Pierre Loidreau

DGA MI and IRMAR, CNRS, Université de Rennes OpeRa Caserta Feb 15th, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introductive part

- Context
- The framework
- Preliminaries
- 2 Cryptography with Gabidulin codes
 - Rise and fall of GPT schemes
 - A renewed approach
 - Analysis of distinguishing advantage

- 3 Multidimensional approach
- 4 Conclusion and perspectives

Introductive part

Context

Outline of the talk

Introductive part

Context

- The framework
- Preliminaries
- 2 Cryptography with Gabidulin codes
 - Rise and fall of GPT schemes
 - A renewed approach
 - Analysis of distinguishing advantage

- 3 Multidimensional approach
- ④ Conclusion and perspectives

Introductive part Context

Introductive part

- Context
- The framework
- Preliminaries

2 Cryptography with Gabidulin codes

- Rise and fall of GPT schemes
- A renewed approach
- Analysis of distinguishing advantage

- 3 Multidimensional approach
- 4 Conclusion and perspectives

Introductive part

Context

The agencies requirements

- Request for Post-Quantum encryption schemes or KEMs with IND-CPA or IND-CCA security
 - NIST standardization process or Chinese competition
- No use of structure such as quasi-cyclicity
 European request: ANSSI and BSI ¹

Introductive part

Context

The agencies requirements

- Request for Post-Quantum encryption schemes or KEMs with IND-CPA or IND-CCA security
 - NIST standardization process or Chinese competition
- No use of structure such as quasi-cyclicity
 - European request: ANSSI and BSI ¹

www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/Migration_to_Post_Quantum_Cryptography. html

Introductive part

Context

NIST's IND-CCA Solutions²

• Lattice-Based cryptography

- Structured: Kyber
- Unstructured: FrodoKEM
- Code-Based cryptography
 - Structured: BIKE, HQC
 - Unstructured: ClassicMcEliece

² https://csrc.nist.gov/projects/post-quantum-cryptography < => < => < => < => < => < => < >< <> < <> <</pre>

Introductive part

Context

NIST's IND-CCA Solutions²

- Lattice-Based cryptography
 - Structured: Kyber
 - Unstructured: FrodoKEM
- Code-Based cryptography
 - Structured: BIKE, HQC
 - Unstructured: ClassicMcEliece

² https://csrc.nist.gov/projects/post-quantum-cryptography < => < => < => < => < => < => < >> < <> < <> <</pre>

Introductive part

Context

NIST's IND-CCA Solutions

• Lattice-Based cryptography

- Structured: Kyber
- Unstructured: FrodoKEM
- Code-Based cryptography
 - Structured: BIKE, HQC
 - Unstructured: Classic McEliece

 \Rightarrow Only Classic McEliece left in code based cryptography

• Goal of the recipe: design rank metric based unstructured McEliece scheme with reasonable parameters.

Introductive part

Context

NIST's IND-CCA Solutions

- Lattice-Based cryptography
 - Structured: Kyber
 - Unstructured: FrodoKEM
- Code-Based cryptography
 - Structured: BIKE, HQC
 - Unstructured: Classic McEliece

 \Rightarrow Only Classic McEliece left in code based cryptography

• Goal of the recipe: design rank metric based unstructured McEliece scheme with reasonable parameters.

Introductive part

Context

NIST's IND-CCA Solutions

- Lattice-Based cryptography
 - Structured: Kyber
 - Unstructured: FrodoKEM
- Code-Based cryptography
 - Structured: BIKE, HQC
 - Unstructured: Classic McEliece
- ⇒ Only Classic McEliece left in code based cryptography
 - Goal of the recipe: design rank metric based unstructured McEliece scheme with reasonable parameters.

Introductive part

Context

NIST's IND-CCA Solutions

- Lattice-Based cryptography
 - Structured: Kyber
 - Unstructured: FrodoKEM
- Code-Based cryptography
 - Structured: BIKE, HQC
 - Unstructured: Classic McEliece
- ⇒ Only Classic McEliece left in code based cryptography
 - Goal of the recipe: design rank metric based unstructured McEliece scheme with reasonable parameters.

Introductive part

The framework

Outline of the talk

Introductive part

- Context
- The framework
- Preliminaries
- 2 Cryptography with Gabidulin codes
 - Rise and fall of GPT schemes
 - A renewed approach
 - Analysis of distinguishing advantage

- 3 Multidimensional approach
- ④ Conclusion and perspectives

Introductive part

The framework

- Context
- The framework
- Preliminaries

Cryptography with Gabidulin codes Rise and fall of GPT schemes A renewed approach Analysis of distinguishing advantage

- 3 Multidimensional approach
- 4 Conclusion and perspectives

Introductive part

The framework

Ingredients

- \mathcal{V} : metric vector space of dimension n
- *F*: A family of easily decodable linear [n, k]-codes over a set
 D ⊂ *V* with a Decode_C procedure:

- Probabilistic with good probability of success
- Deterministic

Introductive part

The framework

The recipe I

- SeyGen()
 - $\mathcal{C} \xleftarrow{\$}{\mathfrak{F}} \mathcal{F}$
 - $L \xleftarrow{\$}$ Invertible linear transformation of $\mathcal V$
 - Return sk =(C, L), pk = L(C)
- - $e \stackrel{\$_r}{\leftarrow} L(\mathcal{D})$
 - Return ct := ptG + e
- Observe Decrypt(ct, sk)
 - $\operatorname{pt}^* := \operatorname{Decode}_{\mathcal{C}}(L^{-1}(\operatorname{ct}) = \operatorname{pt} L^{-1}(\mathsf{G}) + L^{-1}(\mathsf{e}))$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• Return pt*

