Algebraic* BOUNDS FOR SUM-RANK-METRIC CODES

Aida Abiad, Antonina P. Khramova, Alberto Ravagnani, Alexander Gavrilyuk, Ilia Ponomarenko

Eindhoven University of Technology

February 16, 2024

Open Problems on Rank-Metric Codes (OpeRa-2024) Caserta, Italy

Sum-rank metric and the size of sum-rank-metric code

In general, sum-rank-metric space is

$$
\mathbb{F}_{q}^{n_{1} \times m_{1}} \times \cdots \times \mathbb{F}_{q}^{n_{t} \times m_{t}}
$$

with sum-rank distance between $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$:

$$
\operatorname{srkd}(\mathrm{A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right)
$$

It is denoted by $\operatorname{Mat}\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$, where $\mathbf{n}=\left[n_{1}, \ldots, n_{t}\right]$ and $\mathbf{m}=\left[m_{1}, \ldots, m_{t}\right]$.

The sum-rank distance can also be calculated as a rank of a block matrix:

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
0 & 1
\end{array}\right), 1 \nprec \\
& \quad \mathrm{rk}\left(\left(\begin{array}{lllllll}
1 & 0 & 0 & & & & \\
0 & 1 & 1 & & & & \\
1 & 1 & 1 & & & & \\
1 & 0 & & \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right),\left(\begin{array}{llll}
0 & 1
\end{array}\right), 0\right. \\
& \\
&
\end{aligned}
$$

MAXIMAL SIZE OF SUM-RANK-METRIC CODE

A sum-rank-metric code \mathcal{C} with minimum distance d is a subset of $\operatorname{Mat}\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ such that:

$$
\min _{X, Y \in \mathcal{C}} \operatorname{srkd}(X, Y)=d
$$

NB! The code is non-linear in general.
Question: What is the maximal size of a sum-rank-metric code with minimum distance d ?

Coding bounds

Several upper bounds were introduced in
E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456-6475, 2021.

- Bounds induced by Singleton, Hamming, Plotkin, and Elias bounds from Hamming-metric case.
- Singleton bound: for j, δ such that $d-1=\sum_{i=1}^{j-1} n_{i}+\delta$ and $\delta \in\left[0, n_{j}-1\right]$

In case of equality, \mathcal{C} is an MSRD code (maximum sum-rank distance) - Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Coding bounds

Several upper bounds were introduced in
E) E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456-6475, 2021.

- Bounds induced by Singleton, Hamming, Plotkin, and Elias bounds from Hamming-metric case.
- Singleton bound: for j, δ such that $d-1=\sum_{i=1}^{j-1} n_{i}+\delta$ and $\delta \in\left[0, n_{j}-1\right]$,

$$
|\mathcal{C}| \leq q^{\sum_{i=j}^{t} m_{i} n_{i}-m_{j} \delta} .
$$

In case of equality, \mathcal{C} is an MSRD code (maximum sum-rank distance).

- Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Coding bounds

Several upper bounds were introduced in
E) E. Byrne, H. Gluesing-Luerssen, and A. Ravagnani. Fundamental properties of sum-rank-metric codes. IEEE Trans. Inf. Theory, 67(10):6456-6475, 2021.

- Bounds induced by Singleton, Hamming, Plotkin, and Elias bounds from Hamming-metric case.
- Singleton bound: for j, δ such that $d-1=\sum_{i=1}^{j-1} n_{i}+\delta$ and $\delta \in\left[0, n_{j}-1\right]$,

$$
|\mathcal{C}| \leq q^{\sum_{i=j}^{t} m_{i} n_{i}-m_{j} \delta} .
$$

In case of equality, \mathcal{C} is an MSRD code (maximum sum-rank distance).

- Other bounds: Sphere-Packing, Projective Sphere-Packing, Total Distance.

Sum-rank-metric graph and eigenvalue bounds joint work with Aida Abiad and Alberto Ravagnani

Sum-rank-metric graph $\Gamma:=\Gamma\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$,
$\mathbf{n}=\left[n_{1}, \ldots, n_{t}\right], \mathbf{m}=\left[m_{1}, \ldots, m_{t}\right]:$

- vertices of $\Gamma=t$-tuples of matrices from $\operatorname{Mat}\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$;
- $\mathrm{A}:=\left(A_{1}, \ldots, A_{t}\right)$ and $\mathrm{B}:=\left(B_{1}, \ldots, B_{t}\right)$ form an edge iff the sum-rank distance is 1 :

$$
\operatorname{srkd}(\mathrm{A}, \mathrm{~B})=\sum_{i=1}^{t} \operatorname{rk}\left(A_{i}-B_{i}\right)=1
$$

We assume $m_{i} \geq n_{i}$ and $m_{1} \geq m_{2} \geq \cdots \geq m_{t}$.

