Contrôle final

NOM Prénom :

Numéro d'étudiant :

Répondre aux questions en <u>justifiant</u> la réponse. La qualité de la rédaction sera prise en compte.

Exercice 1. Soit

$$M = \begin{bmatrix} 0 & 1 & 0 & -1 \\ -1 & 2 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix} \in \operatorname{Mat}_4(\mathbb{R}).$$

- a) Déterminer le polynôme caractéristique $\chi_M(x)$ de M.
- b) Déterminer l'ensemble $\operatorname{spec}(M)$ de valeurs propres de M.
- c) La matrice M est-elle diagonalisable? Si oui, déterminer une base $\mathcal{B} \subseteq \mathbb{R}^4$ de vecteurs propres pour M.
- d) Quel est le rang de M?

NOM Prénom :
Numéro d'étudiant :

NOM Prénom :
Numéro d'étudiant :

NOM Prénom :

Numéro d'étudiant :

Exercice 2. Soit
$$E = \mathbb{R}^3$$
, $\tau \in \mathbb{R}$ et $A_{\tau} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & \tau \end{bmatrix} \in \operatorname{Mat}_3(\mathbb{R})$.

a) Déterminer pour quelles valeurs de τ l'application bilinéaire

$$\varphi_{A_{\tau}}: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}, \ (x, y) \mapsto x^T A_{\tau} y$$

est un produit scalaire.

- b) Pour quelles valeurs de τ les vecteurs $(1,1,1)^T$ et $(1,-1,1)^T$ sont-ils orthogonaux pour $\varphi_{A_{\tau}}$?
- c) Soit $\tau = 1$. Déterminer une base orthogonale pour l'espace euclidien (E, φ_1) .
- d) Soit $\tau = 1$. Déterminer le sous-espace orthogonale au sous-espace

$$F = Vect((1, -1, 1)^T)$$

dans l'espace euclidien (E, φ_1) .

NOM Prénom :
Numéro d'étudiant :

NOM Prénom :
Numéro d'étudiant :