Introductive part

The framework

The recipe II

- Consistency $pt^* = pt$?
 - \bullet Probabilistic if $\mathtt{Decode}_\mathcal{C}$ is probabilistic
 - Deterministic else
- Security reduction
 - OW-CPA games reduction to difficult problems

Introductive part

The framework

The OW-CPA game I

GAME G_1 (OW-CPA)

- $C, L \leftarrow \texttt{KeyGen}()$
- $(\mathbf{G}) = L(\mathcal{C})$
- $\mathbf{3} \ \mathbf{e} \stackrel{\$_r}{\leftarrow} \mathcal{D}$
- $\textcircled{9} \texttt{pt} \xleftarrow{\$} \mathcal{P}$
- S ct = ptG + e
- $\texttt{0} \ \texttt{pt}^* \leftarrow \mathcal{A}(\texttt{ct},\texttt{G})$
- Return $pt^* == pt$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introductive part

The framework

The OW-CPA game II

GAME G2

- $\textcircled{O} \mathsf{G} \leftarrow \mathsf{Random}$
- $\ \ \, {\bf 3} \ \, {\bf e} \stackrel{\$_r}{\leftarrow} {\mathcal D}$
- $\textcircled{9} \texttt{pt} \xleftarrow{\$} \mathcal{P}$
- $\texttt{o} \texttt{ ct} = \texttt{pt}\mathsf{G} + \mathsf{e}$
- $\texttt{0} \ \texttt{pt}^* \leftarrow \mathcal{A}(\texttt{ct},\texttt{G})$
- **O** Return $pt^* == pt$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introductive part

The framework

Adversaries and advantages

•
$$\operatorname{Adv}^{G_1}(\mathcal{A}) := \operatorname{Pr}_{G_1}(\mathcal{A}(\operatorname{ct}, \operatorname{G}) == \operatorname{pt})$$

• advantage of the encryption scheme $\mathrm{Adv}^{\mathit{OW}}(\mathcal{A})$

•
$$\operatorname{Adv}^{G_2}(\mathcal{A}) := \operatorname{Pr}_{G_2}(\mathcal{A}(\operatorname{ct}, \operatorname{G}) == \operatorname{pt})$$

 advantage of the generic game where L(C) is replaced by random: Adv^{OW}_{GenDecode}(A)

• If $Adv_{Dist}(D)$: probability of distinguishing L(C) from random.

$$\operatorname{Adv}^{OW}(\mathcal{A}) \leq \operatorname{Adv}^{OW}_{\operatorname{GenDec}}(\mathcal{A}) + \operatorname{Adv}_{\operatorname{Dist}}(D)$$

Introductive part

The framework

Adversaries and advantages

- $\operatorname{Adv}^{G_1}(\mathcal{A}) := \operatorname{Pr}_{G_1}(\mathcal{A}(\operatorname{ct}, \mathsf{G}) == \operatorname{pt})$
 - advantage of the encryption scheme ${
 m Adv}^{OW}(\mathcal{A})$

•
$$\operatorname{Adv}^{G_2}(\mathcal{A}) := \operatorname{Pr}_{G_2}(\mathcal{A}(\operatorname{ct}, \operatorname{G}) == \operatorname{pt})$$

 advantage of the generic game where L(C) is replaced by random: Adv^{OW}_{GenDecode}(A)

• If $Adv_{Dist}(D)$: probability of distinguishing L(C) from random.

$$\operatorname{Adv}^{OW}(\mathcal{A}) \leq \operatorname{Adv}^{OW}_{\operatorname{GenDec}}(\mathcal{A}) + \operatorname{Adv}_{\operatorname{Dist}}(D)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Introductive part

The framework

Adversaries and advantages

$$\operatorname{Adv}^{OW}(\mathcal{A}) \leq \operatorname{Adv}^{OW}_{\operatorname{GenDec}}(\mathcal{A}) + \operatorname{Adv}_{\operatorname{Dist}}(D)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Introductive part

The framework

Adversaries and advantages

• If $Adv_{Dist}(D)$: probability of distinguishing L(C) from random.

$$\operatorname{Adv}^{OW}(\mathcal{A}) \leq \operatorname{Adv}^{OW}_{\operatorname{GenDec}}(\mathcal{A}) + \operatorname{Adv}_{\operatorname{Dist}}(D)$$

Introductive part

The framework

Adversaries and advantages

• advantage of the generic game where L(C) is replaced by random: $Adv_{GenDecode}^{OW}(A)$

• If $Adv_{Dist}(D)$: probability of distinguishing L(C) from random.

$$\operatorname{Adv}^{OW}(\mathcal{A}) \leq \operatorname{Adv}^{OW}_{\operatorname{GenDec}}(\mathcal{A}) + \operatorname{Adv}_{\operatorname{Dist}}(D)$$

Introductive part

The framework

Some existing instantiations

- Hamming metric, $\mathcal{V} = \mathbb{F}_2^n$
 - \mathcal{F} : Family of Goppa codes
 - \mathcal{D} : Set of binary vectors of Hamming weight w
 - L: Linear permutation of the vectors of the support
- Rank metric, $\mathcal{V} = \mathbb{F}_{q^m}^n$
 - Deterministic decoding based
 - \mathcal{F} : Family of Gabidulin codes
 - \mathcal{D} : Set of binary vectors of rank weight w
 - L: Rank metric preserving linear transormation of the vectors of the support

Introductive part

The framework

Some existing instantiations

- Hamming metric, $\mathcal{V} = \mathbb{F}_2^n$
 - $\mathcal{F}:$ Family of Goppa codes
 - \mathcal{D} : Set of binary vectors of Hamming weight w
 - L: Linear permutation of the vectors of the support
- Rank metric, $\mathcal{V} = \mathbb{F}_{q^m}^n$
 - Deterministic decoding based
 - \mathcal{F} : Family of Gabidulin codes
 - \mathcal{D} : Set of binary vectors of rank weight w
 - L: Rank metric preserving linear transormation of the vectors of the support