SUM-RANK-METRIC GRAPH

Sum-rank-metric graph $\Gamma:=\Gamma\left(2,2, \mathbb{F}_{2}\right)$:

$$
\begin{array}{r}
V(\Gamma)=\text { matrices } 2 \times 2 \\
\text { over } \mathbb{F}_{2} .
\end{array}
$$

$A \sim B$ if $\operatorname{rk}(A-B)=1$.

For $t=1$ it is a bilinear forms graph.

SUM-RANK-METRIC GRAPH

Sum-rank-metric graph $\Gamma:=\Gamma\left([2,1],[2,1], \mathbb{F}_{2}\right)$:

- vertices: $\left(A_{1}, A_{2}\right), A_{1}$ is size 2×2 over $\mathbb{F}_{2}, A_{2} \in\{0,1\}$;
- edges: $\left(A_{1}, A_{2}\right) \sim\left(B_{1}, B_{2}\right)$ if $r k\left(A_{1}-B_{1}\right)+r k\left(A_{2}-B_{2}\right)=1$.

Geodesic distance between A and B in $\Gamma=$ sum-rank distance srkd (A, B).

For a graph G, its k-independence number α_{k} is the size of the largest set of vertices S such that distance between any $u, v \in S$ is more than k :

$$
\min _{u, v \in S} \operatorname{dist}_{G}(u, v)>k
$$

It is easy to see that α_{d-1} of $\Gamma\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)=$ the maximal size of a code in $\operatorname{Mat}\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ with minimum distance d.

Question: What is an upper bound on α_{d-1} of the sum-rank-metric graph?

Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix A of a graph G.
Ratio bound (Hoffman, 1974?): For a regular graph G, we have

$$
\alpha_{1} \leq n \frac{-\lambda_{n}}{\lambda_{1}-\lambda_{n}}
$$

The eigenvalues of Petersen graph (10 vertices) are

$$
\mathbf{3}, 1,1,1,1,1,-2,-2,-2,-\mathbf{2}
$$

Then the Ratio bound is $\alpha_{1} \leq 10 \cdot \frac{2}{3+2}=4$, and it is tight:

Eigenvalue bounds on α_{d-1}

Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix A of a graph G.
The following result which generalizes Hoffman's bound is introduced in:
目 A. Abiad, G. Coutinho, and M. A. Fiol. On the k-independence number of graphs. Discrete Math., 342(10):2875-2885, 2019.

Ratio-type bound: For a regular graph G and $p \in \mathbb{R}_{d-1}[x]$ let $W(p)$ be the largest element of the diagonal of $p(A)$. Then

$$
\alpha_{d-1} \leq n \frac{W(p)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)}{p\left(\lambda_{1}\right)-\min _{i \in[2, n]} p\left(\lambda_{i}\right)}
$$

Calculating the Ratio-Type bound, $d=3,4$

How to obtain the best polynomial $p \in \mathbb{R}_{d-1}[x]$ for the bound?
For $d=3$ and $d=4$, the best polynomial for Ratio-type bound is known:
Ratio-type bound, $d=3$ (Abiad, Coutinho, Fiol, 2019)
Let G be regular and $\theta_{0}>\cdots>\theta_{r}$ be its distinct eigenvalues with $r \geq 2$ and $\theta_{i} \leq-1<\theta_{i-1}$. Then

$$
\alpha_{2} \leq n \frac{\theta_{0}+\theta_{i} \theta_{i-1}}{\left(\theta_{0}-\theta_{i}\right)\left(\theta_{0}-\theta_{i-1}\right)} .
$$

Calculating the Ratio-Type bound, $d=3,4$

How to obtain the best polynomial $p \in \mathbb{R}_{d-1}[x]$ for the bound?
For $d=3$ and $d=4$, the best polynomial for Ratio-type bound is known:

Ratio-type bound, $d=4$ (Kavi, Newman, 2023)
Let G be a regular graph and $\theta_{0}>\theta_{1}>\cdots>\theta_{r}$ its distinct eigenvalues with $r \geq 3$ and $\theta_{s} \geq-\frac{\theta_{0}^{2}+\theta_{0} \theta_{r}-\Delta}{\theta_{0}\left(\theta_{r}+1\right)}$, where $\Delta=\max _{u \in V}\left\{\left(A^{3}\right)_{u u}\right\}$. Then

$$
\alpha_{3} \leq n \frac{\Delta-\theta_{0}\left(\theta_{s}+\theta_{s+1}+\theta_{r}\right)-\theta_{s} \theta_{s+1} \theta_{r}}{\left(\theta_{0}-\theta_{s}\right)\left(\theta_{0}-\theta_{s+1}\right)\left(\theta_{0}-\theta_{r}\right)}
$$

Calculating the Ratio-type bound, $d \geq 5$

A graph is d-partially walk-regular if for any $k \leq d$ the number of closed k-walks that start in u does not depend on the choice of u.

In general, the polynomial p can be obtained for any given d-partially walk-regular graph G using the Linear Program from:

囯 M.A. Fiol, A new class of polynomials from the spectrum of a graph, and its application to bound the k-independence number. Linear Algebra Appl., 605:1-20, 2020.

Can these methods for calculating p be applied to sum-rank metric graph?

PROPERTIES OF SUM-RANK-METRIC GRAPHS

The Ratio-type bound is only applicable to regular graphs.
(Abiad, K, Ravagnani, 2023)
The sum-rank-metric graph $\Gamma\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ is regular.
\Rightarrow We can apply the Ratio-type bound and calculate it for $d=3,4$.

A graph is d-partially walk-regular if for any $k \leq d$ the number of closed k-walks that start in u does not depend on the choice of u.

The sum-rank-metric graph $\Gamma\left(\mathrm{n}, \mathrm{m}, \mathbb{F}_{q}\right)$ is d-partially walk-regular for any d \Rightarrow We can use Fiol's LP to calculate the bound for $d \geq 5$

PROPERTIES OF SUM-RANK-METRIC GRAPHS

The Ratio-type bound is only applicable to regular graphs.
(Abiad, K, Ravagnani, 2023)
The sum-rank-metric graph $\Gamma\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ is regular.
\Rightarrow We can apply the Ratio-type bound and calculate it for $d=3,4$.

A graph is d-partially walk-regular if for any $k \leq d$ the number of closed k-walks that start in u does not depend on the choice of u.

The sum-rank-metric graph $\Gamma\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ is d-partially walk-regular for any d. \Rightarrow We can use Fiol's LP to calculate the bound for $d \geq 5$.

Connection to bilinear forms graphs

Let $\mathbf{n}=\left[n_{1}, \ldots, n_{t}\right], \mathbf{m}=\left[m_{1}, \ldots, m_{t}\right]$.
(Abiad, K, Ravagnani, 2023) The sum-rank-metric graph $\Gamma\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ is the Cartesian product of graphs $\Gamma\left(n_{i}, m_{i}, \mathbb{F}_{q}\right)$ for $i=1, \ldots, t$.

The graph $\Gamma\left(n, m, \mathbb{F}_{q}\right)$ is a bilinear forms graph, with eigenvalues given by

$$
\theta_{i}=\frac{\left(q^{n-i}-1\right)\left(q^{m}-q^{i}\right)-q^{i}+1}{q-1}, \quad i=0, \ldots, n .
$$

The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

Connection to bilinear forms graphs

Bilinear forms graph, vertices are 2×2 matrices over \mathbb{F}_{2} :

Connection to bilinear forms graphs

Sum-rank-metric graph, each vertex is a 2×2 and 1×1 matrix over \mathbb{F}_{2} :

Connection to bilinear forms graphs

Let $\mathbf{n}=\left[n_{1}, \ldots, n_{t}\right], \mathbf{m}=\left[m_{1}, \ldots, m_{t}\right]$.
(Abiad, K, Ravagnani, 2023) The sum-rank-metric graph $\Gamma\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ is the Cartesian product of graphs $\Gamma\left(n_{i}, m_{i}, \mathbb{F}_{q}\right)$ for $i=1, \ldots, t$.

The graph $\Gamma\left(n, m, \mathbb{F}_{q}\right)$ is a bilinear forms graph, with eigenvalues given by

$$
\theta_{i}=\frac{\left(q^{n-i}-1\right)\left(q^{m}-q^{i}\right)-q^{i}+1}{q-1}, \quad i=0, \ldots, n .
$$

The eigenvalues of the Cartesian product are all possible sums of eigenvalues of the product's factors.

