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To my masters

�There are more things in heaven and earth, Horatio,

Than are dreamt of in your philosophy.�

(William Shakespeare)
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Introduction

The subject of this Ph.D. thesis arises from a long-standing open problem of

classical Coding Theory, that is the existence of an extremal self-dual binary

linear code of length 72.

In the past, the problem was mainly approached looking at possible au-

tomorphism groups of this code. Following this kind of approach, we inve-

stigate the link between the automorphism group of a general code and its

module-structure. Actually, if a linear code over a �eld K has a non-trivial

automorphism group, then it is a module over the group algebra KG, where

G is any subgroup of automorphisms. In this context, we use some pro-

perties of modules - as the property to be projective or free, the structure

of the trivial part, the structure of possible modules with the same socle,

etc. - to determine if there are extremal codes among those with a certain

automorphism group.

Most of the results of the thesis appear in papers of the author [7, 8] and

in joint papers with Wolfgang Willems [10] and with Francesca Dalla Volta

and Gabriele Nebe [9].

In order to understand the origin and the aim of this dissertation, let us

vii
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give here a brief overview of the main objects and of the problems related.

We will introduce them extensively in Chapter 1.

A binary linear code C of length n is a subspace of the vector space Fn2 . Its
elements are usually called codewords. The dual of C, with respect to the

standard inner product in Fn2 , is the subspace of all vectors orthogonal to

every codeword of C and it is denoted by C⊥. The code C is called self-

orthogonal if C ≤ C⊥ and self-dual if C = C⊥.
If C is self-dual, then the weight wt(c) := |{i | ci = 1}| of every c ∈ C is

even. In particular, if wt(C) := {wt(c) | c ∈ C} ⊆ 4Z, the code is called

doubly-even.

Let C be a self-dual binary linear code. Using invariant theory, it is shown

in [54] that the minimum weight d(C) := min(wt(C \ {0})) is bounded above

by

d(C) ≤

{
4
⌊
n
24

⌋
+ 6 if n ≡ 22 mod 24

4
⌊
n
24

⌋
+ 4 otherwise.

Self-dual binary linear codes achieving this bound are called extremal. Ex-

tremal self-dual binary linear codes of length a multiple of 24 (jump lengths)

are particularly interesting for various reasons: for example they are always

doubly-even [54] and all their codewords of a given nontrivial weight support

a 5-design [2].

Zhang [55] proved that the largest length for an extremal self-dual doubly-

even binary linear code is 3928. So, in principle, it is possible to classify

all codes of this family. However, we are far away from such classi�ca-

tion: the largest known extremal doubly-even self-dual binary linear code

has length 136.

Regarding jump lengths, only two extremal self-dual binary linear codes

are known: the extended binary Golay code G24 and the extended quadratic

residue code XQR48, unique, up to equivalence, of length 24 and 48 re-

spectively. Both have a fairly large automorphism group: Aut(G24) ∼= M24

and Aut(XQR48) ∼= PSL2(47). The third step of the classi�cation, that is

the existence of an extremal self-dual binary linear code of length 72, is a
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long-standing open problem posed explicitly by Sloane in 1973 [58].

A series of papers (the �rst one is by John Horton Conway and Vera Pless

[18], published in 1982) investigates the automorphism group of a putative

extremal self-dual code of length 72 excluding most of the subgroups of S72.

In this dissertation we continue such investigation proving that, if an extremal

self-dual binary linear code of length 72 does exist, then its automorphism

group is very small. More precisely, we prove the following.

Theorem ([8]). Let C be an extremal self-dual binary linear code of length

72. Then its automorphism group has order at most 5.

The existence of extremal self-dual binary linear codes of length 96, 120

and any greater jump length is an open problem too, studied a bit in the

literature. In this thesis we contribute also to the investigation of their

possible automorphism groups.

Starting from these problems, we develop general methods which can be

applied to self-dual binary linear codes of other lengths and not necessarily

extremal. In particular, we give structure results for self-dual binary li-

near codes which have certain automorphisms: usually we point out �smaller

pieces� which are easier to determine and then we show how to construct

the whole code from these �smaller pieces�. Such methods can be used to

do exhaustive searches among codes with certain parameters and �xed au-

tomorphism group. This can be often reduced to the search of a relatively

small set of representatives for a certain group action.

