Ferrers Diagram Rank-Metric Codes

Contents

(1) (Ferrers Diagram) Rank-Metric Codes

- Preliminary Definitions
- Link to Subspace Codes in Network Coding
- Ferrers Diagram Rank-Metric Codes
(2) The Etzion-Silberstein (ES) Conjecture
- A Singleton Bound and the Conjecture
- An Illustrative Example: Triangular Diagrams
(3) Recent Results on the ES Conjecture
- A Modular Approach

Part 0 - Warm Up
 Linear Spaces of Matrices: A Few Questions

Questions for the Audience

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

Questions for the Audience

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.
$(n \geq 2)$

- Question 1.1: What is the largest dimension?

Questions for the Audience

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.
$(n \geq 2)$

- Question 1.1: What is the largest dimension?
- Question 1.2: Can it have dimension larger than 1 ?

Questions for the Audience

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension?
- Question 1.2: Can it have dimension larger than 1?

2. We want a linear space of $n \times n$ upper triangular matrices over a field \mathbb{F} whose nonzero matrices are all invertible. ($n \geq 2$)

Questions for the Audience

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension?
- Question 1.2: Can it have dimension larger than 1?

2. We want a linear space of $n \times n$ upper triangular matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 2.1: What is the largest dimension?
- Question 2.2: Can it have dimension larger than 1?

Questions for the Audience

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension? ...
- Question 1.2: Can it have dimension larger than 1? ...

It depends on the field \mathbb{F} !

2. We want a linear space of $n \times n$ upper triangular matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 2.1: What is the largest dimension?
- Question 2.2: Can it have dimension larger than 1?

Questions for the Audience

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.
$(n \geq 2)$

- Question 1.1: What is the largest dimension? ...
- Question 1.2: Can it have dimension larger than 1? ...

It depends on the field \mathbb{F} !

2. We want a linear space of $n \times n$ upper triangular matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 2.1: What is the largest dimension? 1
- Question 2.2: Can it have dimension larger than 1? No

Question 1.1

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension?

Question 1.1

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension?
(A) If $\mathbb{F}=\mathbb{C}$
(B) If $\mathbb{F}=\mathbb{R}$
(C) If $\mathbb{F}=\mathbb{Q}$
(D) If $\mathbb{F}=\mathbb{F}_{q}$

Question 1.1

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension?
(A) If $\mathbb{F}=\mathbb{C} \longrightarrow 1$
(B) If $\mathbb{F}=\mathbb{R}$
(C) If $\mathbb{F}=\mathbb{Q}$
(D) If $\mathbb{F}=\mathbb{F}_{q}$

Question 1.1

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension?
(A) If $\mathbb{F}=\mathbb{C} \longrightarrow 1$
(B) If $\mathbb{F}=\mathbb{R} \quad \longrightarrow \quad \rho(n)$
n-th Radon-Hurwitz number
(C) If $\mathbb{F}=\mathbb{Q}$
(D) If $\mathbb{F}=\mathbb{F}_{q}$

Question 1.1

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension?
(A) If $\mathbb{F}=\mathbb{C} \longrightarrow 1$
(B) If $\mathbb{F}=\mathbb{R} \quad \longrightarrow \quad \rho(n)$
n-th Radon-Hurwitz number
(C) If $\mathbb{F}=\mathbb{Q} \longrightarrow n$
(D) If $\mathbb{F}=\mathbb{F}_{q}$

Question 1.1

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension?
(A) If $\mathbb{F}=\mathbb{C} \longrightarrow 1$
(B) If $\mathbb{F}=\mathbb{R} \quad \longrightarrow \quad \rho(n)$
n-th Radon-Hurwitz number
(C) If $\mathbb{F}=\mathbb{Q} \longrightarrow n$
(D) If $\mathbb{F}=\mathbb{F}_{q} \longrightarrow n$

Question 1.1

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices are all invertible.

- Question 1.1: What is the largest dimension?
(A) If $\mathbb{F}=\mathbb{C} \longrightarrow 1$
(B) If $\mathbb{F}=\mathbb{R} \quad \longrightarrow \quad \rho(n)$
n-th Radon-Hurwitz number
(C) If $\mathbb{F}=\mathbb{Q} \longrightarrow n$
(D) If $\mathbb{F}=\mathbb{F}_{q} \longrightarrow n$

Questions for the Audience II

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.
$(n \geq r)$

Questions for the Audience II

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.
$(n \geq r)$

- Question 1.1: What is the largest dimension?

Questions for the Audience II

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.
$(n \geq r)$

- Question 1.1: What is the largest dimension?

Questions for the Audience II

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.
$(n \geq r)$

- Question 1.1: What is the largest dimension?

2. We want a linear space of $n \times n$ upper triangular matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.

Questions for the Audience II

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.
$(n \geq r)$

- Question 1.1: What is the largest dimension?

2. We want a linear space of $n \times n$ upper triangular matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.

- Question 2.1: What is the largest dimension?

Questions for the Audience II

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.
$(n \geq r)$

- Question 1.1: What is the largest dimension?

It depends on the field \mathbb{F} !
2. We want a linear space of $n \times n$ upper triangular matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.

- Question 2.1: What is the largest dimension?

Questions for the Audience II

1. We want a linear space of $n \times n$ matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.

- Question 1.1: What is the largest dimension? ...

It depends on the field \mathbb{F} !

2. We want a linear space of $n \times n$ upper triangular matrices over a field \mathbb{F} whose nonzero matrices have rank at least r.

- Question 2.1: What is the largest dimension?

$$
\frac{(n-r+1)(n-r+2)}{2}
$$

- (Etzion, Gorla, Ravagnani, Wachter Zeh 2016) if $|\mathbb{F}| \geq n-1$;
- (N., Stanojkovski 2023) for every \mathbb{F}.

Part I (Ferrers Diagram) Rank-Metric Codes

Contents

(1) (Ferrers Diagram) Rank-Metric Codes

- Preliminary Definitions
- Link to Subspace Codes in Network Coding
- Ferrers Diagram Rank-Metric Codes
(2) The Etzion-Silberstein (ES) Conjecture
- A Singleton Bound and the Conjecture
- An Illustrative Example: Triangular Diagrams
(3) Recent Results on the ES Conjecture
- A Modular Approach

Rank-Metric Codes

The rank distance d_{rk} on $\mathbb{F}^{n \times m}$ is defined by (Delsarte, 1978)

$$
\mathrm{d}_{\mathrm{rk}}(X, Y):=\operatorname{rk}(X-Y), \quad X, Y \in \mathbb{F}^{n \times m} .
$$

Rank-Metric Codes

The rank distance d_{rk} on $\mathbb{F}^{n \times m}$ is defined by
(Delsarte, 1978)

$$
\mathrm{d}_{\mathrm{rk}}(X, Y):=\operatorname{rk}(X-Y), \quad X, Y \in \mathbb{F}^{n \times m}
$$

A $[n \times m, k, r]_{\mathbb{F}}$ rank-metric code \mathcal{C} is a k-dimensional subspace of $\mathbb{F}^{n \times m}$ endowed with the rank distance. The minimum rank distance r is equal to the minimum rank

$$
r=\min \{r k(A) \mid A \in \mathcal{C} \backslash\{0\}\}
$$

Rank-Metric Codes

The rank distance d_{rk} on $\mathbb{F}^{n \times m}$ is defined by
(Delsarte, 1978)

$$
\mathrm{d}_{\mathrm{rk}}(X, Y):=\operatorname{rk}(X-Y), \quad X, Y \in \mathbb{F}^{n \times m}
$$

A $[n \times m, k, r]_{\mathbb{F}}$ rank-metric code \mathcal{C} is a k-dimensional subspace of $\mathbb{F}^{n \times m}$ endowed with the rank distance. The minimum rank distance r is equal to the minimum rank

$$
r=\min \{\operatorname{rk}(A) \mid A \in \mathcal{C} \backslash\{0\}\}
$$

Singleton-like bound: $k \leq \max \{n, m\}(\min \{n, m\}-r+1)$.

Rank-Metric Codes

The rank distance d_{rk} on $\mathbb{F}^{n \times m}$ is defined by

$$
\mathrm{d}_{\mathrm{rk}}(X, Y):=\operatorname{rk}(X-Y), \quad X, Y \in \mathbb{F}^{n \times m} .
$$

A $[n \times m, k, r]_{\mathbb{F}}$ rank-metric code \mathcal{C} is a k-dimensional subspace of $\mathbb{F}^{n \times m}$ endowed with the rank distance. The minimum rank distance r is equal to the minimum rank

$$
r=\min \{r k(A) \mid A \in \mathcal{C} \backslash\{0\}\}
$$

Singleton-like bound: $k \leq \max \{n, m\}(\min \{n, m\}-r+1)$.
N.B. We could also consider nonlinear rank-metric codes. But not in this talk.

Maximum Rank Distance (MRD) Codes

MRD Codes: $k=\max \{n, m\}(\min \{n, m\}-r+1)$.

Maximum Rank Distance (MRD) Codes

MRD Codes: $k=\max \{n, m\}(\min \{n, m\}-r+1)$.
Question: How to construct MRD codes?

Maximum Rank Distance (MRD) Codes

MRD Codes: $k=\max \{n, m\}(\min \{n, m\}-r+1)$.
Question: How to construct MRD codes?

- Constructing MRD codes with $n=m$ for every r implies constructing MRD codes also in the rectangular case (e.g. $n>m$).

Maximum Rank Distance (MRD) Codes

MRD Codes: $k=\max \{n, m\}(\min \{n, m\}-r+1)$.
Question: How to construct MRD codes?

- Constructing MRD codes with $n=m$ for every r implies constructing MRD codes also in the rectangular case (e.g. $n>m$).
- Remove the last $n-m$ columns (puncturing) from an $[n \times n, n(n-(r+(n-m))+1), r+(n-m)]_{\mathbb{F}}$ MRD code.

Maximum Rank Distance (MRD) Codes

MRD Codes: $k=\max \{n, m\}(\min \{n, m\}-r+1)$.
Question: How to construct MRD codes?

- Constructing MRD codes with $n=m$ for every r implies constructing MRD codes also in the rectangular case (e.g. $n>m$).
- Remove the last $n-m$ columns (puncturing) from an $[n \times n, n(n-(r+(n-m))+1), r+(n-m)]_{F}$ MRD code.