Introductive part

Preliminaries

Outline of the talk

Introductive part

- Context
- The framework
- Preliminaries
- 2 Cryptography with Gabidulin codes
 - Rise and fall of GPT schemes
 - A renewed approach
 - Analysis of distinguishing advantage

- 3 Multidimensional approach
- ④ Conclusion and perspectives

Introductive part Preliminaries

Introductive part

- Context
- The framework
- Preliminaries

Cryptography with Gabidulin codes Rise and fall of GPT schemes A renewed approach Analysis of distinguishing advantage

- 3 Multidimensional approach
- 4 Conclusion and perspectives

Introductive part

Preliminaries

Rank metric [Gab85, Del78]

Definition

•

$$\begin{array}{l} \gamma_{1},\ldots,\gamma_{m}, \ \ basis \ of \ \mathbb{F}_{2^{m}}/\mathbb{F}_{2},\\ \mathbf{e}=(e_{1},\ldots,e_{n})\in(\mathbb{F}_{2^{m}})^{n}, \ \ e_{i}\mapsto(e_{i1},\ldots,e_{in}),\\ \\ \forall \mathbf{e}\in(\mathbb{F}_{2^{m}})^{n}, \quad \mathsf{Rk}(\mathbf{e})\stackrel{def}{=}\mathsf{Rk}\left(\begin{array}{cc} e_{11}&\cdots&e_{1n}\\ \vdots&\ddots&\vdots\\ e_{m1}&\cdots&e_{mn}\end{array}\right)\end{array}$$

- $[n, k, d]_r$ code: $C \subset \mathbb{F}_{2^m}^n$, k-dimensional, $d = \min_{c \neq 0 \in C} \operatorname{Rk}(c)$ • Singleton property $d - 1 \leq n - k$ (if $n \leq m$)
- $\mathsf{Rk}(\mathsf{e}) = t \Leftrightarrow \exists \mathcal{V} \subset \mathbb{F}_{2^m}, \text{ s.t. } \dim_2(\mathcal{V}) = t \text{ and } e_i \in \mathcal{V}, \ \forall i$

うせん 川田 (山田) (山) (山) (山)

Introductive part

Preliminaries

Rank metric [Gab85, Del78]

Definition

•

$$\begin{array}{l} \forall \gamma_1, \dots, \gamma_m, \ \text{ basis of } \mathbb{F}_{2^m}/\mathbb{F}_2, \\ \varphi \in (e_1, \dots, e_n) \in (\mathbb{F}_{2^m})^n, \ e_i \mapsto (e_{i1}, \dots, e_{in}), \\ \forall \mathsf{e} \in (\mathbb{F}_{2^m})^n, \ \mathsf{Rk}(\mathsf{e}) \stackrel{def}{=} \mathsf{Rk} \left(\begin{array}{c} e_{11} & \cdots & e_{1n} \\ \vdots & \ddots & \vdots \\ e_{m1} & \cdots & e_{mn} \end{array} \right) \end{array}$$

[n, k, d]_r code: C ⊂ 𝔽ⁿ_{2^m}, k-dimensional, d = min_{c≠0∈C} Rk(c)
Singleton property d − 1 ≤ n − k (if n ≤ m)

• $\mathsf{Rk}(\mathsf{e}) = t \Leftrightarrow \exists \mathcal{V} \subset \mathbb{F}_{2^m}, \text{ s.t. } \dim_2(\mathcal{V}) = t \text{ and } e_i \in \mathcal{V}, \ \forall i$

Introductive part

Preliminaries

Rank metric [Gab85, Del78]

Definition

•

$$\begin{array}{l} \forall e \in (\mathbb{F}_{2^m})^n, & \mathsf{Rk}(e) \stackrel{def}{=} \mathsf{Rk} \left(\begin{array}{c} e_{11}, \dots, e_{in} \\ \vdots & \ddots & \vdots \\ e_{m1} & \cdots & e_{mn} \end{array} \right) \end{array}$$

[n, k, d]_r code: C ⊂ 𝔽ⁿ_{2^m}, k-dimensional, d = min_{c≠0∈C} Rk(c)
Singleton property d − 1 ≤ n − k (if n ≤ m)

• $\mathsf{Rk}(\mathsf{e}) = t \Leftrightarrow \exists \mathcal{V} \subset \mathbb{F}_{2^m}, \text{ s.t. } \dim_2(\mathcal{V}) = t \text{ and } e_i \in \mathcal{V}, \ \forall i$

Introductive part

Preliminaries

Rank metric [Gab85, Del78]

Definition

•
$$\gamma_1, \ldots, \gamma_m$$
, basis of $\mathbb{F}_{2^m}/\mathbb{F}_2$,
• $\mathbf{e} = (e_1, \ldots, e_n) \in (\mathbb{F}_{2^m})^n$, $e_i \mapsto (e_{i1}, \ldots, e_{in})$,
 $\forall \mathbf{e} \in (\mathbb{F}_{2^m})^n$, $\mathsf{Rk}(\mathbf{e}) \stackrel{def}{=} \mathsf{Rk} \begin{pmatrix} e_{11} & \cdots & e_{1n} \\ \vdots & \ddots & \vdots \\ e_{m1} & \cdots & e_{mn} \end{pmatrix}$

- $[n, k, d]_r$ code: $\mathcal{C} \subset \mathbb{F}_{2^m}^n$, k-dimensional, $d = \min_{c \neq 0 \in \mathcal{C}} \mathsf{Rk}(c)$
- Singleton property $d-1 \le n-k$ (if $n \le m$)
- $\mathsf{Rk}(\mathsf{e}) = t \Leftrightarrow \exists \mathcal{V} \subset \mathbb{F}_{2^m}, \text{ s.t. } \dim_2(\mathcal{V}) = t \text{ and } e_i \in \mathcal{V}, \ \forall i$