We see at least three possible applications of our methods. They can be used

a) to investigate possible automorphism groups of extremal self-dual bi-

nary linear codes;

b) to construct self-orthogonal binary linear codes with large minimum

distance;

c) to classify self-dual binary linear codes with certain parameters.
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Obviously the last one is the most ambitious.

Many previous investigations have been done on self-dual codes with an

automorphism of odd prime order. A well-known decomposition as direct

sum of two particular subcodes was given by Cary Hu�man in [31] and it

is the key point of many papers on the topic. In Section 2.2 we present his

result in a language which is particularly useful for implementation.

We focus mainly on the interactions between automorphisms of odd prime

order and involutions. Some results were given in previous works by Stefka

Bouyuklieva, Eamonn O'Brien, Wolfgang Willems, Nikolay Yankov, Thomas

Feulner and Gabriele Nebe [16, 47, 61, 45, 24]. Our contribution is principally

regarding properties of self-dual binary linear codes with an automorphism

group containing a subgroup of order 2p. In particular, Section 2.3 deals with

the abelian case and Section 2.4 deals with the non-abelian one. The �rst is

a presentation of the joint paper with W. Willems [10] while the second one

is a generalization of methods used in [24] and [9].

The key result of Section 2.3, which shows a nice link between module-

theoretical properties and coding-theoretical ones, is the following.

Theorem ([10]). Let C be a self-dual binary linear code and let σ2p be an

automorphism of C of order 2p. Then C is a projective F2〈σ2p〉-module if and
only if a natural projection of the subcode �xed by σ2p is self-dual.

In Section 2.3 we deal with the strong consequences of the theorem for

the structure of the automorphism group of extremal self-dual binary linear

codes.

The fundamental result of Section 2.4 is Theorem 2.7. Nevertheless, this

theorem has a lot of technicalities, so we prefer to omit here a complete and

accurate presentation of it. Let us just say that the key point of the theorem

is an investigation of the action of the involutions on the decomposition of

Hu�man mentioned above. In particular, we prove a strong result on one of

the components, which is usually the most di�cult to determine.
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In Section 2.5 we concentrate on the interactions between the subcodes

�xed by di�erent automorphisms. This plays a fundamental role in our

search. We examine in particular two cases: let H be a subgroup of the

automorphism group of a binary linear code C and suppose that H = AoB

for two subgroup A and B. If the semidirect product is non-abelian, then

we can use the action of B on A to get a sum of subcodes �xed by auto-

morphisms of A just knowing one of them. If the product is simply a direct

product, then we get some restrictions on the possible subcodes �xed by au-

tomorphisms of both subgroups. We use such methods in our search to build

quite large subcodes of putative extremal self-dual binary linear codes.

The mentioned three sections are the core of the dissertation. However,

their power is mainly shown in Chapter 3, dealing with the automorphism

group of a putative extremal self-dual binary linear code of length 72, and in

Chapter 4, dealing with the automorphism group of extremal self-dual binary

linear codes of other jump lengths.

Finally, in Chapter 5 we introduce a new class of codes related to self-dual

binary linear codes of even length. We call them semi self-dual codes and

we prove some upper bounds on their minimum distance. This provides a

useful tool to get a nice result on the �xed codes of the involutions in some

extremal self-dual binary linear codes. In this chapter, which is still a work

in progress, we point out some open problems we are trying to solve.
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CHAPTER 1

Preliminaries

In this chapter we introduce the objects which will appear in the dissertation,

putting in evidence some useful properties and relations. Most of them are

well-known in Coding Theory and we will omit the proofs, referring the reader

to the original papers. In Section 1.9 we improve a result of Martínez-Pérez

and Willems about modules over particular group algebras.

The principal references are [32] and [38], for the coding-theoretical part,

and [34] and [19], for the module-theoretical one.

1.1 Basic notions about codes

In this dissertation we mainly consider linear codes over �nite �elds. Never-

theless, we give here a more general de�nition of a code.

De�nition 1.1. Let A be a (�nite) set, called the alphabet.

• A code C is a subset of the cartesian product of n copies of the alphabet

A, that is C ⊆ An.

1



2 1.1. BASIC NOTIONS ABOUT CODES

• The parameter n is called the length of the code.

• An element of C is called a codeword, or simply a word.