It is enough to do it in the square case.

Delsarte-Gabidulin Codes (I)

$$
k \leq n(n-r+1)
$$

Delsarte-Gabidulin Codes (I)

$$
k=n(n-r+1) .
$$

The bound is tight over finite fields:

Delsarte-Gabidulin Codes (I)

$$
k=n(n-r+1) .
$$

The bound is tight over finite fields:

$\bullet \mathbb{F}=\mathbb{F}_{q} ; \bullet \mathbb{L}=\mathbb{F}_{q^{n}} ; \bullet\langle\sigma\rangle=\operatorname{Gal}(\mathbb{L} / \mathbb{F}) ; \bullet \sigma(\beta)=\beta^{q}$.

Skew-Algebra Isomorphism

$$
\bigoplus_{i=0}^{n-1} \mathbb{L} \cdot \sigma^{i}=: \mathbb{L}[\sigma] \cong \operatorname{End}_{\mathbb{F}}(\mathbb{L}) \cong \mathbb{F}^{n \times n}
$$

Delsarte-Gabidulin Codes (I)

$$
k=n(n-r+1) .
$$

The bound is tight over finite fields:

- $\mathbb{F}=\mathbb{F}_{q} ; \bullet \mathbb{L}=\mathbb{F}_{q^{n}} ; \bullet\langle\sigma\rangle=\operatorname{Gal}(\mathbb{L} / \mathbb{F}) ; \quad \bullet(\beta)=\beta^{q}$.

Skew-Algebra Isomorphism

$$
\begin{gathered}
\bigoplus_{i=0}^{n-1} \mathbb{L}_{1} \sigma^{i}=: \mathbb{L}[\sigma] \cong \operatorname{End}_{\mathbb{F}}(\mathbb{L}) \cong \mathbb{F}^{n \times n} \\
P(\sigma)=\sum_{i=0}^{n-1} a_{i} \sigma^{i} \longmapsto\left(\beta \longmapsto \sum_{i=0}^{n-1} a_{i} \sigma^{i}(\beta)\right)
\end{gathered}
$$

(Artin's Theorem of independence of characters)

Delsarte-Gabidulin Codes (I)

$$
k=n(n-r+1) .
$$

The bound is tight over finite fields:

- $\mathbb{F}=\mathbb{F}_{q} ; \bullet \mathbb{L}=\mathbb{F}_{q^{n}} ; \bullet\langle\sigma\rangle=\operatorname{Gal}(\mathbb{L} / \mathbb{F}) ; \quad \bullet(\beta)=\beta^{q}$.

Skew-Algebra Isomorphism

$$
\bigoplus_{i=0}^{n-1} \mathbb{L} \cdot x^{q^{i}}=: \mathcal{L}_{n, q}[x] \cong \operatorname{End}_{\mathbb{F}}(\mathbb{L}) \cong \mathbb{F}^{n \times n}
$$

$$
P(x)=\sum_{i=0}^{n-1} a_{i} x^{q^{i}} \longmapsto\left(\beta \longmapsto \sum_{i=0}^{n-1} a_{i} \beta^{q^{i}}\right) .
$$

(Artin's Theorem of independence of characters) (Linearized Polynomials)

Delsarte-Gabidulin Codes (II)

Nullity-Degree Bound

If $P(\sigma) \in \mathbb{L}[\sigma]$ is nonzero, then

$$
\operatorname{dim}_{\mathbb{F}}(\operatorname{ker}(P)) \leq \operatorname{deg}_{\sigma}(P)
$$

(Artin's Theorem of independence of characters)

Delsarte-Gabidulin Codes (II)

Nullity-Degree Bound

If $P(\sigma) \in \mathbb{L}[\sigma]$ is nonzero, then

$$
\operatorname{rk}(P) \geq n-\operatorname{deg}_{\sigma}(P)
$$

(Artin's Theorem of independence of characters)

Delsarte-Gabidulin Codes (II)

Nullity-Degree Bound

If $P(\sigma) \in \mathbb{L}[\sigma]$ is nonzero, then

$$
\operatorname{rk}(P) \geq n-\operatorname{deg}_{\sigma}(P)
$$

(Artin's Theorem of independence of characters)

Delsarte-Gabidulin construction: (Delsarte, 1978-Gabidulin, 1985-...)

$$
\mathbb{L}[\sigma]_{n-r}:=\bigoplus_{i=0}^{n-r} \mathbb{L} \cdot \sigma^{i}
$$

is (isomorphic to) an $[n \times n, n(n-r+1), r]_{\mathbb{F}}$ code.

Communication Through a Network

Question: Why do we care about rank-metric codes?

Communication Through a Network

Question: Why do we care about rank-metric codes?

Routing vs. Network Coding

Routing:

- Nodes can only forward packets
- If two packets are received, one has to be discarded

Routing vs. Network Coding

Routing:

- Nodes can only forward packets
- If two packets are received, one has to be discarded

Network coding:

- Nodes can forward linear combinations
\Longrightarrow higher throughput achievable!

Example

Example

Receiver R_{1} and Receiver R_{2} get, respectively, the following packets:

$$
\left(\begin{array}{c}
a \\
a+b \\
b+c
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right), \quad\left(\begin{array}{c}
a+b \\
b+c \\
c
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
$$

Example

Receiver R_{1} and Receiver R_{2} get, respectively, the following packets:

$$
\left(\begin{array}{c}
a \\
a+b \\
b+c
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right), \quad\left(\begin{array}{c}
a+b \\
b+c \\
c
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
$$

N.B. What is sent and what is received have the same 3 -dim'I rowspace

Example: An Error Occurs

Thus, Receiver R_{1} and Receiver R_{2} actually get, respectively:

$$
\left(\begin{array}{c}
a \\
a+x \\
x+c
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
a \\
x \\
c
\end{array}\right), \quad\left(\begin{array}{c}
a+x \\
x+c \\
c
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
x \\
c
\end{array}\right) .
$$

Example: An Error Occurs

Thus, Receiver R_{1} and Receiver R_{2} actually get, respectively:

$$
\left(\begin{array}{c}
a \\
a+x \\
x+c
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\left[\begin{array}{l}
a \\
x \\
c
\end{array}\right), \quad\left(\begin{array}{c}
a+x \\
x+c \\
c
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
x \\
c
\end{array}\right) .
$$

N.B. The two rowspaces still share a 2 -dim'l subspace.

Subspace Codes

(Koetter, Kschischang, 2008)

A (constant dimension) subspace code is a subset of the Grassmannian $\mathcal{G}_{\mathbb{F}}(n, n+m)$ endowed with the Injection Distance:

$$
\mathrm{d}_{\mathrm{I}}(\mathcal{U}, \mathcal{V}):=n-\operatorname{dim}_{\mathbb{F}}(\mathcal{U} \cap \mathcal{V})
$$

Subspace Codes

(Koetter, Kschischang, 2008)
A (constant dimension) subspace code is a subset of the Grassmannian $\mathcal{G}_{\mathbb{F}}(n, n+m)$ endowed with the Injection Distance: $\quad d_{\mathrm{I}}(\mathcal{U}, \mathcal{V}):=n-\operatorname{dim}_{\mathbb{F}}(\mathcal{U} \cap \mathcal{V})$

Isometric embedding:
(Silva, Koetter, Kschischang, 2008)

$$
\begin{array}{ccc}
\left(\mathbb{F}^{n \times m}, \mathrm{~d}_{\mathrm{rk}}\right) & \longrightarrow\left(\mathcal{G}_{\mathbb{F}}(n, n+m), \mathrm{d}_{\mathrm{I}}\right) \\
A & \longmapsto \operatorname{rowsp}\left(\operatorname{Id}_{n} \mid A\right)
\end{array}
$$

Subspace Codes

(Koetter, Kschischang, 2008)
A (constant dimension) subspace code is a subset of the Grassmannian $\mathcal{G}_{\mathbb{F}}(n, n+m)$ endowed with the Injection Distance: $\quad d_{\mathrm{I}}(\mathcal{U}, \mathcal{V}):=n-\operatorname{dim}_{\mathbb{F}}(\mathcal{U} \cap \mathcal{V})$

Isometric embedding:
(Silva, Koetter, Kschischang, 2008)

$$
\begin{array}{cl}
\left(\mathbb{F}^{n \times m}, \mathrm{~d}_{\mathrm{rk}}\right) & \longmapsto\left(\mathcal{G}_{\mathbb{F}}(n, n+m), \mathrm{d}_{\mathrm{I}}\right) \\
A & \longmapsto \operatorname{rowsp}\left(\operatorname{Id}_{n} \mid A\right)
\end{array}
$$

$$
\mathrm{d}_{\mathrm{I}}\left(\operatorname{rowsp}\left(\operatorname{Id}_{n} \mid A\right), \operatorname{rowsp}\left(\operatorname{Id}_{n} \mid B\right)\right)=\mathrm{d}_{\mathrm{rk}}(A, B)=\operatorname{rk}(A-B)
$$

Subspace Codes

(Koetter, Kschischang, 2008)
A (constant dimension) subspace code is a subset of the Grassmannian $\mathcal{G}_{\mathbb{F}}(n, n+m)$ endowed with the Injection Distance: $\quad d_{\mathrm{I}}(\mathcal{U}, \mathcal{V}):=n-\operatorname{dim}_{\mathbb{F}}(\mathcal{U} \cap \mathcal{V})$

Isometric embedding:
(Silva, Koetter, Kschischang, 2008)

$$
\begin{array}{ccc}
\left(\mathbb{F}^{n \times m}, \mathrm{~d}_{\mathrm{rk}}\right) & \longrightarrow\left(\mathcal{G}_{\mathbb{F}}(n, n+m), \mathrm{d}_{\mathrm{I}}\right) \\
A & \longmapsto \operatorname{rowsp}\left(\operatorname{Id}_{n} \mid A\right)
\end{array}
$$

$$
\mathrm{d}_{\mathrm{I}}\left(\operatorname{rowsp}\left(\operatorname{Id}_{n} \mid A\right), \operatorname{rowsp}\left(\operatorname{Id}_{n} \mid B\right)\right)=\mathrm{d}_{\mathrm{rk}}(A, B)=\operatorname{rk}(A-B)
$$

Natural notion of \mathbb{F}-linearity

Cell Decomposition of the Grassmannian

The above embedding can be generalized.