Introductive part

Preliminaries

Example

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In \mathbb{F}_{2^5} we have $\mathbf{e}=(\alpha,\beta,\alpha+\beta,\beta,\alpha+\beta)$

- Hamming weight: 5
- Rank: 2

Introductive part

Preliminaries

Gabidulin codes [Gab85, Del78]

Definition (Gabidulin codes)

Let $g = (g_1, \ldots, g_n) \in (\mathbb{F}_{2^m})^n$, \mathbb{F}_2 -l.i., $[i] \stackrel{def}{=} 2^i$

$$Gab_k(g) = \langle G \rangle, \text{ where } G = \begin{pmatrix} g_1 & \cdots & g_n \\ \vdots & \ddots & \vdots \\ g_1^{[k-1]} & \cdots & g_n^{[k-1]} \end{pmatrix}$$

- Remarks on Gab_k(g)
 - P-time quadratic decoding up to $t = \lfloor (n-k)/2 \rfloor$, [Gab85]
 - Evaluation codes of linearized polynomials, see Alessandro's talk

Introductive part

- Context
- The framework
- Preliminaries

2 Cryptography with Gabidulin codes

- Rise and fall of GPT schemes
- A renewed approach
- Analysis of distinguishing advantage

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

3 Multidimensional approach

④ Conclusion and perspectives

How to design a McEliece like encryption scheme in Rank metric ? Cryptography with Gabidulin codes <u>Rise and fall</u> of GPT schemes

Outline of the talk

Introductive part

- Context
- The framework
- Preliminaries
- 2 Cryptography with Gabidulin codes
 - Rise and fall of GPT schemes
 - A renewed approach
 - Analysis of distinguishing advantage

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

- 3 Multidimensional approach
- ④ Conclusion and perspectives

Introductive part

- Context
- The framework
- Preliminaries

Cryptography with Gabidulin codes Rise and fall of GPT schemes

- A renewed approach
- Analysis of distinguishing advantage

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- 3 Multidimensional approach
- 4 Conclusion and perspectives

Generic instantiations I

•
$$\mathcal{V} = \mathbb{F}_{2^m}^n$$

•
$$\mathcal{D} \subset \mathcal{V} =$$
 vectors of rank w

•
$$\mathcal{F} = \{(X \mid \mathsf{Gab}_{n-2w}(g)) \subset \mathbb{F}_{2^m}^{\ell+n}, g\}$$

- $\bullet \ \texttt{Decode}_{\mathcal{C}}$
 - Puncture on the ℓ positions of X : C → Ĉ = Gab_{n-2w}(g)
 Decode Ĉ

(ロ)、(型)、(E)、(E)、 E) のQ()

Generic instantiations II

Section Sector Se

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• Return pt*

Generic instantiations III

- Security : $\operatorname{Adv}^{OW}(\mathcal{A}) \leq \operatorname{Adv}^{OW}_{\operatorname{GenDec}}(\mathcal{A}) + \operatorname{Adv}_{\operatorname{Dist}}(D)$
 - Adv^{OW}_{GenDec}(A): difficulty of solving RD problem see Magali's talk

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Adv_{Dist}(D): see next

Overbeck's distinguisher - [GPT91, Ksh07, RGH10, OKN16]

• Note that $pk = \langle (X | \underbrace{G}_{Gab_{n-2w}(g) = \langle G \rangle}) P \rangle, P \in M_n(\mathbb{F}_2)$

Principle

• Compute
$$pk^{[i]} = \langle (X^{[i]} | G^{[i]}) P \rangle$$

Compute
$$C = pk + \cdots + pk^{l^{2w-1}}$$

$${\it 3}$$
 If ${\cal C}^{\perp}$ of dimension 1, linear algebra

 $\Rightarrow \mathsf{X}' \text{ and } \textit{Gab}_{n-2w}(\mathsf{g}') = \mathsf{G}' \text{ such that } \mathtt{pk} = \langle (\mathsf{X}' \mid \mathsf{G}') \mathsf{P}^* \rangle$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Adv_{Dist}(D): p-time, large probability of success
- Not only a distinguisher: Recovers a decryption machine in polynomial-time

Overbeck's distinguisher - [GPT91, Ksh07, RGH10, OKN16]

- Note that $pk = \langle (X | \underset{Gab_{n-2w}(g) = \langle G \rangle}{G})P \rangle, P \in M_n(\mathbb{F}_2)$
- Principle
 - Compute pk^[i] = ((X^[i] | G^[i]) P)
 Compute C̃ = pk + ··· + pk^[2w-1]
 - If C̃[⊥] of dimension 1, linear algebra
 ⇒ P*
 ⇒ X' and Gab_{n-2w}(g') = G' such that pk = ⟨(X' | G')P*⟩
- Adv_{Dist}(D): p-time, large probability of success
- Not only a distinguisher: Recovers a decryption machine in polynomial-time

Overbeck's distinguisher - [GPT91, Ksh07, RGH10, OKN16]

- Note that $pk = \langle (X | \underset{Gab_{n-2w}(g) = \langle G \rangle}{G})P \rangle, P \in M_n(\mathbb{F}_2)$
- Principle
 - Compute pk^[i] = \langle (X^[i] | G^[i]) P \langle
 Compute \tilde{C} = pk + \dots + pk^[2w-1]
 - If \tilde{C}^{\perp} of dimension 1, linear algebra
 ⇒ P*
 ⇒ X' and $Gab_{n-2w}(g') = G'$ such that $pk = \langle (X' | G')P^* \rangle$
- Adv_{Dist}(D): p-time, large probability of success
- Not only a distinguisher: Recovers a decryption machine in polynomial-time

Overbeck's distinguisher - [GPT91, Ksh07, RGH10, OKN16]

- Note that $pk = \langle (X | \underset{Gab_{n-2w}(g) = \langle G \rangle}{G})P \rangle, P \in M_n(\mathbb{F}_2)$
- Principle
 - Compute pk^[i] = ⟨(X^[i] | G^[i]) P⟩
 Compute C̃ = pk + ··· + pk^[2w-1]
 If C̃[⊥] of dimension 1, linear algebra
 ⇒ P*
 ⇒ X' and Gab_{n-2w}(g') = G' such that pk = ⟨(X' | G')P*⟩
- Adv_{Dist}(D): p-time, large probability of success
- Not only a distinguisher: Recovers a decryption machine in polynomial-time

Some ideas to repair ?