So, a code is a collection of some of all possible words with n letters

chosen in the alphabet A.

De�nition 1.2. Let A = Fq (the �eld with q elements). If C is a subspace

of Fnq the code is called linear.

Three cases are studied more extensively:

• binary linear codes, when A = F2;

• ternary linear codes, when A = F3;

• quaternary linear codes, when A = F4.

An important parameter of a linear code is its dimension as an Fq-vector
space, usually indicated with the letter k.

Let v = (v1, . . . , vn) ∈ Fnq . The elements in {1, . . . , n} are called the

coordinates and we say that vi is the value of v at the coordinate i.

De�nition 1.3. Let v = (v1, . . . , vn) and w = (w1, . . . , wn) be vectors in Fnq .

• The Hamming distance between v and w is de�ned as follows:

dH(v, w) := #{i | vi 6= wi},

that is the number of coordinates in which the two vectors have di�erent

values.

• The Hamming weight of a vector v is given by

wt(v) := d(v,0)

where 0 is the vector with value 0 at each coordinate.
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The Hamming distance, which is trivially a metric, is the only one we

consider throughout the dissertation. Thus we indicate it simply by d( , )

instead of dH( , ).

Obviously,

d(v, w) = wt(v − w).

De�nition 1.4. The minimum distance of a code C is de�ned by

d = d(C) := min
v,w∈C, v 6=w

{d(v, w)}.

Notice that, dealing with linear codes, the minimum distance is also the

minimum weight, that is

d(C) = min
c∈C, c6=0

{wt(c)}.

Let us state an easy but powerful result on the weight in binary codes.

Proposition 1.1 (Chapter 1 [32]). Let v, w ∈ Fn2 . Then

wt(v + w) = wt(v) + wt(w)− 2wt(v ∩ w),

where v∩w is the vector of Fn2 which has 1 precisely in those positions where

both v and w have 1.

We �x here some notations which we will use throughout the dissertation.

Notation 1.1. A linear code over Fq of length n, dimension k and minimum

distance d is called an [n, k, d]q code. If q = 2 usually the subscript is omitted,

so that an [n, k, d] code is binary.

The notation for non-linear codes is (n,M, d)q, where n, d and q are as

in the linear case and M is the size of the code.

The three parameters n, k, d introduced are clearly not independent. One

fundamental relation is the Singleton inequality [56], which says that, for an

[n, k, d]q code, we have

k ≤ n− d+ 1. (1.1)
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Codes for which the equality holds are called MDS (Maximum Distance Se-

parable) codes.

Another well-known relation is the Griesmer bound [27] for linear codes,

which says that, given an [n, k, d]q code, it holds

n ≥
k−1∑
i=0

⌈
d

qi

⌉
. (1.2)

Let us introduce a very common tool to describe and to identify codes.

De�nition 1.5. For an [n, k, d]q code C, a k× n matrix over Fq whose rows
generate C is called generator matrix of the code and it is denoted by G(C).

Obviously a generator matrix is not uniquely determined by a code (while

a generator matrix determines uniquely a code). So, with G(C) we mean one

of the possible generator matrices of C. For any set of k independent columns

of a generator matrix of a code C, the corresponding set of coordinates forms

an information set for C. In general, we say that the coordinates are in-

dependent if the corresponding columns in a generator matrix are linearly

independent.

De�nition 1.6. Let C be an [n, k, d] linear code.

• The code obtained by deleting the same coordinate i in each codeword

is called a punctured code (on the ith coordinate) and it is denoted by

C∗.

• If T is a set of t coordinates and C(T ) the set (which is a subcode of C)
of codewords which are 0 on T , we de�ne CT , called a shortened code

on T , the code obtained by puncturing C(T ) on the T coordinates.

We conclude with a very short explanation of the reason why it is inte-

resting to have codes with large minimum distance, introducing the con-

cept of Error Correcting Code. More details on such topic can be found in

Chapter 1 of [38].
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Codes are mainly used to correct errors on noisy communication channels:

the transmitter �xes a code C, which is the set of chosen messages of a given

length n, among all possible ones. When he communicates a message, some

errors may occur. The receiver, who knows C, looks inside the code for

the closest (in the sense of Hamming distance) messages. If the minimum

distance of the code is large enough and the errors are not too many, then

the receiver will get the original message. However, intuitively, the larger the

minimum distance, the smaller the number of messages (a bound for example

is given in (1.1)) and vice versa, so the main goal that one wants to achieve

is, roughly speaking, to have a code with a large minimum distance and a

relatively good number of codewords. We conclude by stating a result which

formalizes the �rst request.