- Every $\mathcal{U} \in \mathcal{G}_{\mathbb{F}}(n, n+m)$ has a unique Reduced Row Echelon Form. This gives a set of pivot positions.

Cell Decomposition of the Grassmannian

The above embedding can be generalized.

- Every $\mathcal{U} \in \mathcal{G}_{\mathbb{F}}(n, n+m)$ has a unique Reduced Row Echelon Form. This gives a set of pivot positions.
- The space $\mathcal{G}_{\mathbb{F}}(n, n+m)$ can be partitioned into $\binom{n+m}{n}$ Schubert cells according to the n pivot positions of the subspaces.

Cell Decomposition of the Grassmannian

The above embedding can be generalized.

- Every $\mathcal{U} \in \mathcal{G}_{\mathbb{F}}(n, n+m)$ has a unique Reduced Row Echelon Form. This gives a set of pivot positions.
- The space $\mathcal{G}_{\mathbb{F}}(n, n+m)$ can be partitioned into $\binom{n+m}{n}$ Schubert cells according to the n pivot positions of the subspaces.
- To each set of n pivot positions, we can associate a Ferrers diagram ${ }^{1}$, and a Ferrers diagram matrix space ${ }^{1}$!
${ }^{1}$ yet to be defined

Pivot Positions \longleftrightarrow Ferrers Diagrams

$$
n=m=5 ; \quad \text { pivots } P=\{2,5,6,7,9\}
$$

Pivot Positions \longleftrightarrow Ferrers Diagrams

$$
\begin{aligned}
& n=m=5 ; \quad \text { pivots } P=\{2,5,6,7,9\} \\
& \left.\mathcal{G}_{\mathbb{F}}^{P}(5,10)=\left\{\begin{array}{rlcccccccc}
\\
\operatorname{rs}\left(\begin{array}{ccccccccc}
0 & 1 & a_{1,2} & a_{1,3} & 0 & 0 & 0 & a_{1,4} & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & a_{1,5} & 0 \\
a_{2,5} \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & a_{3,4} & 0 \\
a_{3,5} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & a_{4,4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array} a_{4,5}\right.
\end{array}\right): a_{i, j} \in \mathbb{F}\right\} .
\end{aligned}
$$

Pivot Positions \longleftrightarrow Ferrers Diagrams

$$
n=m=5 ; \quad \text { pivots } P=\{2,5,6,7,9\}
$$

$$
\mathcal{G}_{\mathbb{F}}^{P}(5,10)=\left\{\mathrm{rs}\left(\begin{array}{cccccccccc}
0 & 1 & \bullet & \bullet & 0 & 0 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \bullet
\end{array}\right)\right\}
$$

Pivot Positions \longleftrightarrow Ferrers Diagrams

$$
n=m=5 ; \quad \text { pivots } P=\{2,5,6,7,9\}
$$

$$
\mathcal{G}_{\mathbb{F}}^{P}(5,10)=\left\{\mathrm{rs}\left(\begin{array}{cccccccccc}
0 & 1 & \bullet & \bullet & 0 & 0 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \bullet
\end{array}\right)\right\}
$$

Pivot Positions \longleftrightarrow Ferrers Diagrams

$$
\begin{aligned}
& n=m=5 ; \quad \text { pivots } P=\{2,5,6,7,9\} \\
& \mathcal{G}_{\mathbb{F}}^{P}(5,10)=\left\{\operatorname{rs}\left(\begin{array}{llllllllll}
0 & 1 & \bullet & \bullet & 0 & 0 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \bullet
\end{array}\right)\right\}
\end{aligned}
$$

- • • • Isometry (Etzion, Silberstein 2009)

$$
\left(\mathcal{G}_{\mathbb{F}}^{P}(n, 2 n), \mathrm{d}_{\mathrm{I}}\right) \cong\left(\mathbb{F}^{\mathcal{D}_{P}}, \mathrm{~d}_{\mathrm{rk}}\right)
$$

Pivot Positions \longleftrightarrow Ferrers Diagrams

$$
\begin{aligned}
& n=m=5 ; \quad \text { pivots } P=\{2,5,6,7,9\} \\
& \mathcal{G}_{\mathbb{F}}^{P}(5,10)=\left\{\operatorname{rs}\left(\begin{array}{llllllllll}
0 & 1 & \bullet & \bullet & 0 & 0 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & \bullet & 0 & \bullet \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & \bullet
\end{array}\right)\right\}
\end{aligned}
$$

Isometry (Etzion, Silberstein 2009)

$$
\left(\mathcal{G}_{\mathbb{F}}^{P}(n, 2 n), \mathrm{d}_{\mathrm{I}}\right) \cong\left(\mathbb{F}^{\mathcal{D}_{P}}, \mathrm{~d}_{\mathrm{rk}}\right)
$$

- Natural notion of \mathbb{F}-linearity
- Multilevel construction for subspace codes
(Etzion, Silberstein 2009)

Ferrers Diagrams

A Ferrers diagram \mathcal{D} of order n is a subset of $[n]^{2}$ s.t.:

- $\mathcal{D} \neq \emptyset$;
- If $(i, j) \in \mathcal{D}$, then $\left(i, j^{\prime}\right) \in \mathcal{D}$ for every $j^{\prime} \in\{j, \ldots, n\}$;
- If $(i, j) \in \mathcal{D}$, then $\left(i^{\prime}, j\right) \in \mathcal{D}$ for every $i^{\prime} \in\{1, \ldots, i\}$.

Ferrers Diagrams

A Ferrers diagram \mathcal{D} of order n is a subset of $[n]^{2}$ s.t.:

- $\mathcal{D} \neq \emptyset$;
- If $(i, j) \in \mathcal{D}$, then $\left(i, j^{\prime}\right) \in \mathcal{D}$ for every $j^{\prime} \in\{j, \ldots, n\}$;
- If $(i, j) \in \mathcal{D}$, then $\left(i^{\prime}, j\right) \in \mathcal{D}$ for every $i^{\prime} \in\{1, \ldots, i\}$.

Example

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Ferrers Diagrams

A Ferrers diagram \mathcal{D} of order n is a subset of $[n]^{2}$ s.t.:

- $\mathcal{D} \neq \emptyset$;
- If $(i, j) \in \mathcal{D}$, then $\left(i, j^{\prime}\right) \in \mathcal{D}$ for every $j^{\prime} \in\{j, \ldots, n\}$;
- If $(i, j) \in \mathcal{D}$, then $\left(i^{\prime}, j\right) \in \mathcal{D}$ for every $i^{\prime} \in\{1, \ldots, i\}$.

Example

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Ferrers Diagrams

A Ferrers diagram \mathcal{D} of order n is a subset of $[n]^{2}$ s.t.:

- $\mathcal{D} \neq \emptyset$;
- If $(i, j) \in \mathcal{D}$, then $\left(i, j^{\prime}\right) \in \mathcal{D}$ for every $j^{\prime} \in\{j, \ldots, n\}$;
- If $(i, j) \in \mathcal{D}$, then $\left(i^{\prime}, j\right) \in \mathcal{D}$ for every $i^{\prime} \in\{1, \ldots, i\}$.

Example

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Ferrers Diagrams

A Ferrers diagram \mathcal{D} of order n is a subset of $[n]^{2}$ s.t.:

- $\mathcal{D} \neq \emptyset$;
- If $(i, j) \in \mathcal{D}$, then $\left(i, j^{\prime}\right) \in \mathcal{D}$ for every $j^{\prime} \in\{j, \ldots, n\}$;
- If $(i, j) \in \mathcal{D}$, then $\left(i^{\prime}, j\right) \in \mathcal{D}$ for every $i^{\prime} \in\{1, \ldots, i\}$.

Example

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Ferrers Diagrams

A Ferrers diagram \mathcal{D} of order n is a subset of $[n]^{2}$ s.t.:

- $\mathcal{D} \neq \emptyset$;
- If $(i, j) \in \mathcal{D}$, then $\left(i, j^{\prime}\right) \in \mathcal{D}$ for every $j^{\prime} \in\{j, \ldots, n\}$;
- If $(i, j) \in \mathcal{D}$, then $\left(i^{\prime}, j\right) \in \mathcal{D}$ for every $i^{\prime} \in\{1, \ldots, i\}$.

Example

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Ferrers Diagrams

A Ferrers diagram \mathcal{D} of order n is a subset of $[n]^{2}$ s.t.:

- $\mathcal{D} \neq \emptyset$;
- If $(i, j) \in \mathcal{D}$, then $\left(i, j^{\prime}\right) \in \mathcal{D}$ for every $j^{\prime} \in\{j, \ldots, n\}$;
- If $(i, j) \in \mathcal{D}$, then $\left(i^{\prime}, j\right) \in \mathcal{D}$ for every $i^{\prime} \in\{1, \ldots, i\}$.

Example

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Ferrers Diagrams

A Ferrers diagram \mathcal{D} of order n is a subset of $[n]^{2}$ s.t.:

- $\mathcal{D} \neq \emptyset$;
- If $(i, j) \in \mathcal{D}$, then $\left(i, j^{\prime}\right) \in \mathcal{D}$ for every $j^{\prime} \in\{j, \ldots, n\}$;
- If $(i, j) \in \mathcal{D}$, then $\left(i^{\prime}, j\right) \in \mathcal{D}$ for every $i^{\prime} \in\{1, \ldots, i\}$.

Example

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Representations of Ferrers Diagrams

Subset of $[n]^{2}$

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Graphical Repr.

Representations of Ferrers Diagrams

Subset of $[n]^{2}$

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Graphical Repr.

Vector of Columns

$$
\mathcal{D}=(0,1,1,4,5)
$$

Representations of Ferrers Diagrams

Subset of $[n]^{2}$

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5) \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Graphical Repr.

Vector of Columns

$$
\mathcal{D}=(0,1,1,4,5)
$$

Representations of Ferrers Diagrams

Subset of $[n]^{2}$

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Graphical Repr.

Vector of Columns

$$
\mathcal{D}=(0,1,1,4,5)
$$

Representations of Ferrers Diagrams

Subset of $[n]^{2}$

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Graphical Repr.

Vector of Columns

$$
\mathcal{D}=(0,1,1,4,5)
$$

Representations of Ferrers Diagrams

Subset of $[n]^{2}$

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Graphical Repr.