The Eigenvalue Formula
The graph $\Gamma\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ has the eigenvalues

$$
\lambda_{\left(i_{1}, \ldots, i_{t}\right)}=\sum_{j=1}^{t} \frac{\left(q^{n_{j}-i_{j}}-1\right)\left(q^{m_{j}}-q^{i_{j}}\right)-q^{i_{j}}+1}{q-1}
$$

with $i_{j}=0, \ldots, n_{j}$ for each $j \in[t]$.
Once all of the eigenvalues are calculated, one can obtain the list of distinct eigenvalues $\theta_{0}>\cdots>\theta_{N}$.

The method to calculate the Ratio-TYpe bound

For $d=3$:
Let θ_{0} be the largest eigenvalue and $\theta_{i} \leq-1<\theta_{i-1}$. Then

$$
\alpha_{2} \leq n \frac{\theta_{0}+\theta_{i} \theta_{i-1}}{\left(\theta_{0}-\theta_{i}\right)\left(\theta_{0}-\theta_{i-1}\right)} .
$$

- Use The Eigenvalue Formula to calculate θ_{j}.
- Find the specific eigenvalues $\theta_{0}, \theta_{i}, \theta_{i-1}$ requested by the bound.

Similarly for $d \geq 4$, we calculate all the eigenvalues from the formula and use them to obtain the bound (using LP for $d \geq 5$).

Applying the bound to a family of sum-rank-metric graphs

Example

Consider matrix space with one $n \times m$ matrix (block) and $t-1$ matrices 1×1 :

Example

$$
\alpha_{2} \leq q^{m n+t-1} \frac{\theta_{0}+\theta_{i} \theta_{i-1}}{\left(\theta_{0}-\theta_{i}\right)\left(\theta_{0}-\theta_{i-1}\right)}
$$

For the family of matrices with blocks $n \times m, 1 \times 1, \ldots, 1 \times 1$, the three eigenvalues can be found explicitly:

$$
\begin{gathered}
\theta_{0}=\frac{\left(q^{n}-1\right)\left(q^{m}-1\right)}{q-1}+(t-1)(q-1) \\
\theta_{i}=-1-(t-1 \quad \bmod q), \quad \theta_{i-1}=q-1-(t-1 \quad \bmod q)
\end{gathered}
$$

The bound on α_{2} can be calculated from q, t, n, m explicitly.

By analyzing the bounds, we can derive conditions under which Ratio-type bound performs better than Singleton bound:
(Abiad, K, Ravagnani, 2023) Let $\operatorname{Mat}\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ be a matrix space with $\mathbf{n}=[n, 1, \ldots, 1]$ and $\mathbf{m}=[m, 1, \ldots, 1]$ for some t. Then for a code \mathcal{C} with minimum distance $d=3$ the Ratio-type bound performs better than the Singleton bound if

$$
t> \begin{cases}1+q^{m}, & n=1 \\ \frac{q^{2 m}-q^{m+1}-q^{m}+2 q-1}{q-1}, & n=2, \\ \frac{q^{2 m+1}-q^{2 m}-q^{m+n}+q^{m}+q^{n}+q^{2}-3 q+1}{(q-1)^{2}}, & n>2\end{cases}
$$

These conditions extend to other known bounds on code size:
(Abiad, K, Ravagnani, 2023) Let $\operatorname{Mat}\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ be a matrix space with $\mathbf{n}=[n, 1, \ldots, 1]$ and $\mathbf{m}=[m, 1, \ldots, 1]$ for some t. Then for a code \mathcal{C} with minimum distance $d=3$ Ratio-type bound performs better than Singleton bound, Sphere-Packing bound, Total Distance bound, Induced Singleton, Hamming, and Plotkin bounds, if

$$
t> \begin{cases}1+q^{m}, & n=1 \\ \frac{q^{2 m}-q^{m+1}-q^{m}+2 q-1}{q-1}, & n=2, \\ \frac{q^{2 m+1}-q^{2 m}-q^{m+n}+q^{m}+q^{n}+q^{2}-3 q+1}{(q-1)^{2}}, & n>2\end{cases}
$$