Find less structured codes for rank metric Use of subfield subcodes ? Not sufficient !,[GL08]

- Find a new way to mask the structure
 - Simple
 - Efficient
 - Convincing

Some ideas to repair ?

- Find less structured codes for rank metric
 - Use of subfield subcodes ? Not sufficient !,[GL08]

- Find a new way to mask the structure
 - Simple
 - Efficient
 - Convincing

Intermezzo I

• How I met Gabidulin

Intermezzo II

• And did not meet Delsarte

Cryptography with Gabidulin codes

A renewed approach

Outline of the talk

Introductive part

- Context
- The framework
- Preliminaries

2 Cryptography with Gabidulin codes

• Rise and fall of GPT schemes

A renewed approach

• Analysis of distinguishing advantage

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

- 3 Multidimensional approach
- ④ Conclusion and perspectives

Cryptography with Gabidulin codes

A renewed approach

Introductive part

- Context
- The framework
- Preliminaries

Cryptography with Gabidulin codesRise and fall of GPT schemes

- A renewed approach
- Analysis of distinguishing advantage
- 3 Multidimensional approach
- 4 Conclusion and perspectives

Cryptography with Gabidulin codes

A renewed approach

Scrambling principle: rank multiplication

Proposition

Let $\mathcal{S} \subset \mathbb{F}_{2^m}$ with dim₂(\mathcal{S}) = λ , and let $\mathsf{P} \in M_n(\mathcal{S})$, then

 $\forall \mathsf{x} \in \mathbb{F}_{2^m}^n, \ \mathsf{Rk}(\mathsf{xP}) \leq \lambda \,\mathsf{Rk}(\mathsf{x})$

• Similar to taking subfield subcode in Hamming metric

Cryptography with Gabidulin codes

A renewed approach

Scrambling principle: rank multiplication

Proposition

Let $S \subset \mathbb{F}_{2^m}$ with dim₂(S) = λ , and let $P \in M_n(S)$, then

$$\forall \mathsf{x} \in \mathbb{F}_{2^m}^n, \ \mathsf{Rk}(\mathsf{x}\mathsf{P}) \leq \lambda \,\mathsf{Rk}(\mathsf{x})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• Similar to taking subfield subcode in Hamming metric

Cryptography with Gabidulin codes

A renewed approach

The new encryption scheme- [Loi17] |

- $\mathcal{V} = \mathbb{F}_{2^m}^n$
- λ , integer
- $\mathcal{D} \subset \mathcal{V}$: vectors of rank w

•
$$\mathcal{F} = \{\mathsf{Gab}_{n-2\lambda w}(\mathsf{g}) \subset \mathbb{F}_{2^m}^n, \mathsf{g}\}$$

- \bullet $\mathtt{Decode}_\mathcal{C}$ algorithm
 - Deterministic
 - Up to errors of rank w

Cryptography with Gabidulin codes

A renewed approach

The new encryption scheme- [Loi17] ||

MeyGen() • $C \stackrel{\$}{\leftarrow} F$ • $\mathcal{S} \stackrel{\$}{\leftarrow} Gr_{\lambda,m}(\mathbb{F}_2),$ • $\mathsf{P} \stackrel{\$}{\leftarrow} \mathcal{M}_{\mathsf{n}}(\mathcal{S})$ • Return sk =(\mathcal{C} , P), pk = \mathcal{C} P⁻¹ 2 Encrypt(pt, pk := $\langle G \rangle = CP^{-1}$; r) • • $\stackrel{\$_r}{\leftarrow} \mathcal{D}$ • Return ct := ptG + e O Decrypt(ct, sk) • pt* := Decode_C(ctP = ptGP + eP)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

• Return pt*

Cryptography with Gabidulin codes

A renewed approach

On the difficulty of computing $Adv_{Dist}(D)$

Two cases

2wλ² < n ⇔ Rate > (λ − 1)/λ, [CC20, Gha22]
Note that pk[⊥] ⊂ Gab_{2λw}(g₁) + ··· + Gab_{2λw}(g_λ)
Compute C = pk[⊥] + ··· + (pk[⊥])^[λ]
dim(C) := d ≤ λ(2wλ + 1)
if pk[⊥] random, then dim(C) ≈ min(2wλ(λ + 1), n)
p-time probable distinguisher if 2wλ² < n
2wλ² ≥ n ⇔ Rate ≤ (λ − 1)/λ - [Loi17, BL23]
See next

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Cryptography with Gabidulin codes

A renewed approach

On the difficulty of computing $Adv_{Dist}(D)$

Two cases **a** $2w\lambda^2 < n \Leftrightarrow \text{Rate} > (\lambda - 1)/\lambda$, [CC20, Gha22] **b** Note that $pk^{\perp} \subset \text{Gab}_{2\lambda w}(g_1) + \dots + \text{Gab}_{2\lambda w}(g_{\lambda})$ **c** Compute $\mathcal{C} = pk^{\perp} + \dots + (pk^{\perp})^{[\lambda]}$ $\Rightarrow \dim(\mathcal{C}) := d \le \lambda(2w\lambda + 1)$ **e** if pk^{\perp} random, then $\dim(\mathcal{C}) \approx \min(\underline{2w\lambda(\lambda + 1)}, n)$ $\Rightarrow p$ -time probable distinguisher if $2w\lambda^2 < n$ **c** $2w\lambda^2 \ge n \Leftrightarrow \text{Rate} \le (\lambda - 1)/\lambda$ - [Loi17, BL23] • See next