Vector of Columns

$$
\mathcal{D}=(0,1,1,4,5)
$$

Representations of Ferrers Diagrams

Subset of $[n]^{2}$

$$
\begin{aligned}
\mathcal{D}=\{ & (1,2),(1,3),(1,4),(1,5), \\
& (2,4),(2,5),(3,4),(3,5), \\
& (4,4),(4,5),(5,5)\}
\end{aligned}
$$

Graphical Repr.

Vector of Columns

$$
\mathcal{D}=(0,1,1,4,5)
$$

Ferrers Diagram Matrix Spaces

- (Finite) field \mathbb{F}.
- Ferrers diagram \mathcal{D} of order n.

Ferrers Diagram Matrix Spaces

- (Finite) field \mathbb{F}.
- Ferrers diagram \mathcal{D} of order n.

$$
\mathbb{F}^{\mathcal{D}}:=\left\{A \in \mathbb{F}^{n \times n}: a_{i j}=0 \forall(i, j) \notin \mathcal{D}\right\}
$$

Ferrers Diagram Matrix Spaces

- (Finite) field \mathbb{F}.
- Ferrers diagram \mathcal{D} of order n.

$$
\mathbb{F}^{\mathcal{D}}:=\left\{A \in \mathbb{F}^{n \times n}: a_{i j}=0 \forall(i, j) \notin \mathcal{D}\right\}
$$

\bullet	\bullet
	\bullet
	\bullet
	\bullet

0 \& 0 \& 0 \& a_{2,4} \& a_{2,5}

0 \& 0 \& 0 \& a_{3,4} \& a_{3,5}

0 \& 0 \& 0 \& a_{4,4} \& a_{4,5}

0 \& 0 \& 0 \& 0 \& a_{5,5}\end{array}\right): a_{i, j} \in \mathbb{F}\right\}\)

Ferrers Diagram Rank-Metric Codes

The rank distance d_{rk} on $\mathbb{F}^{n \times n}$ is defined by

$$
\mathrm{d}_{\mathrm{rk}}(X, Y):=\mathrm{rk}(X-Y), \quad X, Y \in \mathbb{F}^{n \times n} .
$$

Ferrers Diagram Rank-Metric Codes

The rank distance d_{rk} on $\mathbb{F}^{\mathcal{D}}$ is defined by

$$
\mathrm{d}_{\mathrm{rk}}(X, Y):=\operatorname{rk}(X-Y), \quad X, Y \in \mathbb{F}^{\mathcal{D}}
$$

Ferrers Diagram Rank-Metric Codes

The rank distance d_{rk} on $\mathbb{F}^{\mathcal{D}}$ is defined by

$$
\mathrm{d}_{\mathrm{rk}}(X, Y):=\operatorname{rk}(X-Y), \quad X, Y \in \mathbb{F}^{\mathcal{D}}
$$

$\mathrm{A}[\mathcal{D}, k, r]_{\mathbb{F}}$ Ferrers diagram rank-metric code \mathcal{C} is a k-dimensional subspace of $\mathbb{F}^{\mathcal{D}}$ endowed with the rank distance. The minimum rank distance r is equal to the minimum rank

$$
r=\min \{\operatorname{rk}(A) \mid A \in \mathcal{C} \backslash\{0\}\}
$$

Ferrers Diagram Rank-Metric Codes

The rank distance d_{rk} on $\mathbb{F}^{\mathcal{D}}$ is defined by

$$
\mathrm{d}_{\mathrm{rk}}(X, Y):=\operatorname{rk}(X-Y), \quad X, Y \in \mathbb{F}^{\mathcal{D}}
$$

$\mathrm{A}[\mathcal{D}, k, r]_{\mathbb{F}}$ Ferrers diagram rank-metric code \mathcal{C} is a k-dimensional subspace of $\mathbb{F}^{\mathcal{D}}$ endowed with the rank distance. The minimum rank distance r is equal to the minimum rank

$$
r=\min \{\operatorname{rk}(A) \mid A \in \mathcal{C} \backslash\{0\}\}
$$

N.B. We could also consider nonlinear Ferrers diagram rank-metric codes. But not in this talk.

Part II The Etzion-Silberstein Conjecture

Contents

(1) (Ferrers Diagram) Rank-Metric Codes

- Preliminary Definitions
- Link to Subspace Codes in Network Coding
- Ferrers Diagram Rank-Metric Codes
(2) The Etzion-Silberstein (ES) Conjecture
- A Singleton Bound and the Conjecture
- An Illustrative Example: Triangular Diagrams
(3) Recent Results on the ES Conjecture
- A Modular Approach

A Singleton-like Bound

Question: Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a Ferrers diagram, $2 \leq r \leq n$. Find

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\max \left\{k \in \mathbb{N}: \exists \text { an }[\mathcal{D}, k, r]_{\mathbb{F}} \text { code }\right\} .
$$

A Singleton-like Bound

Question: Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a Ferrers diagram, $2 \leq r \leq n$. Find

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\max \left\{k \in \mathbb{N}: \exists \text { an }[\mathcal{D}, k, r]_{\mathbb{F}} \text { code }\right\} .
$$

Singleton-like Bound (Etzion, Silberstein, 2009)

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r) \leq \nu_{\min }(\mathcal{D}, r):=\min _{0 \leq j<r} \nu_{j}(\mathcal{D}, r)
$$

A Singleton-like Bound

Question: Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a Ferrers diagram, $2 \leq r \leq n$. Find

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\max \left\{k \in \mathbb{N}: \exists \text { an }[\mathcal{D}, k, r]_{\mathbb{F}} \text { code }\right\} .
$$

Singleton-like Bound (Etzion, Silberstein, 2009)

$$
\begin{aligned}
\kappa_{\mathbb{F}}(\mathcal{D}, r) & \leq \nu_{\min }(\mathcal{D}, r):=\min _{0 \leq j<r} \nu_{j}(\mathcal{D}, r) \\
& =\min _{0 \leq j<r}\left\{\sum_{i=1}^{n-j} \max \left\{0, c_{i}-r+1+j\right\}\right\}
\end{aligned}
$$

A Singleton-like Bound

Question: Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a Ferrers diagram, $2 \leq r \leq n$. Find

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\max \left\{k \in \mathbb{N}: \exists \text { an }[\mathcal{D}, k, r]_{\mathbb{F}} \text { code }\right\} .
$$

Singleton-like Bound (Etzion, Silberstein, 2009)

$$
\begin{gathered}
\kappa_{\mathbb{F}}(\mathcal{D}, r) \leq \nu_{\min }(\mathcal{D}, r):=\min _{0 \leq j<r} \nu_{j}(\mathcal{D}, r) \\
=\min _{0 \leq j<r}|\mathcal{D}|-\mid(\{\text { dots in first } r-j-1 \text { rows }\} \cup\{\text { dots in last } j \text { col's }\}) \mid
\end{gathered}
$$

A Singleton-like Bound

Question: Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a Ferrers diagram, $2 \leq r \leq n$. Find

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\max \left\{k \in \mathbb{N}: \exists \text { an }[\mathcal{D}, k, r]_{\mathbb{F}} \text { code }\right\}
$$

Singleton-like Bound (Etzion, Silberstein, 2009)

$$
\begin{gathered}
\kappa_{\mathbb{F}}(\mathcal{D}, r) \leq \nu_{\min }(\mathcal{D}, r):=\min _{0 \leq j<r} \nu_{j}(\mathcal{D}, r) \\
=\min _{0 \leq j<r}|\mathcal{D}|-\mid(\{\text { dots in first } r-j-1 \text { rows }\} \cup\{\text { dots in last } j \text { col's }\}) \mid
\end{gathered}
$$

Example:

$$
r=3
$$

A Singleton-like Bound

Question: Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a Ferrers diagram, $2 \leq r \leq n$. Find

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\max \left\{k \in \mathbb{N}: \exists \text { an }[\mathcal{D}, k, r]_{\mathbb{F}} \text { code }\right\} .
$$

Singleton-like Bound (Etzion, Silberstein, 2009)

$$
\begin{gathered}
\kappa_{\mathbb{F}}(\mathcal{D}, r) \leq \nu_{\min }(\mathcal{D}, r):=\min _{0 \leq j<r} \nu_{j}(\mathcal{D}, r) \\
=\min _{0 \leq j<r}|\mathcal{D}|-\mid(\{\text { dots in first } r-j-1 \text { rows }\} \cup\{\text { dots in last } j \text { col's }\}) \mid
\end{gathered}
$$

Example:

$$
---x-x-x-x
$$

$$
r=3
$$

$$
\nu_{0}(\mathcal{D}, 3)=5
$$

A Singleton-like Bound

Question: Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a Ferrers diagram, $2 \leq r \leq n$. Find

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\max \left\{k \in \mathbb{N}: \exists \text { an }[\mathcal{D}, k, r]_{\mathbb{F}} \text { code }\right\} .
$$

Singleton-like Bound (Etzion, Silberstein, 2009)

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r) \leq \nu_{\min }(\mathcal{D}, r):=\min _{0 \leq j<r} \nu_{j}(\mathcal{D}, r)
$$

$$
=\min _{0 \leq j<r}|\mathcal{D}|-\mid(\{\text { dots in first } r-j-1 \text { rows }\} \cup\{\text { dots in last } j \text { col's }\}) \mid
$$

$$
r=3
$$

$$
\begin{aligned}
& \nu_{0}(\mathcal{D}, 3)=5 \\
& \nu_{1}(\mathcal{D}, 3)=3
\end{aligned}
$$

A Singleton-like Bound

Question: Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a Ferrers diagram, $2 \leq r \leq n$. Find

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\max \left\{k \in \mathbb{N}: \exists \text { an }[\mathcal{D}, k, r]_{\mathbb{F}} \text { code }\right\} .
$$

Singleton-like Bound (Etzion, Silberstein, 2009)

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r) \leq \nu_{\min }(\mathcal{D}, r):=\min _{0 \leq j<r} \nu_{j}(\mathcal{D}, r)
$$

$=\min _{0 \leq j<r}|\mathcal{D}|-\mid(\{$ dots in first $r-j-1$ rows $\} \cup\{$ dots in last j col's $\}) \mid$