Example: application to MSRD codes

A MSRD code (maximum sum-rank distance) is a code of the size that achieves Singleton bound.
(Abiad, K, Ravagnani, 2023) Let $\operatorname{Mat}\left(\mathbf{n}, \mathbf{m}, \mathbb{F}_{q}\right)$ be a matrix space with $\mathbf{n}=[n, 1, \ldots, 1]$ and $\mathbf{m}=[m, 1, \ldots, 1]$ for some t. Suppose there exists an MSRD code \mathcal{C} of minimum distance $d=3$. Then

$$
t \leq \begin{cases}1+q^{m}, & n=1 \\ \frac{q^{2 m}-q^{m+1}-q^{m}+2 q-1}{q-1}, & n=2, \\ \frac{q^{2 m+1}-q^{2 m}-q^{m+n}+q^{m}+q^{n}+q^{2}-3 q+1}{(q-1)^{2}}, & >2\end{cases}
$$

NON-EXISTENCE OF MSRD CODES

Sum-rank-metric graphs on $N<50000$ vertices for which an MSRD code cannot exist.

t	9	n	m	d	N	RT_{d-1}	iS_{d}	iH_{d}	$\mathrm{iE}_{\text {d }}$	S_{d}	SP_{d}	PSP_{d}
3	2	[3, 2, 1]	[3, 2, 2]	3	32768	494	4096	6096	15362	512	528	528
4	2	[2, 2, 2, 1]	[2, 2, 2, 1]	4	8192	98	256	744	407	128	282	204
5	2	[2, 2, 1, 1, 1]	[2, 2, 2, 2, 1]	4	8192	107	256	744	407	128	315	292
5	2	[2, 2, 2, 1, 1]	[2, 2, 2, 1, 1]	4	16384	193	1024	2621	1419	256	546	409
5	2	[2, 2, 2, 1, 1]	[2, 2, 2, 2, 1]	4	32768	338	1024	2621	1419	512	1024	819
6	2	[2, 1, 1, 1, 1, 1]	[2, 2, 2, 2, 2, 1]	4	8192	119	256	744	407	128	356	512
6	2	[2, 2, 1, 1, 1, 1]	[2, 2, 2, 1, 1, 1]	4	8192	123	1024	2621	1419	128	327	292
6	2	[2, 2, 1, 1, 1, 1]	[2, 2, 2, 2, 1, 1]	4	16384	212	1024	2621	1419	256	606	585
6	2	$[2,2,1,1,1,1]$	[2, 2, 2, 2, 2, 1]	4	32768	371	1024	2621	1419	512	1129	1170
6	2	[2, 2, 2, 1, 1, 1]	[2, 2, 2, 1, 1, 1]	4	32768	378	4096	9362	5026	512	1057	819
7	2	$[2,1, \ldots, 1]$	$[2,1, \ldots, 1]$	4	1024	30	1024	1024	1024	32	64	64
7	2	$[2,1, \ldots, 1]$	$[2, \ldots, 2,1,1]$	4	16384	235	1024	2621	1419	256	682	1024
7	2	$[2,1, \ldots, 1]$	$[2, \ldots, 2,1]$	4	32768	397	1024	2621	1419	512	1260	2048
7	2	$[2,2,1, \ldots, 1]$	$[2,2,2,1, \ldots, 1]$	4	16384	246	4096	9362	5026	256	630	585
7	2	$[2,2,1, \ldots, 1]$	$[2, \ldots, 2,1,1,1]$	4	32768	422	4096	9362	5026	512	1170	1170
8	2	$[2,1, \ldots, 1]$	$[2,1, \ldots, 1]$	4	2048	57	2048	2048	2048	64	120	128
8	2	$[2,1, \ldots, 1]$	$[2, \ldots, 2,1,1,1]$	4	32768	459	4096	9362	5026	512	1310	2048
8	2	$[2,2,1, \ldots, 1]$	$[2,2,2,1, \ldots, 1]$	4	32768	467	16384	32768	18037	512	1213	1170
9	2	$[2,1, \ldots, 1]$	$[2,1, \ldots, 1]$	4	4096	107	4096	4096	4096	128	227	256
10	2	$[2,1, \ldots, 1]$	$[2,1, \ldots, 1]$	4	8192	204	8192	8192	8192	256	431	512
11	2	$[2,1, \ldots, 1]$	$[2,1, \ldots, 1]$	4	16384	384	16384	16384	16384	512	819	1024
12	2	$[2,1, \ldots, 1]$	$[2,1, \ldots, 1]$	4	32768	738	32768	32768	32768	1024	1560	2048

Delsarte's LP approach for sum-rank-metric codes joint work with Aida Abiad, Alexander Gavrilyuk, and Ilia Ponomarenko

DISTANCE-REGULAR GRAPH

The graph G is distance-regular if for any two vertices x, y at distance k from each other the number of vertices at distance i from x and at distance j from y is a constant $p_{i, j}^{k}$ that does not depend on the choice of x, y.