Cryptography with Gabidulin codes

A renewed approach

On the difficulty of computing $Adv_{Dist}(D)$

Two cases **a** $2w\lambda^2 < n \Leftrightarrow \text{Rate} > (\lambda - 1)/\lambda$, [CC20, Gha22] **b** Note that $pk^{\perp} \subset \text{Gab}_{2\lambda w}(g_1) + \dots + \text{Gab}_{2\lambda w}(g_{\lambda})$ **c** Compute $C = pk^{\perp} + \dots + (pk^{\perp})^{[\lambda]}$ $\Rightarrow \dim(C) := d \le \lambda(2w\lambda + 1)$ **e** if pk^{\perp} random, then $\dim(C) \approx \min(\underbrace{2w\lambda(\lambda + 1)}_{>d}, n)$ \Rightarrow p-time probable distinguisher if $2w\lambda^2 < n$ **c** $2w\lambda^2 \ge n \Leftrightarrow \text{Rate} \le (\lambda - 1)/\lambda$ - [Loi17, BL23] **e** See next

Analysis of distinguishing advantage

Outline of the talk

Introductive part

- Context
- The framework
- Preliminaries

2 Cryptography with Gabidulin codes

- Rise and fall of GPT schemes
- A renewed approach
- Analysis of distinguishing advantage

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

- 3 Multidimensional approach
- ④ Conclusion and perspectives

How to design a McEliece like encryption scheme in Rank metric ? Cryptography with Gabidulin codes Analysis of distinguishing advantage

Introductive part

- Context
- The framework
- Preliminaries

2 Cryptography with Gabidulin codes

- Rise and fall of GPT schemes
- A renewed approach
- Analysis of distinguishing advantage

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- 3 Multidimensional approach
- 4 Conclusion and perspectives

Analysis of distinguishing advantage

A linear approach

H = (h_j[i])^{2λw−1,n−1}_{i=0,j=0}, parity-check matrix for C
 Let α ∈ ℝ^m₂ normal.

$$\exists \mathsf{M} \in \mathbb{F}_2^{m \times n}, \texttt{s.t.} \mathsf{H} = \underbrace{(\alpha^{[i+i]})_{i=0,j=0}^{2\lambda w - 1, n-1}}_{\mathsf{H}_{norm}} \mathsf{M}$$

• Given H_{pub} , parity-check matrix for pk

 $\exists \mathsf{S} \in \mathcal{M}_{2\lambda w}(\mathbb{F}_{2^m}), \texttt{s.t.} \ \mathsf{H}_{pub} = \mathsf{S}^{-1}\mathsf{H}^{\mathsf{t}}\mathsf{P} \tag{1}$

• Rewriting equation (1) we obtain

$$SH_{pub} = H_{norm} \underbrace{M^{t}P}_{T \in \mathcal{S}^{m \times n}},$$
(2)

Analysis of distinguishing advantage

A linear approach

$$\exists \mathsf{M} \in \mathbb{F}_{2}^{m \times n}, \texttt{s.t.} \mathsf{H} = \underbrace{(\alpha^{[i+i]})_{i=0,j=0}^{2\lambda w - 1, n-1}}_{\mathsf{H}_{norm}} \mathsf{M}$$

• Given H_{pub}, parity-check matrix for pk

$$\exists S \in \mathcal{M}_{2\lambda w}(\mathbb{F}_{2^m}), \text{s.t. } H_{pub} = S^{-1}H^{t}P$$
(1)

• Rewriting equation (1) we obtain

$$SH_{pub} = H_{norm} \underbrace{M^{t}P}_{T \in \mathcal{S}^{m \times n}},$$
(2)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Analysis of distinguishing advantage

A linear approach

$$\exists \mathsf{M} \in \mathbb{F}_{2}^{m \times n}, \texttt{s.t.} \mathsf{H} = \underbrace{(\alpha^{[i+i]})_{i=0,j=0}^{2\lambda w-1,n-1}}_{\mathsf{H}_{norm}}\mathsf{M}$$

• Given H_{pub}, parity-check matrix for pk

$$\exists \mathsf{S} \in \mathcal{M}_{2\lambda w}(\mathbb{F}_{2^m}), \text{s.t.} \ \mathsf{H}_{pub} = \mathsf{S}^{-1}\mathsf{H}^{\mathsf{t}}\mathsf{P} \tag{1}$$

• Rewriting equation (1) we obtain

$$SH_{pub} = H_{norm} \underbrace{M^{t}P}_{T \in \mathcal{S}^{m \times n}},$$
(2)

Analysis of distinguishing advantage

A linear approach

$$\exists \mathsf{M} \in \mathbb{F}_{2}^{m \times n}, \texttt{s.t.} \mathsf{H} = \underbrace{(\alpha^{[i+i]})_{i=0,j=0}^{2\lambda w-1,n-1}}_{\mathsf{H}_{norm}}\mathsf{M}$$

• Given H_{pub} , parity-check matrix for pk

$$\exists \mathbf{S} \in \mathcal{M}_{2\lambda w}(\mathbb{F}_{2^m}), \text{s.t. } \mathsf{H}_{pub} = \mathbf{S}^{-1}\mathsf{H}^{\mathsf{t}}\mathsf{P}$$
(1)

• Rewriting equation (1) we obtain

$$\mathsf{SH}_{pub} = \mathsf{H}_{norm} \underbrace{\mathsf{M}}_{\mathsf{T} \in \mathcal{S}^{m \times n}}^{\mathsf{t}}, \tag{2}$$

Cryptography with Gabidulin codes Analysis of distinguishing advantage

The key system I

System
$$(\gamma)$$

$$VH_{pub} = H_{norm}W.$$
 (3)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

where $V \in \mathbb{F}_{2^m}^{2\lambda w \times 2\lambda w}$ and $W \in \mathcal{Z}^{m \times n}$, where $\mathcal{Z} \subset \mathbb{F}_{2^m}$ with dimension γ .