Example:

$$
r=3
$$

$$
\begin{aligned}
& \nu_{0}(\mathcal{D}, 3)=5 \\
& \nu_{1}(\mathcal{D}, 3)=3 \\
& \nu_{2}(\mathcal{D}, 3)=2
\end{aligned}
$$

A Singleton-like Bound

Question: Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a Ferrers diagram, $2 \leq r \leq n$. Find

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\max \left\{k \in \mathbb{N}: \exists \text { an }[\mathcal{D}, k, r]_{\mathbb{F}} \text { code }\right\}
$$

Singleton-like Bound (Etzion, Silberstein, 2009)

$$
\begin{gathered}
\kappa_{\mathbb{F}}(\mathcal{D}, r) \leq \nu_{\min }(\mathcal{D}, r):=\min _{0 \leq j<r} \nu_{j}(\mathcal{D}, r) \\
=\min _{0 \leq j<r}|\mathcal{D}|-\mid(\{\text { dots in first } r-j-1 \text { rows }\} \cup\{\text { dots in last } j \text { col's }\}) \mid
\end{gathered}
$$

Example:

$$
r=3
$$

$$
\begin{aligned}
& \nu_{0}(\mathcal{D}, 3)=5 \\
& \nu_{1}(\mathcal{D}, 3)=3 \\
& \nu_{2}(\mathcal{D}, 3)=2
\end{aligned}
$$

$$
\nu_{\min }(\mathcal{D}, r)=2
$$

Etzion-Silberstein Conjecture

Etzion-Silberstein Conjecture (2009): For every finite field \mathbb{F} the Singleton-like bound is tight:

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r)
$$

Etzion-Silberstein Conjecture

Etzion-Silberstein Conjecture (2009): For every finite field \mathbb{F} the Singleton-like bound is tight:

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r)
$$

Two constructive proofs for some special cases
(1) Subcodes of MRD codes: (Etzion, Silberstein, 2009) (Etzion, Gorla, Ravagnani, Wachter-Zeh, 2016) (Gorla, Ravagnani, 2017) (Antrobus, Gluesing-Luerssen, 2019) (Liu, Chang, Feng, 2019)
(2) MDS-constructible Ferrers diagrams (for fields large enough): (Etzion, Gorla, Ravagnani, Wachter-Zeh, 2016)

Two Special Cases

Two Special Cases

(1) Full size diagrams: $\mathcal{D}=(n, n, \ldots, n)=[n]^{2}$

Two Special Cases

(1) Full size diagrams: $\mathcal{D}=(n, n, \ldots, n)=[n]^{2}$

(2) Triangular diagrams:

$$
\mathcal{D}=(1,2, \ldots, n)=\left\{(i, j) \in[n]^{2}: i \leq j\right\}=\mathcal{T}_{n}
$$

A Special Case: Upper Triangular Matrices

$\mathcal{D}=(1,2, \ldots, n)=\left\{(i, j) \in[n]^{2}: i \leq j\right\}=\mathcal{T}_{n}$.
Upper-triangular rank-metric codes.

$$
\nu_{\min }\left(\mathcal{T}_{n}, r\right)=\frac{(n-r+1)(n-r+2)}{2}
$$

A Special Case: Upper Triangular Matrices

$\mathcal{D}=(1,2, \ldots, n)=\left\{(i, j) \in[n]^{2}: i \leq j\right\}=\mathcal{T}_{n}$.
Upper-triangular rank-metric codes.

$$
\nu_{\min }\left(\mathcal{T}_{n}, r\right)=\frac{(n-r+1)(n-r+2)}{2}
$$

(1) $r=n$: Easy.
(2) $r=2$: Sum on each diagonal is 0 .
(3) $r=n-1$: Settled in (Antrobus-Gluesing Luerssen 2019).

A Special Case: Upper Triangular Matrices

$\mathcal{D}=(1,2, \ldots, n)=\left\{(i, j) \in[n]^{2}: i \leq j\right\}=\mathcal{T}_{n}$.
Upper-triangular rank-metric codes.

$$
\nu_{\min }\left(\mathcal{T}_{n}, r\right)=\frac{(n-r+1)(n-r+2)}{2}
$$

(1) $r=n$: Easy.
(2) $r=2$: Sum on each diagonal is 0 .
(3) $r=n-1$: Settled in (Antrobus-Gluesing Luerssen 2019).
(4) For every other r assuming $|\mathbb{F}| \geq n-1$.

A Special Case: Upper Triangular Matrices

$\mathcal{D}=(1,2, \ldots, n)=\left\{(i, j) \in[n]^{2}: i \leq j\right\}=\mathcal{T}_{n}$.
Upper-triangular rank-metric codes.

$$
\nu_{\min }\left(\mathcal{T}_{n}, r\right)=\frac{(n-r+1)(n-r+2)}{2}
$$

(1) $r=n$: Easy.
(2) $r=2$: Sum on each diagonal is 0 .
(3) $r=n-1$: Settled in (Antrobus-Gluesing Luerssen 2019).
(4) For every other r assuming $|\mathbb{F}| \geq n-1$.

How? Put $[n+1-i, n-r-i+2, r]_{\mathbb{F}}$ MDS codes on the diagonals

$$
\Delta_{i}^{n}:=\{(j, j+i-1): j \in[n+1-i]\}
$$

A Special Case: Upper Triangular Matrices

$\mathcal{D}=(1,2, \ldots, n)=\left\{(i, j) \in[n]^{2}: i \leq j\right\}=\mathcal{T}_{n}$.
Upper-triangular rank-metric codes.

$$
\nu_{\min }\left(\mathcal{T}_{n}, r\right)=\frac{(n-r+1)(n-r+2)}{2}
$$

(1) $r=n$: Easy.
(2) $r=2$: Sum on each diagonal is 0 .
(3) $r=n-1$: Settled in (Antrobus-Gluesing Luerssen 2019).
(4) For every other r assuming $|\mathbb{F}| \geq n-1$.

How? Put $[n+1-i, n-r-i+2, r]_{\mathbb{F}}$ MDS codes on the diagonals

$$
\Delta_{i}^{n}:=\{(j, j+i-1): j \in[n+1-i]\}
$$

A Special Case: Upper Triangular Matrices

$\mathcal{D}=(1,2, \ldots, n)=\left\{(i, j) \in[n]^{2}: i \leq j\right\}=\mathcal{T}_{n}$.
Upper-triangular rank-metric codes.

$$
\nu_{\min }\left(\mathcal{T}_{n}, r\right)=\frac{(n-r+1)(n-r+2)}{2}
$$

(1) $r=n$: Easy.
(2) $r=2$: Sum on each diagonal is 0 .
(3) $r=n-1$: Settled in (Antrobus-Gluesing Luerssen 2019).
(4) For every other r assuming $|\mathbb{F}| \geq n-1$.

How? Put $[n+1-i, n-r-i+2, r]_{\mathbb{F}}$ MDS codes on the diagonals

$$
\Delta_{i}^{n}:=\{(j, j+i-1): j \in[n+1-i]\}
$$

A Special Case: Upper Triangular Matrices

$\mathcal{D}=(1,2, \ldots, n)=\left\{(i, j) \in[n]^{2}: i \leq j\right\}=\mathcal{T}_{n}$.
Upper-triangular rank-metric codes.

$$
\nu_{\min }\left(\mathcal{T}_{n}, r\right)=\frac{(n-r+1)(n-r+2)}{2}
$$

(1) $r=n$: Easy.
(2) $r=2$: Sum on each diagonal is 0 .
(3) $r=n-1$: Settled in (Antrobus-Gluesing Luerssen 2019).
(4) For every other r assuming $|\mathbb{F}| \geq n-1$.

How? Put $[n+1-i, n-r-i+2, r]_{\mathbb{F}}$ MDS codes on the diagonals

$$
\Delta_{i}^{n}:=\{(j, j+i-1): j \in[n+1-i]\}
$$

for $i \in[n-r+1]$.

MDS-Constructible Ferrers Diagrams

Let \mathcal{D} be a Ferrers diagram of order n, and let $r \in\{2, \ldots, n\}$.
Formal Definition: The pair (\mathcal{D}, r) is MDS-constructible if

$$
\nu_{\min }(\mathcal{D}, r)=\sum_{i=1}^{n} \max \left\{0,\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-r+1\right\}=: \nu_{\mathrm{MDS}}(\mathcal{D}, r) .
$$

MDS-Constructible Ferrers Diagrams

Let \mathcal{D} be a Ferrers diagram of order n, and let $r \in\{2, \ldots, n\}$.
Formal Definition: The pair (\mathcal{D}, r) is MDS-constructible if

$$
\nu_{\min }(\mathcal{D}, r)=\sum_{i=1}^{n} \max \left\{0,\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-r+1\right\}=: \nu_{\mathrm{MDS}}(\mathcal{D}, r) .
$$

Intuitive Definition: The pair (\mathcal{D}, r) is MDS-constructible if you can construct $\left[\mathcal{D}, \nu_{\min }(\mathcal{D}, r), r\right]_{\mathbb{F}}$ code using MDS codes of minimum Hamming weight r on the diagonals.

MDS-Constructible Ferrers Diagrams

Let \mathcal{D} be a Ferrers diagram of order n, and let $r \in\{2, \ldots, n\}$.
Formal Definition: The pair (\mathcal{D}, r) is MDS-constructible if

$$
\nu_{\min }(\mathcal{D}, r)=\sum_{i=1}^{n} \max \left\{0,\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-r+1\right\}=: \nu_{\mathrm{MDS}}(\mathcal{D}, r) .
$$

Intuitive Definition: The pair (\mathcal{D}, r) is MDS-constructible if you can construct $\left[\mathcal{D}, \nu_{\min }(\mathcal{D}, r), r\right]_{\mathbb{F}}$ code using MDS codes of minimum Hamming weight r on the diagonals.