Theorem 1.1 (Theorem 2 [38]). A code with minimum distance d can correct

up to
⌊
d−1

2

⌋
errors. If d is even, the code can simultaneously correct d−2

2
errors

and detect d
2
errors.

1.2 Inner products and dual codes

A very important concept in Coding Theory is the duality with respect to an

inner product. In this section we will give only some de�nitions and results

which are essential in our dissertation.

Dealing mainly with binary codes, a central role is played by the standard

inner product, however we will use also other types of inner products.

De�nition 1.7. Let v = (v1, . . . , vn), w = (w1, . . . , wn) be vectors of Fnq .
Then

• 〈v, w〉 :=
∑n

i=1 viwi is the standard inner product of v and w.

If q = r2, we denote β := βr for β ∈ Fr2. Then

• 〈v, w〉H :=
∑n

i=1 viwi is the Hermitian inner product of v and w;
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• 〈v, w〉tr :=
∑n

i=1 viwi + viwi is the trace-Hermitian inner product of v

and w.

There is a natural concept related to inner products.

De�nition 1.8. Let C be an [n, k, d]q code.

• The dual code C⊥ is de�ned as

C⊥ := {v ∈ Fnq | 〈c, v〉 = 0 for all c ∈ C}.

If q = r2, then

• The Hermitian dual code C⊥H is de�ned as

C⊥H := {v ∈ Fnq | 〈c, v〉H = 0 for all c ∈ C}.

• The trace-Hermitian dual code C⊥tr is de�ned as

C⊥tr := {v ∈ Fnq | 〈c, v〉tr = 0 for all c ∈ C}.

If C is an [n, k, d]q code, it is straightforward to prove that

dim C⊥ = n− k. (1.3)

and the same holds for the Hermitian dual code and for the trace-Hermitian

dual code (when q = r2).

A generator matrix of C⊥ is called a parity check matrix of C.

De�nition 1.9. Let C be an [n, k, d]q code.

• If C ⊆ C⊥ then C is called self-orthogonal.

• If C = C⊥ we call C self-dual.

Let q = r2.

• If C = C⊥H then C is called Hermitian self-dual.
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• If C = C⊥tr we call C trace-Hermitian self-dual.

By (1.3), it follows immediately that the dimension of a self-dual linear

code is n
2
. In particular self-dual linear codes exists if and only if n is even.

Example 1.1. A well-known example of self-dual binary linear code is the

extended Hamming code Ĥ3: it is an [8, 4, 4] code with

G(C) =


1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

 .
Let us state some results about self-orthogonal and self-dual binary linear

codes.

Theorem 1.2 (Chapter 1 [32]). Let C be a self-orthogonal binary linear code

of length n and dimension k. Then we have the following.

• All codewords have even weight. Thus 1 := (1, 1, . . . , 1) ∈ C⊥.

• Let C0 = {c ∈ C | wt(c) ≡ 0 mod 4}. Then either C = C0 or C0 is a

subcode of C of dimension k − 1.

• If all rows of G(C) have a weight divisible by two (respectively by four),

then every codeword of C has a weight divisible by two (respectively by

four).

• C has minimum distance d if and only if G(C⊥) has at least a set of d

linearly dependent columns and every d− 1 columns are linearly inde-

pendent.

A binary linear code C in which every codeword has even weight is called

even. If in particular

{wt(c) | c ∈ C} ⊆ 4Z

the code is called doubly-even. By Theorem 1.2, every self-orthogonal binary

linear code is even. On the other hand, it is straightforward to prove that

every doubly-even binary linear code is self-orthogonal.
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1.3 Weight enumerators

A very useful and important object associated to a code is its weight enu-

merator, a polynomial which describes the distribution of the weights in the

code.

De�nition 1.10. For an [n, k, d]q code C, we put

Ai(C) := #{c ∈ C | wt(c) = i}.

The list of [Ai(C)]i∈{0,...,n} is called the weight distribution of C.

Obviously A0(C) = 1, since the code is linear, and

A1(C) = . . . = Ad−1(C) = 0.