Remark

If (V, W) satisfies System (γ) then $(\alpha V, \alpha W)$ also

Analysis of distinguishing advantage

The key system II

Properties of the system

- Number of equations: $2\lambda wn \times m$ over \mathbb{F}_2
- Number of variables: $(2\lambda w)^2 \times m + nm \times \gamma$ over \mathbb{F}_2

Estimated number of solutions: $max(1, 2^{m[(2\lambda w)^2 + n(\gamma - 2\lambda w)]})$

$$\gamma < 2\lambda w \left(1 - rac{2\lambda w}{n}
ight) = nR(1-R) \Longrightarrow$$
 System overdefined

Analysis of distinguishing advantage

Distinguisher and key system I

• Algorithm $D(\gamma)$

 $\label{eq:main_solution} {\it 2} \ {\cal N} \leftarrow \{(V,W)\}, \ W \subset {\cal Z}^{m \times n} \ \text{solutions to system (3)}$

- (3) if $\mathcal{N} \neq (0,0)$ then return 1 else return 0
- D runs in polynomial-time
 - Step 2 solved by Gauss or Wiedemann
- $Adv_{Dist}(D) = Pr(D \text{ returns } 1)$

How to design a McEliece like encryption scheme in Rank metric ? Cryptography with Gabidulin codes Analysis of distinguishing advantage

Distinguisher and key system II

- (S, T) is a non-zero solution to $System(\lambda)$
- Assumption:

If $\lambda \leq \gamma < nR(1-R)$, *D* returns 1 iff $\exists \alpha \neq 0$ such that $\mathcal{Z} = \alpha S$

Probability of success

$$\mathcal{P} = \mathsf{Pr}(\exists lpha \in \mathbb{F}_{2^m}^*, \text{ s.t. } \alpha \mathcal{S} \subset \mathcal{Z}) = (q^m - 1) rac{\left[egin{array}{c} m \\ \gamma - \lambda \end{array}
ight]_2}{\left[egin{array}{c} m \\ \gamma \end{array}
ight]_2}$$

 $\Rightarrow \gamma = nR(1-R)$ is the optimal choice Adv_{Dist} $(D) = \mathcal{P} \approx 2^{-(\lambda-1)m+\lambda\gamma}$ How to design a McEliece like encryption scheme in Rank metric ? Cryptography with Gabidulin codes Analysis of distinguishing advantage

More than that: recovering a decryption machine

Proposition

Let V, W solutions to (3), where

• $W \in \mathcal{W}^{m \times n}$, with dim₂(\mathcal{W}) $\leq \lambda$

Then any ciphertext can be decrypted in polynomial time.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Analysis of distinguishing advantage

Some parameters

By taking into consideration

- The approach in [BBC⁺20]
- Particular Contract Par

m = n		W	PK	СТ	$\operatorname{Adv}_{\operatorname{GenDec}}^{OW}$	Adv_{Dist}
128	3	18	34 kB	1.8 kB	2^{-180}	2^{-261}
128	3	7	58 kB	1.3 kB	2^{-275}	2^{-311}

Analysis of distinguishing advantage

Some parameters

By taking into consideration

- The approach in [BBC⁺20]
- 2 The advantage of distinguisher D

m = n	λ	w	PK	СТ	$\operatorname{Adv}^{OW}_{\operatorname{GenDec}}$	$Adv_{\tt Dist}$
128	3	18	34 kB	1.8 kB	2^{-180}	2^{-261}
128	3	7	58 kB	1.3 kB	2^{-275}	2^{-311}

Introductive part

- Context
- The framework
- Preliminaries
- Cryptography with Gabidulin codes
 Rise and fall of GPT schemes
 A renewed approach
 Analysis of distinguishing advantage

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

- 3 Multidimensional approach
- 4 Conclusion and perspectives

How to design a McEliece like encryption scheme in Rank metric ? Multidimensional approach

Multidimensional approach - LowMS [ADG⁺22] I

- $\mathcal{V} = \mathbb{F}_{2^m}^{n \times \ell}$
- λ , integer
- ℓ , integer interleaving order
- \mathcal{D} = vectors of rank *w* subset of $\mathbb{F}_{2^m}^{n \times \ell}$
- $\mathcal{F} = \{ \mathsf{Gab}_{n-k}(g) \otimes \cdots \otimes \mathsf{Gab}_{n-k}(g) \subset \mathbb{F}_{2^m}^{n \times \ell}, \ g \}$
 - $IDecode_{\mathcal{C},\ell}$
 - probabilistic with probability of success DFR

$$\approx 3.5 \ 2^{m\left[(\ell+1)\left(rac{\ell}{\ell+1}k-w
ight)+1
ight]}$$

How to design a McEliece like encryption scheme in Rank metric ? Multidimensional approach

Multidimensional approach - LowMS [ADG+22] II

MeyGen() • $C \stackrel{\$}{\leftarrow} F$ • $\mathcal{S} \stackrel{\$}{\leftarrow} Gr_{\lambda,m}(\mathbb{F}_2),$ • $\mathsf{P} \stackrel{\$}{\leftarrow} \mathcal{M}_n(\mathcal{S})$ • Return sk =(C, P), pk = CP^{-1} 2 Encrypt(pt_1, \ldots, pt_ℓ , $pk := \langle G \rangle = CP^{-1}$; r) • $e_1, \ldots, e_\ell \stackrel{\$_r}{\leftarrow} \mathcal{D}$ • Return $ct_1 := pt_1G + e_1, \dots, ct_{\ell} := pt_{\ell}G + e_{\ell}$ \bigcirc Decrypt(ct₁,..., ct_l, sk) • $pt_1^*, \ldots, pt_\ell^* := IDecode_{\mathcal{C}\ell}(ct_1P, \ldots, ct_\ell P)$ • Return pt^{*}₁,..., pt^{*}₀