MDS-Constructible Ferrers Diagrams

Let \mathcal{D} be a Ferrers diagram of order n, and let $r \in\{2, \ldots, n\}$.
Formal Definition: The pair (\mathcal{D}, r) is MDS-constructible if

$$
\nu_{\min }(\mathcal{D}, r)=\sum_{i=1}^{n} \max \left\{0,\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-r+1\right\}=: \nu_{\mathrm{MDS}}(\mathcal{D}, r) .
$$

Intuitive Definition: The pair (\mathcal{D}, r) is MDS-constructible if you can construct $\left[\mathcal{D}, \nu_{\min }(\mathcal{D}, r), r\right]_{\mathbb{F}}$ code using MDS codes of minimum Hamming weight r on the diagonals.

$$
r=3
$$

$$
\begin{array}{rlr}
\nu_{\min }(\mathcal{D}, 3) & =\min \{5,4,3\} & =3 \\
\nu_{\operatorname{MDS}}(\mathcal{D}, 3) & =0+2+1+0+0 & =3
\end{array}
$$

MDS-Constructible Maximum Ferrers Diagrams Codes

Theorem (Etzion, Gorla, Ravagnani, Wachter-Zeh 2016)

 If (\mathcal{D}, r) is MDS-constructible and $|\mathbb{F}| \geq \max _{i}\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-1$, then$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r) .
$$

MDS-Constructible Maximum Ferrers Diagrams Codes

Theorem (Etzion, Gorla, Ravagnani, Wachter-Zeh 2016)

 If (\mathcal{D}, r) is MDS-constructible and $|\mathbb{F}| \geq \max _{i}\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-1$, then$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r) .
$$

MDS-Constructible Maximum Ferrers Diagrams Codes

Theorem (Etzion, Gorla, Ravagnani, Wachter-Zeh 2016)

If (\mathcal{D}, r) is MDS-constructible and $|\mathbb{F}| \geq \max _{i}\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-1$, then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r) .
$$

MDS-Constructible Maximum Ferrers Diagrams Codes

Theorem (Etzion, Gorla, Ravagnani, Wachter-Zeh 2016)

If (\mathcal{D}, r) is MDS-constructible and $|\mathbb{F}| \geq \max _{i}\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-1$, then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r) .
$$

$$
\because \bullet . \quad . \quad\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
r=3
$$

MDS-Constructible Maximum Ferrers Diagrams Codes

Theorem (Etzion, Gorla, Ravagnani, Wachter-Zeh 2016)

If (\mathcal{D}, r) is MDS-constructible and $|\mathbb{F}| \geq \max _{i}\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-1$, then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r) .
$$

$$
\left.\because \bullet\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\right\rangle_{\mathbb{F}_{3}}
$$

$$
r=3
$$

MDS-Constructible Maximum Ferrers Diagrams Codes

Theorem (Etzion, Gorla, Ravagnani, Wachter-Zeh 2016)

If (\mathcal{D}, r) is MDS-constructible and $|\mathbb{F}| \geq \max _{i}\left|\mathcal{D} \cap \Delta_{i}^{n}\right|-1$, then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r) .
$$

$$
\left.\begin{array}{r}
\bullet \bullet \\
\\
\\
\quad \bullet \\
r=3
\end{array}\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\right\rangle_{\mathbb{F}_{3}}
$$

Part III
 Recent Results on the ES Conjecture

Joint work with Mima Stanojkovski

Check out our preprint!

: A. Neri. M. Stanojkovski. "A proof of the Etzion-Silberstein conjecture for monotone and MDS-constructible Ferrers diagrams", arXiv:2306.16407, 2023.

SCAN ME

Contents

(1) (Ferrers Diagram) Rank-Metric Codes

- Preliminary Definitions
- Link to Subspace Codes in Network Coding
- Ferrers Diagram Rank-Metric Codes
(2) The Etzion-Silberstein (ES) Conjecture
- A Singleton Bound and the Conjecture
- An Illustrative Example: Triangular Diagrams
(3) Recent Results on the ES Conjecture
- A Modular Approach

Our Result in a Nutshell

Main Theorem (N., Stanojkovski, 2023)
If (\mathcal{D}, r) is MDS-constructible , then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\text {min }}(\mathcal{D}, r) .
$$

Our Result in a Nutshell

Main Theorem (N., Stanojkovski, 2023)

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r) .
$$

Main steps:

1. Theorem 1. If the conjecture is true for $\mathcal{T}_{n}=(1,2, \ldots, n)$, then it is also true for every MDS-constructible pair. combinatorial argument

Our Result in a Nutshell

Main Theorem (N., Stanojkovski, 2023)

If (\mathcal{D}, r) is MDS-constructible

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r)
$$

Main steps:

1. Theorem 1. If the conjecture is true for $\mathcal{T}_{n}=(1,2, \ldots, n)$, then it is also true for every MDS-constructible pair. combinatorial argument
2. Theorem 2. The conjecture holds true for strictly monotone Ferrers diagrams of order $n=p^{m}$ in characteristic p. algebraic argument

Our Result in a Nutshell

Main Theorem (N., Stanojkovski, 2023)

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r)
$$

Main steps:

1. Theorem 1. If the conjecture is true for $\mathcal{T}_{n}=(1,2, \ldots, n)$, then it is also true for every MDS-constructible pair. combinatorial argument
2. Theorem 2. The conjecture holds true for strictly monotone Ferrers diagrams of order $n=p^{m}$ in characteristic p. algebraic argument
3. Lemmino. If $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ is strictly monotone of order n, then $\mathcal{D}^{\prime}=\left(0, c_{1}, \ldots, c_{n}\right)$ is strictly monotone of order $n+1$.

Our Result in a Nutshell

Main Theorem (N., Stanojkovski, 2023)

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\min }(\mathcal{D}, r)
$$

Main steps:

1. Theorem 1. If the conjecture is true for $\mathcal{T}_{n}=(1,2, \ldots, n)$, then it is also true for every MDS-constructible pair. combinatorial argument
2. Theorem 2. The conjecture holds true for strictly monotone Ferrers diagrams of order $n=p^{m}$ in characteristic p. algebraic argument
3. Lemmino. If $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ is strictly monotone of order n, then $\mathcal{D}^{\prime}=\left(0, c_{1}, \ldots, c_{n}\right)$ is strictly monotone of order $n+1$.
4. \mathcal{T}_{n} is strictly monotone.

Our Result in a Nutshell

Main Theorem (N., Stanojkovski, 2023)

If (\mathcal{D}, r) is MDS-constructible

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\text {min }}(\mathcal{D}, r)
$$

Main steps:

1. Theorem 1. If the conjecture is true for $\mathcal{T}_{n}=(1,2, \ldots, n)$, then it is also true for every MDS-constructible pair. combinatorial argument
2. Theorem 2. The conjecture holds true for strictly monotone Ferrers diagrams of order $n=p^{m}$ in characteristic p. algebraic argument
3. Lemmino. If $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ is strictly monotone of order n, then $\mathcal{D}^{\prime}=\left(0, c_{1}, \ldots, c_{n}\right)$ is strictly monotone of order $n+1$.
4. \mathcal{T}_{n} is strictly monotone.
5. If n not a power of p, then use Lemmino h times with $n+h=p^{m}$.

Final Remarks

Main Theorem (N., Stanojkovski, 2023)
If (\mathcal{D}, r) is MDS-constructible, then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\text {min }}(\mathcal{D}, r) .
$$

Final Remarks

Main Theorem (N., Stanojkovski, 2023)
If (\mathcal{D}, r) is MDS-constructible, then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\text {min }}(\mathcal{D}, r)
$$

- Get rid of the field condition. Completely different construction!

Final Remarks

Main Theorem (N., Stanojkovski, 2023)

If (\mathcal{D}, r) is MDS-constructible, then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\text {min }}(\mathcal{D}, r) .
$$

- Get rid of the field condition. Completely different construction!
- First crucial idea: embed Ferrers diagrams matrix spaces in larger matrix spaces.
- Second crucial idea: use combinatorial properties of MDS-constructible pairs.
(Theorem 1)
- Third crucial idea: Use flag associated to nilpotent endomorphism $\sigma-$ id when $n=p^{m}$.
(Theorem 2)

Final Remarks

Main Theorem (N., Stanojkovski, 2023)

If (\mathcal{D}, r) is MDS-constructible, then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\text {min }}(\mathcal{D}, r) .
$$

- Get rid of the field condition. Completely different construction!
- First crucial idea: embed Ferrers diagrams matrix spaces in larger matrix spaces.
- Second crucial idea: use combinatorial properties of MDS-constructible pairs.
(Theorem 1)
- Third crucial idea: Use flag associated to nilpotent endomorphism $\sigma-$ id when $n=p^{m}$.

Achtung: The ES Conjecture is still widely open

The End

Thank you! Dankjewel!

Grazie!

Check out our preprint!

围 A. Neri. M. Stanojkovski. "A proof of the Etzion-Silberstein conjecture for monotone and MDS-constructible Ferrers diagrams", arXiv:2306.16407, 2023.

SCAN ME

Final Remarks

Main Theorem (N., Stanojkovski, 2023)

If (\mathcal{D}, r) is MDS-constructible, then

$$
\kappa_{\mathbb{F}}(\mathcal{D}, r)=\nu_{\text {min }}(\mathcal{D}, r) .
$$

- Get rid of the field condition. Completely different construction!
- First crucial idea: embed Ferrers diagrams matrix spaces in larger matrix spaces.
- Second crucial idea: use combinatorial properties of MDS-constructible pairs.
(Theorem 1)
- Third crucial idea: Use flag associated to nilpotent endomorphism $\sigma-\mathrm{id}$ when $n=p^{m}$.
(Theorem 2)

Restricted Skew Algebra Isomorphism

$$
\mathbb{F}^{n \times n} \cong \bigoplus_{i=0}^{n-1} \mathbb{L}_{\cdot} \cdot \sigma^{i}=: \mathbb{L}[\sigma]
$$

Restricted Skew Algebra Isomorphism

$$
\mathbb{F}^{n \times n} \cong \bigoplus_{i=0}^{n-1} \mathbb{L} \cdot \sigma^{i}=: \mathbb{L}[\sigma]
$$

Idea

(1) Restrict it to $\mathbb{F}^{\mathcal{D}} \subseteq \mathbb{F}^{n \times n}$:

$$
\mathbb{F}^{\mathcal{D}} \cong \mathbb{L}[\sigma ; \mathcal{D}]
$$

Restricted Skew Algebra Isomorphism

$$
\mathbb{F}^{n \times n} \cong \bigoplus_{i=0}^{n-1} \mathbb{L} \cdot \sigma^{i}=: \mathbb{L}[\sigma]
$$