Furthermore we have

•
∑n

i=0Ai(C) = qk,

• Ai(C) = An−i(C) if q = 2 and 1 ∈ C.

Example 1.2. Let Ĥ3 be as in Example 1.1. The nonzero elements of the

weight distribution of Ĥ3 are

A0(Ĥ3) = 1, A4(Ĥ3) = 14, A8(Ĥ3) = 1.

In order to give the information in a more compact way and to deduce

new properties, we introduce the notion of the weight enumerator of a code,

which in the literature is presented in a homogeneous and a non-homogeneous

version as well.

De�nition 1.11. Let C be an [n, k, d]q code with weight distribution

[Ai(C)]i∈{0,...,n}.

Then the weight enumerator of C is

WC(x) :=
n∑
i=0

Ai(C)xi,
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polynomial in Z[x], and the homogeneous weight enumerator is

WC(x, y) :=
n∑
i=0

Ai(C)xiyn−i,

homogeneous polynomial in Z[x, y]. Usually, with abuse of notation, the ho-

mogeneous weight enumerator is called simply weight enumerator.

Example 1.3. The weight enumerator of Ĥ3 (see Example 1.1) is

WĤ3
(x) = 1 + 14x4 + x8 or WĤ3

(x, y) = y8 + 14x4y8 + x8

Both polynomials carry the information on the weight distribution of the

code and they are, obviously, uniquely determined by C. The converse is not
true, as we will show in Example 1.6.

1.4 Equivalence of codes

We want to introduce now the concept of equivalence of codes. This is

essential when we talk about classi�cation of codes, since, usually, we classify

codes with certain parameters only up to equivalence. We remark that the

classi�cation of codes with certain parameters and �nding a good algorithm

to establish if two general codes are equivalent are both very hard problem

with only partial answers.

To de�ne the concept of equivalence, let us introduce a natural action of

the symmetric group Sn on the space Fn2 . Clearly we have a natural action

of Sn on the coordinates {1, . . . , n}. This induces an action on the vectors of

Fn2 : let σ, τ ∈ Sn, then

(v1, v2, . . . , vn)σ = (v1σ−1 , v2σ−1 , . . . , vnσ−1 )

so that (vσ)τ = vστ .

Example 1.4. Let

v = (1, 0, 1, 1, 0, 1, 1, 1, 0) ∈ F9
2
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and

σ = (1, 2, 3, 4, 5, 6, 7, 8, 9) ∈ S9.

Then we have

vσ = (0, 1, 0, 1, 1, 0, 1, 1, 1).

Equivalently, we can consider the faithful representation of Sn in GLn(2),

which maps every element σ of Sn to the corresponding permutation matrix

P(σ) so that

vσ = v · P(σ),

where v ∈ Fn2 , σ ∈ Sn and · is the usual product vector-matrix.

One very important properties of this action is the following

wt(vσ) = wt(v),

which means that the weight is invariant under the action of Sn. This implies

obviously that Cσ := {cσ | c ∈ C} has the same weight distribution of C. So,
in particular, if C is an [n, k, d] code, Cσ has the same parameters. We give

now a fundamental de�nition.

De�nition 1.12. Let C,D ≤ Fn2 . We say that C is equivalent to D, C ∼ D,
if there exists σ ∈ Sn such that

Cσ = D.

We list here some properties invariant under equivalence.

Remark 1.1. Let C and D be two equivalent codes. Then

• they have the same parameters,

• they have the same weight distribution,

• if C is self-orthogonal (self-dual) then D is self-orthogonal (self-dual).
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In our dissertation we will deal mainly with self-dual binary linear codes

with certain parameters. According to the above, we can consider them up

to equivalence. In particular, we will choose every time the most convenient

shape for a generator matrix.

The properties in Remark 1.1 are not su�cient to get equivalence, in

general, as we can see in the following example.

Example 1.5. Let C1 and C2 be two (self-dual) [10, 5, 2] codes with

G(C1) :=


1 0 0 0 1 0 1 0 0 1

0 1 0 0 1 0 1 0 1 0

0 0 1 0 0 0 1 0 1 1

0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 1 0 1 0 0

 ,

G(C2) :=


1 0 1 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 1 0 1

 .
These codes are both self-dual and they have the same parameters, but they

have di�erent weight distributions. So they are not equivalent. It is proved

[50] that every self-dual [10, 5, 2] code is equivalent to one of this two codes.