How to design a McEliece like encryption scheme in Rank metric ? Multidimensional approach

Multidimensional approach - LowMS [ADG+22] III

Advantages

m	n	k	λ	w	l	PK	СТ	$\operatorname{Adv}_{\operatorname{GenDec}}^{OW}$	$Adv_{\tt Dist}$	DFR
61	50	25	3	7	6	4.8 kB	1.2 kB	2^{-139}	2^{-131}	2^{-242}
101	88	44	4	9	5	24.4 kB	2.8 kB	2^{-278}	2^{-267}	2^{-503}

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

Drawbacks

- Probabilistic decoding \Rightarrow More complex security analysis
- Adv_{GenDec}: relies on *RSL* problem and not *RSD*

Introductive part

- Context
- The framework
- Preliminaries
- Cryptography with Gabidulin codes
 Rise and fall of GPT schemes
 A renewed approach
 Analysis of distinguishing advantage

- 3 Multidimensional approach
- 4 Conclusion and perspectives

Designing Encryption Schemes for Dummies

• Use the proposed framework

- Beware of the advantages
- Take care of efficiency and security of implementations
 - Parameters sizes
 - Side-channel attacks (out of the scope of the talk)

Designing Encryption Schemes for Dummies

- Use the proposed framework
- Beware of the advantages
- Take care of efficiency and security of implementations
 - Parameters sizes
 - Side-channel attacks (out of the scope of the talk)

Designing Encryption Schemes for Dummies

- Use the proposed framework
- Beware of the advantages
- Take care of efficiency and security of implementations
 - Parameters sizes
 - Side-channel attacks (out of the scope of the talk)

Research directions

- Algebraic analysis of System (3)
- Use of other metrics to desing encryption schemes

- Fill the gap for the distinguisher
- Does Delsarte really exist ?

Research directions

• Algebraic analysis of System (3)

• Use of other metrics to desing encryption schemes

- Fill the gap for the distinguisher
- Does Delsarte really exist ?

Research directions

- Algebraic analysis of System (3)
- Use of other metrics to desing encryption schemes

- Fill the gap for the distinguisher
- Does Delsarte really exist ?

Research directions

- Algebraic analysis of System (3)
- Use of other metrics to desing encryption schemes

- Fill the gap for the distinguisher
- Does Delsarte really exist ?

Research directions

- Algebraic analysis of System (3)
- Use of other metrics to desing encryption schemes

- Fill the gap for the distinguisher
- Does Delsarte really exist ?

References I

N. Aragon, V. Dyseryn, P. Gaborit, P. Loidreau, J. Renner, and A. Wachter-Zeh.

LowMS: a new rank metric code-based KEM without ideal structure.

IACR Cryptol. ePrint Arch., page 1596, 2022.

 M. Bardet, M. Bros, D. Cabarcas, P. Gaborit, R. A. Perlner, D. Smith-Tone, J.-P. Tillich, and J. A. Verbel.
 Improvements of algebraic attacks for solving the rank decoding and minrank problems.

In *ASIACRYPT 2020*, volume 12491 of *LNCS*, pages 507–536. Springer, 2020.

References II

P. Briaud and P. Loidreau.

Cryptanalysis of Rank-Metric Schemes Based on Distorted Gabidulin Codes.

In T. Johansson and D. Smith-Tone, editors, *14th International Workshop, PQCrypto 2023*, volume 14154 of *LNCS*, pages 38–56, 2023.

D. Coggia and A. Couvreur.

On the security of a Loidreau rank metric code based encryption scheme.

Des. Codes Cryptogr., 88(9):1941–1957, 2020.

P. Delsarte.

Bilinear forms over a finite field, with applications to coding theory.

J. Comb. Theory, Ser. A, 25(3):226–241, 1978.

References III

E. M. Gabidulin.

Theory of codes with maximum rank distance. Probl. Inf. Transm., 21(1):3-16, 1985.

A. Ghatak.

Extending coggia-couvreur attack on loidreau's rank metric cryptosystem.

Des. Codes Cryptogr., 90:215–238, 2022.

E. M. Gabidulin and P. Loidreau.

Properties of subspace subcodes of Gabidulin codes. Adv. in Math. of Comm., 2(2):147–157, 2008.

References IV

E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. Ideals over a non-commutative ring and their applications to cryptography.

In Advances in Cryptology - EUROCRYPT'91, number 547 in Lecture Notes in Comput. Sci., pages 482-489, Brighton, April 1991.

- A. Kshevetskiv.

Security of GPT-like public-key cryptosystems based on linear rank codes.

In 3rd International Workshop on Signal Design and Its Applications in Communications, IWSDA 2007, 2007.

References V

P. Loidreau.

A new rank metric codes based encryption scheme. In *PQCrypto 2017*, volume 10346 of *LNCS*, pages 3–17. Springer, 2017.

A. Otmani, H. T. Kalashi, and S. Ndjeya.

Improved cryptanalysis of rank metric schemes based on Gabidulin codes.

http://arxiv.org/abs/1602.08549v1, 2016.

H. Rashwan, E. M. Gabidulin, and B. Honary.
 A smart approach for GPT cryptosystem based on rank codes.
 In *Proc. IEEE Int. Symposium Inf. Theory - ISIT*, pages 2463–2467, 2010.