Idea

(1) Restrict it to $\mathbb{F}^{\mathcal{D}} \subseteq \mathbb{F}^{n \times n}$:

$$
\mathbb{F}^{\mathcal{D}} \cong \mathbb{L}[\sigma ; \mathcal{D}]
$$

(2) Use the Nullity-Degree Bound:

$$
\mathbb{L}[\sigma ; \mathcal{D}]_{n-r}=\left\{P(\sigma) \in \mathbb{L}[\sigma ; \mathcal{D}]: \operatorname{deg}_{\sigma}(P) \leq n-r\right\} ;
$$

Restricted Skew Algebra Isomorphism

$$
\mathbb{F}^{n \times n} \cong_{\mathcal{B}} \bigoplus_{i=0}^{n-1} \mathbb{L} \cdot \sigma^{i}=: \mathbb{L}[\sigma]
$$

Idea

(1) Restrict it to $\mathbb{F}^{\mathcal{D}} \subseteq \mathbb{F}^{n \times n}$:

$$
\mathbb{F}^{\mathcal{D}} \cong_{\mathcal{B}} \mathbb{L}[\sigma ; \mathcal{D}]
$$

(2) Use the Nullity-Degree Bound:

$$
\mathbb{L}[\sigma ; \mathcal{D}]_{n-r}=\left\{P(\sigma) \in \mathbb{L}[\sigma ; \mathcal{D}]: \operatorname{deg}_{\sigma}(P) \leq n-r\right\} ;
$$

(3) Hope that

$$
\operatorname{dim}_{\mathbb{F}}\left(\mathbb{L}[\sigma ; \mathcal{D}]_{n-r}\right)=\nu_{\min }(\mathcal{D}, r)
$$

Restricted Skew Algebra Isomorphism

$$
\mathbb{F}^{n \times n} \cong_{\mathcal{B}} \bigoplus_{i=0}^{n-1} \mathbb{L} \cdot \sigma^{i}=: \mathbb{L}[\sigma]
$$

Idea

(1) Restrict it to $\mathbb{F}^{\mathcal{D}} \subseteq \mathbb{F}^{n \times n}$:

$$
\mathbb{F}^{\mathcal{D}} \cong_{\mathcal{B}} \mathbb{L}[\sigma ; \mathcal{D}]
$$

(2) Use the Nullity-Degree Bound:

$$
\mathbb{L}[\sigma ; \mathcal{D}]_{n-r}=\left\{P(\sigma) \in \mathbb{L}[\sigma ; \mathcal{D}]: \operatorname{deg}_{\sigma}(P) \leq n-r\right\} ;
$$

(3) Hope that

$$
\operatorname{dim}_{\mathbb{F}}\left(\mathbb{L}[\sigma ; \mathcal{D}]_{n-r}\right)=\nu_{\min }(\mathcal{D}, r)
$$

Achtung: Need a smart choice of an \mathbb{F}-basis \mathcal{B} of \mathbb{L} !

Modular Case

$$
\begin{aligned}
p=\operatorname{char}(\mathbb{F}), & n=p^{m} . \\
\bar{\sigma}:=\sigma-\operatorname{id}, & \mathcal{F}_{i}:=\operatorname{ker}\left(\bar{\sigma}^{i}\right) .
\end{aligned}
$$

Modular Case

$$
\begin{array}{cc}
p=\operatorname{char}(\mathbb{F}), & n=p^{m} . \\
\bar{\sigma}:=\sigma-\operatorname{id}, & \mathcal{F}_{i}:=\operatorname{ker}\left(\bar{\sigma}^{i}\right) .
\end{array}
$$

- $\bar{\sigma}$ is nilpotent of order n.

Modular Case

$$
\begin{array}{cc}
p=\operatorname{char}(\mathbb{F}), & n=p^{m} . \\
\bar{\sigma}:=\sigma-\operatorname{id}, & \mathcal{F}_{i}:=\operatorname{ker}\left(\bar{\sigma}^{i}\right) .
\end{array}
$$

- $\bar{\sigma}$ is nilpotent of order n.
- For each $i \in\{0, \ldots, n-1\}$, one has $\operatorname{deg}_{\sigma}\left(\bar{\sigma}^{i}\right)=i$.

Modular Case

$$
\begin{array}{cc}
p=\operatorname{char}(\mathbb{F}), & n=p^{m} . \\
\bar{\sigma}:=\sigma-\operatorname{id}, & \mathcal{F}_{i}:=\operatorname{ker}\left(\bar{\sigma}^{i}\right) .
\end{array}
$$

- $\bar{\sigma}$ is nilpotent of order n.
- For each $i \in\{0, \ldots, n-1\}$, one has $\operatorname{deg}_{\sigma}\left(\bar{\sigma}^{i}\right)=i$.
(DEG)
- ($\left.\bar{\sigma}^{i}: i \in\{0, \ldots, n-1\}\right)$ is an \mathbb{L}-basis of $\mathbb{L}[\sigma]$.

Modular Case

$$
\begin{array}{cc}
p=\operatorname{char}(\mathbb{F}), & n=p^{m} . \\
\bar{\sigma}:=\sigma-\mathrm{id}, & \mathcal{F}_{i}:=\operatorname{ker}\left(\bar{\sigma}^{i}\right) .
\end{array}
$$

- $\bar{\sigma}$ is nilpotent of order n.
- For each $i \in\{0, \ldots, n-1\}$, one has $\operatorname{deg}_{\sigma}\left(\bar{\sigma}^{i}\right)=i$.
(DEG)
- $\left(\bar{\sigma}^{i}: i \in\{0, \ldots, n-1\}\right)$ is an \mathbb{L}-basis of $\mathbb{L}[\sigma]$.
- For each $i \in\{0, \ldots, n\}$, one has $\operatorname{dim}_{\mathbb{F}} \mathcal{F}_{i}=i$.

Modular Case

$$
\begin{array}{cc}
p=\operatorname{char}(\mathbb{F}), & n=p^{m} . \\
\bar{\sigma}:=\sigma-\mathrm{id}, & \mathcal{F}_{i}:=\operatorname{ker}\left(\bar{\sigma}^{i}\right) .
\end{array}
$$

- $\bar{\sigma}$ is nilpotent of order n.
- For each $i \in\{0, \ldots, n-1\}$, one has $\operatorname{deg}_{\sigma}\left(\bar{\sigma}^{i}\right)=i$.
- $\left(\bar{\sigma}^{i}: i \in\{0, \ldots, n-1\}\right)$ is an \mathbb{L}-basis of $\mathbb{L}[\sigma]$.
- For each $i \in\{0, \ldots, n\}$, one has $\operatorname{dim}_{\mathbb{F}} \mathcal{F}_{i}=i$.
- For each $i \in\{1, \ldots, n\}$, one has $\mathcal{F}_{i-1} \subset \mathcal{F}_{i}$.

Modular Case

$$
\begin{array}{cc}
p=\operatorname{char}(\mathbb{F}), & n=p^{m} . \\
\bar{\sigma}:=\sigma-\mathrm{id}, & \mathcal{F}_{i}:=\operatorname{ker}\left(\bar{\sigma}^{i}\right) .
\end{array}
$$

- $\bar{\sigma}$ is nilpotent of order n.
- For each $i \in\{0, \ldots, n-1\}$, one has $\operatorname{deg}_{\sigma}\left(\bar{\sigma}^{i}\right)=i$.
(DEG)
- $\left(\bar{\sigma}^{i}: i \in\{0, \ldots, n-1\}\right)$ is an \mathbb{L}-basis of $\mathbb{L}[\sigma]$.
- For each $i \in\{0, \ldots, n\}$, one has $\operatorname{dim}_{\mathbb{F}} \mathcal{F}_{i}=i$.
- For each $i \in\{1, \ldots, n\}$, one has $\mathcal{F}_{i-1} \subset \mathcal{F}_{i}$.
- For every i, j with $i+j \leq n$, one has $\mathcal{F}_{i} \cdot \mathcal{F}_{j} \subseteq \mathcal{F}_{i+j-1}$.
(ABS)

Modular Case

$$
\begin{array}{cc}
p=\operatorname{char}(\mathbb{F}), & n=p^{m} . \\
\bar{\sigma}:=\sigma-\mathrm{id}, & \mathcal{F}_{i}:=\operatorname{ker}\left(\bar{\sigma}^{i}\right) .
\end{array}
$$

- $\bar{\sigma}$ is nilpotent of order n.
- For each $i \in\{0, \ldots, n-1\}$, one has $\operatorname{deg}_{\sigma}\left(\bar{\sigma}^{i}\right)=i$.
(DEG)
- $\left(\bar{\sigma}^{i}: i \in\{0, \ldots, n-1\}\right)$ is an \mathbb{L}-basis of $\mathbb{L}[\sigma]$.
- For each $i \in\{0, \ldots, n\}$, one has $\operatorname{dim}_{\mathbb{F}} \mathcal{F}_{i}=i$.
- For each $i \in\{1, \ldots, n\}$, one has $\mathcal{F}_{i-1} \subset \mathcal{F}_{i}$.
- For every i, j with $i+j \leq n$, one has $\mathcal{F}_{i} \cdot \mathcal{F}_{j} \subseteq \mathcal{F}_{i+j-1}$.

$$
\mathcal{F}:=\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)
$$

full \mathbb{F}-flag

Modular Case

$$
\begin{array}{cc}
p=\operatorname{char}(\mathbb{F}), & n=p^{m} . \\
\bar{\sigma}:=\sigma-\mathrm{id}, & \mathcal{F}_{i}:=\operatorname{ker}\left(\bar{\sigma}^{i}\right) .
\end{array}
$$

- $\bar{\sigma}$ is nilpotent of order n.
- For each $i \in\{0, \ldots, n-1\}$, one has $\operatorname{deg}_{\sigma}\left(\bar{\sigma}^{i}\right)=i$.
(DEG)
- $\left(\bar{\sigma}^{i}: i \in\{0, \ldots, n-1\}\right)$ is an \mathbb{L}-basis of $\mathbb{L}[\sigma]$.
- For each $i \in\{0, \ldots, n\}$, one has $\operatorname{dim}_{\mathbb{F}} \mathcal{F}_{i}=i$.
- For each $i \in\{1, \ldots, n\}$, one has $\mathcal{F}_{i-1} \subset \mathcal{F}_{i}$.
- For every i, j with $i+j \leq n$, one has $\mathcal{F}_{i} \cdot \mathcal{F}_{j} \subseteq \mathcal{F}_{i+j-1}$.
(ABS)

$$
\mathcal{F}:=\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots, \mathcal{F}_{n}\right)
$$

full \mathbb{F}-flag

Smart choice: $\mathcal{B}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ compatible with $\mathcal{F}:\left\langle\beta_{1}, \ldots, \beta_{i}\right\rangle_{\mathbb{F}}=\mathcal{F}_{i}$.