Example 1.6. To have an example of non-equivalent self-dual binary linear

codes with the same weight distribution, we have to consider codes of length

at least 16: there are [50], up to equivalence, only two non-equivalent self-dual

[16, 8, 4] codes D1,D2 and both have weight enumerator

WD1(x) = WD2(x) = 1 + 28x4 + 198x8 + 28x12 + x16.

In the non-binary case we can de�ne in the same way the concept of equiv-

alence. It is quite common to call it permutation equivalence to distinguish

it by the most common monomial equivalence.
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De�nition 1.13. Let C and D be linear codes over Fq of length n. Then

they are monomial equivalent, C ∼m D, if there exists a monomial matrix M

(i.e. a square matrix which has exactly one nonzero entry in each row and

column) in GLn(q) such that

CM := {c ·M | c ∈ C} = D.

Also the multiplication by monomial matrices is weight preserving, so it

makes sense to talk of the classi�cation of codes with certain parameters up

to monomial equivalence.

Finally, let us mention that there is an even more general concept of

equivalence [37], involving the automorphisms of the �eld Fq, still weight
preserving. However, in the binary case the three de�nitions of equivalence

coincide and we will need only the concept of monomial equivalence in the

non-binary case.

1.5 Automorphisms of codes

In this section we introduce the automorphism group of a binary code which

is one of the main objects of our dissertation. Recall that the symmetric

group Sn acts on the vectors of Fn2 .

De�nition 1.14. An automorphism of a binary code C of length n is a

permutation which leaves the code invariant, that is a σ ∈ Sn such that

Cσ = C,

where Cσ := {cσ | c ∈ C}.

It is trivial to prove that the set of all the automorphisms of a binary

code C of length n is a subgroup of Sn, called the automorphism group of the

code and denoted by Aut(C). So

Aut(C) := {σ ∈ Sn | Cσ = C}.
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Since Aut(C) is the stabilizer of C in Sn, the number of codes that are

equivalent to C (that is the cardinality of the orbit of C under the action of

Sn) is obviously
n!

Aut(C)
.

So if we call Tn the total number of distinct codes of a certain family (for

example self-dual or doubly-even), we have the so called mass formula

Tn =
∑

C inequiv.

n!

Aut(C)
.

For some families an explicit formula for Tn is known. This is the case of

self-dual binary linear codes. Using the fact that self-dual binary linear codes

are maximal isotropic spaces for the standard inner product it is possible to

prove that

Tn =

n−2
2∏
i=1

(2i + 1)

for this family [53].

The mass formula is clearly a very important information when one tries

to classify codes with certain parameters.

For our dissertation the concept of type of an automorphism plays a cru-

cial role. It is the cycle-structure of the permutation. Often we brie�y say

structure of an automorphism meaning its type. We give the de�nition of

type only for automorphisms of prime order or of order a product of two

primes.

De�nition 1.15. Let p and r be two primes and σp and σpr be elements of

Sn of order p and p · r respectively.

• The automorphism σp is of type p-(c, f) if it has c cycles of length p

(p-cycles) and f �xed points.

• The automorphism σp·r is of type p · r-(a, b, c; f) if it has a cycles of

length p, b cycles of length r, c cycles of length p · r and f �xed points.
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We say that an automorphism is �xed point free if it has no �xed points.

We introduce now a fundamental object which we will play a crucial role

in the following.

De�nition 1.16. Let C be a binary linear code of length n and σ ∈ Aut(C).
Then we de�ne the �xed code of σ as

C(σ) := {c ∈ C | cσ = c}.

The set C(σ) is trivially a subcode of C.
For v = (v1, . . . , vn) ∈ Fn2 and Ω = {j1, . . . , jm} ⊆ {1, . . . , n} we put

v|Ω = (vj1 , . . . , vjm).

If σ ∈ Sn and Ω1, . . . ,Ωnσ are the orbits of the action of σ on the coordinates,

we say that v is constant on the orbits of σ if, for all i, v|Ωi is either the zero

or the all one vector.

Lemma 1.1. Let C be a binary linear code of length n and σ ∈ Aut(C). Let
c ∈ C. Then c belongs to C(σ) if and only if c is constant on the orbits of σ.