Association schemes

$\mathcal{A}=(X, \mathcal{R})$ is a symmetric association scheme on set X with relations $\mathcal{R}=\left\{R_{0}, \ldots, R_{D}\right\}$ that form a partition of $X \times X$ such that:

- R_{0} consists of all $(x, x) \in X$ for $x \in X$.
- $(x, y) \in R_{i}$ means $(y, x) \in R_{i}$ for any R_{i}, x, y.
- If $(x, y) \in R_{k}$, then the number of z such that $(x, z) \in R_{i}$ and $(y, z) \in R_{j}$ is a constant $p_{i, j}^{k}$ that does not depend on the choice of x, y.

Bilinear schemes

If G is a distance-regular graph, then $(V(G), \mathcal{R})$ is a symmetric association scheme with relations:

$$
(x, y) \in R_{i} \Leftrightarrow x \text { and } y \text { are at distance } i \text { from each other. }
$$

It is well-known that bilinear forms graphs are distance-regular. A symmetric association scheme defined on a bilinear forms graph is called a bilinear scheme.

SUM-RANK-METRIC SCHEMES?

When an association scheme is defined, one can use Delsarte's $L P$ to upper bound the size of the code with given minimum distance.
\Rightarrow We can use Delsarte's LP bound if the graph is distance-regular.
Is sum-rank-metric graph distance-regular?
(Abiad, K, Ravagnani, 2023) A sum-rank-graph on $t \geq 2$ blocks is distance-regular if and only if all of the blocks are of size $1 \times m$ for some positive integer m

Hence sum-rank-graph is not distance-regular in general.
But can we still apply Delsarte's LP bound?

SUM-RANK-METRIC SCHEMES?

When an association scheme is defined, one can use Delsarte's $L P$ to upper bound the size of the code with given minimum distance.
\Rightarrow We can use Delsarte's LP bound if the graph is distance-regular.
Is sum-rank-metric graph distance-regular?
(Abiad, K, Ravagnani, 2023) A sum-rank-graph on $t \geq 2$ blocks is distance-regular if and only if all of the blocks are of size $1 \times m$ for some positive integer m.

Hence sum-rank-graph is not distance-regular in general.
But can we still apply Delsarte's LP bound?

Tensor product of association schemes

Given two association schemes $\mathcal{A}_{i}=\left(X_{i}, \mathcal{R}_{i}\right)$ with $D_{i}+1$ relations R_{j}^{j} for $j=0, \ldots, D_{i}, i=1,2$, the tensor product $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is the association scheme ($X_{1} \times X_{2}, \mathcal{R}$) such that:

- $\mathcal{R}=\left\{R_{0,0}, R_{0,1}, \ldots, R_{0, D_{2}}, R_{1,0}, \ldots, R_{D_{1}, D_{2}}\right\}$;
- If $\left(x_{1}, y_{1}\right) \in R_{i}^{1}$ and $\left(x_{2}, y_{2}\right) \in R_{j}^{2}$, then $\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) \in R_{i, j}$.
(Abiad, Gavrilyuk, K, Ponomarenko, 2024++) If the graph G is a sum-rank-metric graph which is a Cartesian product of bilinear forms graphs G_{1}, \ldots, G_{t}, then its association scheme is contained in the tensor product of bilinear schemes corresponding to G_{1}, \ldots, G_{t}.
\Rightarrow We can define an association scheme for a sum-rank-metric graph G and apply Delsarte's LP bound.