Restricted Skew Algebra Isomorphism

Strictly monotone Ferrers Diagram:
 $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ if it satisfies
 $c_{i}>0$ implies $c_{i+1}>c_{i}$.

Restricted Skew Algebra Isomorphism

$$
\begin{aligned}
& \text { Strictly monotone Ferrers Diagram: } \\
& \mathcal{D}=\left(c_{1}, \ldots, c_{n}\right) \text { if it satisfies } \\
& \qquad c_{i}>0 \text { implies } c_{i+1}>c_{i}
\end{aligned}
$$

Restricted Skew Algebra Isomorphism

Strictly monotone Ferrers Diagram:

$\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ if it satisfies

$$
c_{i}>0 \text { implies } c_{i+1}>c_{i}
$$

Theorem (N., Stanojkovski, 2023)

Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a strictly monotone Ferrers diagram of order $n=p^{m}$. Then for any \mathcal{F}-compatible basis \mathcal{B} of \mathbb{L} we have

$$
\mathbb{F}^{\mathcal{D}} \cong_{\mathcal{B}} \mathbb{L}[\sigma ; \mathcal{D}]=\bigoplus_{i=1}^{n} \mathcal{F}_{c_{i}} \bar{\sigma}^{i-1}=\left\{\sum_{i=1}^{n} \lambda_{i} \bar{\sigma}^{i-1}: \lambda_{i} \in \mathcal{F}_{c_{i}}\right\} .
$$

Maximal Ferrers Diagrams Codes

Theorem (N., Stanojkovski, 2023)

Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a strictly monotone Ferrers diagram of order $n=p^{m}$. Then, for every $d \in\{2, \ldots n\}$,

$$
\mathbb{L}[\sigma ; \mathcal{D}]_{n-r}=\left\{P(\sigma) \in \mathbb{L}[\sigma ; \mathcal{D}]: \operatorname{deg}_{\sigma}(P) \leq n-r\right\}
$$

is a $\left[\mathcal{D}, \nu_{\text {min }}(\mathcal{D}, r), r\right]_{\mathbb{F}}$ code.

Maximal Ferrers Diagrams Codes

Theorem (N., Stanojkovski, 2023)

Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a strictly monotone Ferrers diagram of order $n=p^{m}$. Then, for every $d \in\{2, \ldots n\}$,

$$
\mathbb{L}[\sigma ; \mathcal{D}]_{n-r}=\left\{P(\sigma) \in \mathbb{L}[\sigma ; \mathcal{D}]: \operatorname{deg}_{\sigma}(P) \leq n-r\right\}
$$

is a $\left[\mathcal{D}, \nu_{\text {min }}(\mathcal{D}, r), r\right]_{\mathbb{F}}$ code.

- Nullity-Degree bound: $\mathrm{rk}(A) \geq r$;

Maximal Ferrers Diagrams Codes

Theorem (N., Stanojkovski, 2023)

Let $\mathcal{D}=\left(c_{1}, \ldots, c_{n}\right)$ be a strictly monotone Ferrers diagram of order $n=p^{m}$. Then, for every $d \in\{2, \ldots n\}$,

$$
\mathbb{L}[\sigma ; \mathcal{D}]_{n-r}=\left\{P(\sigma) \in \mathbb{L}[\sigma ; \mathcal{D}]: \operatorname{deg}_{\sigma}(P) \leq n-r\right\}
$$

is a $\left[\mathcal{D}, \nu_{\text {min }}(\mathcal{D}, r), r\right]_{\mathbb{F}}$ code.

- Nullity-Degree bound: $\mathrm{rk}(A) \geq r$;
- $\operatorname{dim}_{\mathbb{F}}\left(\mathbb{L}[\sigma ; \mathcal{D}]_{n-r}\right)=c_{1}+c_{2}+\ldots+c_{n-r}=\nu_{r-1}(\mathcal{D}, r)=\nu_{\text {min }}(\mathcal{D}, r)$.

Example (I)

- $\mathbb{F}=\mathbb{F}_{2} . n=6, r=4, \mathcal{D}=\mathcal{T}_{6}$.
- $\nu_{\text {min }}(\mathcal{D}, 4)=6$.

Example (I)

- $\mathbb{F}=\mathbb{F}_{2} . n=6, r=4, \mathcal{D}=\mathcal{T}_{6}$.
- $\nu_{\text {min }}(\mathcal{D}, 4)=6$.
- Use Lemmino 2 times: $\mathcal{D} \rightarrow \mathcal{D}^{\prime}$.

Example (I)

- $\mathbb{F}=\mathbb{F}_{2} . n=6, r=4, \mathcal{D}=\mathcal{T}_{6}$.
- $\nu_{\text {min }}(\mathcal{D}, 4)=6$.
- Use Lemmino 2 times: $\mathcal{D} \rightarrow \mathcal{D}^{\prime}$.
- $\mathbb{L}=\mathbb{F}_{2^{8}}=\mathbb{F}_{2}(\gamma)$, with $\gamma^{8}+\gamma^{4}+\gamma^{3}+\gamma^{2}+1=0$.

Example (I)

- $\mathbb{F}=\mathbb{F}_{2} . n=6, r=4, \mathcal{D}=\mathcal{T}_{6}$.
- $\nu_{\text {min }}(\mathcal{D}, 4)=6$.
- Use Lemmino 2 times: $\mathcal{D} \rightarrow \mathcal{D}^{\prime}$.
- $\mathbb{L}=\mathbb{F}_{2^{8}}=\mathbb{F}_{2}(\gamma)$, with $\gamma^{8}+\gamma^{4}+\gamma^{3}+\gamma^{2}+1=0$.
- $\sigma: \beta \mapsto \beta^{2}$.
- $\bar{\sigma}=\sigma$ - id.
- $\mathcal{F}_{i}=\operatorname{ker}\left(\bar{\sigma}^{i}\right), \quad \mathcal{F}=\left(\mathcal{F}_{0}, \ldots, \mathcal{F}_{8}\right)$.
- $\mathcal{B}=\left(1, \gamma^{170}, \gamma^{136}, \gamma^{204}, \gamma^{222}, \gamma^{38}, \gamma^{143}, \gamma^{5}\right)$ is \mathcal{F}-compatible.

Example (I)

- $\mathbb{F}=\mathbb{F}_{2} . n=6, r=4, \mathcal{D}=\mathcal{T}_{6}$.
- $\nu_{\text {min }}(\mathcal{D}, 4)=6$.
- Use Lemmino 2 times: $\mathcal{D} \rightarrow \mathcal{D}^{\prime}$.
- $\mathbb{L}=\mathbb{F}_{2^{8}}=\mathbb{F}_{2}(\gamma)$, with $\gamma^{8}+\gamma^{4}+\gamma^{3}+\gamma^{2}+1=0$.
- $\sigma: \beta \mapsto \beta^{2}$.
- $\bar{\sigma}=\sigma$ - id.
- $\mathcal{F}_{i}=\operatorname{ker}\left(\bar{\sigma}^{i}\right), \quad \mathcal{F}=\left(\mathcal{F}_{0}, \ldots, \mathcal{F}_{8}\right)$.
- $\mathcal{B}=\left(1, \gamma^{170}, \gamma^{136}, \gamma^{204}, \gamma^{222}, \gamma^{38}, \gamma^{143}, \gamma^{5}\right)$ is \mathcal{F}-compatible.

$$
\mathbb{F}^{\mathcal{D}} \cong \mathbb{F}_{2^{8}}\left[\sigma ; \mathcal{D}^{\prime}\right]=\bigoplus^{8} \mathcal{F}_{i-2} \bar{\sigma}^{i-1}
$$

Example (I)

- $\mathbb{F}=\mathbb{F}_{2} . n=6, r=4, \mathcal{D}=\mathcal{T}_{6}$.
- $\nu_{\text {min }}(\mathcal{D}, 4)=6$.
- Use Lemmino 2 times: $\mathcal{D} \rightarrow \mathcal{D}^{\prime}$.
- $\mathbb{L}=\mathbb{F}_{2^{8}}=\mathbb{F}_{2}(\gamma)$, with $\gamma^{8}+\gamma^{4}+\gamma^{3}+\gamma^{2}+1=0$.
- $\sigma: \beta \mapsto \beta^{2}$.
- $\bar{\sigma}=\sigma$ - id.
- $\mathcal{F}_{i}=\operatorname{ker}\left(\bar{\sigma}^{i}\right), \quad \mathcal{F}=\left(\mathcal{F}_{0}, \ldots, \mathcal{F}_{8}\right)$.
- $\mathcal{B}=\left(1, \gamma^{170}, \gamma^{136}, \gamma^{204}, \gamma^{222}, \gamma^{38}, \gamma^{143}, \gamma^{5}\right)$ is \mathcal{F}-compatible.

$$
\mathbb{F}^{\mathcal{D}} \cong \mathbb{F}_{2^{8}}\left[\sigma ; \mathcal{D}^{\prime}\right]=\bigoplus^{8} \mathcal{F}_{i-2} \bar{\sigma}^{i-1}
$$

The $\left[\mathcal{D}^{\prime}, 6,4\right]_{\mathbb{F}_{2}}$ code representation in $\mathbb{F}_{2^{8}}\left[\sigma ; \mathcal{D}^{\prime}\right]$ is

$$
\mathbb{F}_{2^{8}}\left[\sigma ; \mathcal{D}^{\prime}\right]_{4}=\left\langle\bar{\sigma}^{2}, \bar{\sigma}^{3}, \gamma^{170} \bar{\sigma}^{3}, \bar{\sigma}^{4}, \gamma^{170} \bar{\sigma}^{4}, \gamma^{136} \bar{\sigma}^{4}\right\rangle_{\mathbb{F}_{2}}
$$

Example (II)

$$
\begin{aligned}
& \left(\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Example (II)

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right),
$$

$$
\left(\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

