ri , x , y .

If (x , y) ∈ Rk , then the number of z such that (x , z) ∈ Ri and
(y , z) ∈ Rj is a constant pki ,j that does not depend on the choice
of x , y .
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Bilinear schemes

If G is a distance-regular graph, then (V (G ),R) is a symmetric
association scheme with relations:

(x , y) ∈ Ri ⇔ x and y are at distance i from each other.

It is well-known that bilinear forms graphs are distance-regular.
A symmetric association scheme defined on a bilinear forms graph
is called a bilinear scheme.
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Sum-rank-metric schemes?

When an association scheme is defined, one can use Delsarte’s LP to upper
bound the size of the code with given minimum distance.

⇒ We can use Delsarte’s LP bound if the graph is distance-regular.

Is sum-rank-metric graph distance-regular?

(Abiad, K, Ravagnani, 2023) A sum-rank-graph on t ≥ 2 blocks is
distance-regular if and only if all of the blocks are of size 1×m for some positive
integer m.

Hence sum-rank-graph is not distance-regular in general.

But can we still apply Delsarte’s LP bound?
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Tensor product of association schemes

Given two association schemes Ai = (Xi ,Ri) with Di + 1 relations R i
j for

j = 0, . . . ,Di , i = 1, 2, the tensor product A1 ⊗A2 is the association scheme
(X1 × X2,R) such that:

R = {R0,0,R0,1, . . . ,R0,D2 ,R1,0, . . . ,RD1,D2};
If (x1, y1) ∈ R1

i and (x2, y2) ∈ R2
j , then ((x1, x2), (y1, y2)) ∈ Ri ,j .

(Abiad, Gavrilyuk, K, Ponomarenko, 2024++) If the graph G is a
sum-rank-metric graph which is a Cartesian product of bilinear forms graphs
G1, . . . ,Gt , then its association scheme is contained in the tensor product of
bilinear schemes corresponding to G1, . . . ,Gt .

⇒ We can define an association scheme for a sum-rank-metric graph G and
apply Delsarte’s LP bound.
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Bound comparison: computational results

bold = best performing bound;
underlined = cases when Ratio-type bound outperforms coding bounds.

t q n m d |V | Ratio-type Delsarte LP iSd iHd iEd Sd SPd PSPd
2 2 [2, 2] [2, 2] 3 256 11 10 16 19 34 16 13 13
3 2 [2, 2, 1] [2, 2, 1] 3 512 25 20 64 64 151 32 25 25
3 2 [2, 2, 1] [2, 2, 1] 4 512 10 6 16 64 27 8 25 18
3 2 [2, 2, 1] [2, 2, 2] 3 1024 38 34 64 64 151 64 46 46
3 2 [2, 2, 1] [2, 2, 2] 4 1024 15 8 16 64 27 16 46 36
4 2 [2, 1, 1, 1] [2, 2, 2, 1] 3 512 28 24 64 64 151 32 30 30
4 2 [2, 1, 1, 1] [2, 2, 2, 1] 4 512 11 6 16 64 27 8 30 32
4 2 [2, 1, 1, 1] [2, 2, 2, 2] 3 1024 44 42 64 64 151 64 53 53
4 2 [2, 1, 1, 1] [2, 2, 2, 2] 4 1024 18 10 16 64 27 16 53 64
4 2 [2, 2, 1, 1] [2, 2, 1, 1] 3 1024 46 40 256 215 529 64 48 48
4 2 [2, 2, 1, 1] [2, 2, 1, 1] 4 1024 19 12 64 215 119 16 48 36
5 2 [2, 1, 1, 1, 1] [2, 1, 1, 1, 1] 5 256 5 2 16 26 19 4 4 3
5 2 [2, 1, 1, 1, 1] [3, 1, 1, 1, 1] 5 1024 8 2 64 336 240 4 6 3
5 2 [2, 1, 1, 1, 1] [2, 2, 2, 1, 1] 3 1024 56 49 256 215 529 64 56 56
5 2 [2, 1, 1, 1, 1] [2, 2, 2, 1, 1] 4 1024 22 13 64 215 119 16 56 64
6 2 [2, 1, 1, 1, 1, 1] [2, 1, 1, 1, 1, 1] 4 512 16 12 256 512 407 16 34 32
6 2 [2, 1, 1, 1, 1, 1] [2, 1, 1, 1, 1, 1] 5 512 8 4 64 77 99 8 6 5
6 2 [2, 1, 1, 1, 1, 1] [2, 2, 1, 1, 1, 1] 5 1024 11 6 64 77 99 8 9 8
6 2 [2, 1, 1, 1, 1, 1] [2, 2, 1, 1, 1, 1] 6 1024 7 2 16 77 14 4 9 3

There is no example with |V | ≤ 1024 and t ≤ 7 when Delsarte’s LP is strictly
outperformed. 34 / 36



Conclusion and future research



Conclusion and open problems

? Calculation of Ratio-type bound: solutions for graphs which are
not partially walk-regular; obtaining the polynomial p for d ≥ 5.

? Can the Delsarte’s LP approach be applied to other metrics?
(In case the respective graph is not distance-regular.)
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Thank you for your attention!

The talk is based on:

Abiad, A., Khramova, A.P., Ravagnani A.

Eigenvalue bounds for sum-rank-metric codes. IEEE Transactions in Information Theory.

https://doi.org/10.1109/TIT.2023.3339808

Abiad, A., Gavrilyuk A., Khramova, A.P., Ponomarenko I.

The linear programming bound for sum-rank-metric codes.

Work in progress (coming soon!)

https://doi.org/10.1109/TIT.2023.3339808