Bound comparison: computational results

bold $=$ best performing bound;
underlined $=$ cases when Ratio-type bound outperforms coding bounds.

| t | q | n | m | d | \|V| | Ratio-type | Delsarte LP | iS_{d} | iH_{d} | iE_{d} | S_{d} | SP_{d} | PSP_{d} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | [2, 2] | [2, 2] | 3 | 256 | 11 | 10 | 16 | 19 | 34 | 16 | 13 | 13 |
| 3 | 2 | [2, 2, 1] | $[2,2,1]$ | 3 | 512 | 25 | 20 | 64 | 64 | 151 | 32 | 25 | 25 |
| 3 | 2 | [2, 2, 1] | [2, 2, 1] | 4 | 512 | 10 | 6 | 16 | 64 | 27 | 8 | 25 | 18 |
| 3 | 2 | [2, 2, 1] | [2, 2, 2] | 3 | 1024 | 38 | 34 | 64 | 64 | 151 | 64 | 46 | 46 |
| 3 | 2 | [2, 2, 1] | [2, 2, 2] | 4 | 1024 | 15 | 8 | 16 | 64 | 27 | 16 | 46 | 36 |
| 4 | 2 | [2, 1, 1, 1] | [2, 2, 2, 1] | 3 | 512 | $\underline{28}$ | 24 | 64 | 64 | 151 | 32 | 30 | 30 |
| 4 | 2 | [2, 1, 1, 1] | [2, 2, 2, 1] | 4 | 512 | 11 | 6 | 16 | 64 | 27 | 8 | 30 | 32 |
| 4 | 2 | [2, 1, 1, 1] | [2, 2, 2, 2] | 3 | 1024 | 44 | 42 | 64 | 64 | 151 | 64 | 53 | 53 |
| 4 | 2 | [2, 1, 1, 1] | [2, 2, 2, 2] | 4 | 1024 | 18 | 10 | 16 | 64 | 27 | 16 | 53 | 64 |
| 4 | 2 | [2, 2, 1, 1] | [2, 2, 1, 1] | 3 | 1024 | 46 | 40 | 256 | 215 | 529 | 64 | 48 | 48 |
| 4 | 2 | [2, 2, 1, 1] | [2, 2, 1, 1] | 4 | 1024 | 19 | 12 | 64 | 215 | 119 | 16 | 48 | 36 |
| 5 | 2 | $[2,1,1,1,1]$ | [2, 1, 1, 1, 1] | 5 | 256 | 5 | 2 | 16 | 26 | 19 | 4 | 4 | 3 |
| 5 | 2 | [2, 1, 1, 1, 1] | [3, 1, 1, 1, 1] | 5 | 1024 | 8 | 2 | 64 | 336 | 240 | 4 | 6 | 3 |
| 5 | 2 | $[2,1,1,1,1]$ | [2, 2, 2, 1, 1] | 3 | 1024 | 56 | 49 | 256 | 215 | 529 | 64 | 56 | 56 |
| 5 | 2 | [2, 1, 1, 1, 1] | [2, 2, 2, 1, 1] | 4 | 1024 | 22 | 13 | 64 | 215 | 119 | 16 | 56 | 64 |
| 6 | 2 | [2, 1, 1, 1, 1, 1] | [2, 1, 1, 1, 1, 1] | 4 | 512 | 16 | 12 | 256 | 512 | 407 | 16 | 34 | 32 |
| 6 | 2 | [2, 1, 1, 1, 1, 1] | [2, 1, 1, 1, 1, 1] | 5 | 512 | 8 | 4 | 64 | 77 | 99 | 8 | 6 | 5 |
| 6 | 2 | [2, 1, 1, 1, 1, 1] | [2, 2, 1, 1, 1, 1] | 5 | 1024 | 11 | 6 | 64 | 77 | 99 | 8 | 9 | 8 |
| 6 | 2 | [2, 1, 1, 1, 1, 1] | [2, 2, 1, 1, 1, 1] | 6 | 1024 | 7 | 2 | 16 | 77 | 14 | 4 | 9 | 3 |

There is no example with $|V| \leq 1024$ and $t \leq 7$ when Delsarte's LP is strictly outperformed.

Conclusion and future research

? Calculation of Ratio-type bound: solutions for graphs which are not partially walk-regular; obtaining the polynomial p for $d \geq 5$.
? Can the Delsarte's LP approach be applied to other metrics? (In case the respective graph is not distance-regular.)

Thank you for your attention!

The talk is based on:
Abiad, A., Khramova, A.P., Ravagnani A.
Eigenvalue bounds for sum-rank-metric codes. IEEE Transactions in Information Theory.
https://doi.org/10.1109/TIT.2023.3339808

Abiad, A., Gavrilyuk A., Khramova, A.P., Ponomarenko I.
The linear programming bound for sum-rank-metric codes.
Work in progress (coming soon!)