Proof. Notice that if we prove the result for an automorphism with one orbit,

then we have the result for a general automorphism just repeating the argu-

ment to each orbit. So, suppose σ has one orbit and take c = (c1, . . . , cn) ∈ C.
Then

c ∈ C(σ) ⇔ cσ = c ⇔ ciσ−1 = ci for all i ∈ {1, . . . , n}

Since σ has one orbit we have c ∈ C(σ) if and only if c1 = c2 = . . . = cn.

Then we can de�ne a natural projection associated to σ which will appear

a lot throughout the dissertation.

De�nition 1.17. Let C ≤ Fn2 and σ ∈ Aut(C) with orbits Ω1, . . . ,Ωnσ . Then

we de�ne the map

πσ : C(σ)→ Fnσ2

so that, for c ∈ C(σ), the value of πσ(c) on the ith coordinate is the value of

c on Ωi.

Lemma 1.1 shows that πσ is well-de�ned (and injective).
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1.6 MacWilliams identities and invariant theo-

ry

MacWilliams proved that the weight distribution of the dual of a linear code

is determined by the weight distribution of the code. More precisely she

proved the following theorem.

Theorem 1.3 (MacWilliams [36]). Let C be a linear code over Fq and C⊥ its

dual with respect to the standard inner product. Then

WC⊥(x, y) =
1

|C|
WC(x+ (q − 1)y, x− y) (1.4)

Equation (1.4) is usually called MacWilliams identity.

The situation is particularly interesting in the case of self-dual linear

codes.

Corollary 1.1. Let C be a self-dual linear code over Fq with respect to the

standard inner product. Then its weight enumerator is invariant under the

MacWilliams relation (1.4).

Corollary 1.1 has important consequences on the shape of the weight enu-

merator and so on the parameters of self-dual linear codes. In the following

we will give a brief idea of the methods of Invariant Theory applied to the

case of self-dual binary linear codes which are doubly-even. These results are

well-known but we explain them here because we will use similar methods in

the Chapter 5 to obtain some new results.

Let C[x, y] the polynomial ring in two variables over the complex �eld C.
We have an action of GL2(C) on it: if

M :=

[
a b

c d

]
∈ GL2(C) and p(x, y) ∈ C[x, y].

then

p(x, y)M := p(ax+ by, cx+ dy).
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Let C be a self-dual binary linear code. Then its weight enumerator, by

(1.4), is invariant under the action of

G1 :=
1√
2

[
1 1

1 −1

]
∈ GL2(C),

that is WC(x, y)G1 = WC(x, y).

Furthermore, if C is doubly-even, WC(x, y) is also invariant under

G2 :=

[
1 0

0 i

]
∈ GL2(C)

and hence under the group generated by G1 and G2, say G ≤ GL2(C). By

direct calculations we see that |G| = 192.

The set of all polynomials invariant under a group H ≤ GLm(C) is a

subalgebra of C[x, y] denoted by C[x, y]H .

Let C[x, y]Hd the subset of all polynomials of degree d in C[x, y]H . This is

a vector space over C. Call ad(H) its dimension. Then we can de�ne a series

as

ΦH(λ) :=
+∞∑
i=0

ai(H)λi.

Next we have a classical theorem of Molien.

Theorem 1.4 (Molien's Theorem [43]). For any �nite group H ≤ GLm(C)

we have

Φ(λ) =
1

|H|
∑
A∈H

1

det(I − λA)

where I is the identity of GLm(C).

For the group G = 〈G1, G2〉 we get, by calculations,

ΦG(λ) =
1

(1− λ8)(1− λ24)
=

+∞∑
i=0

(⌊
i

3

⌋
+ 1

)
λ8i (1.5)

Gleason then proved a fundamental result.
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Theorem 1.5 (Gleason's Theorem [25]). Let C be a doubly-even self-dual

binary linear code. Then

WC(x, y) ∈ C[p1(x, y), p2(x, y)] = C[x, y]G,

where

p1(x, y) = x8 + 14x4y4 + y8,

that is the weight enumerator of Ĥ3, and

p2(x, y) = x4y4(x4 − y4)4.

An easy but important consequence of Gleason's Theorem is the following.

Corollary 1.2. Let C be a doubly-even self-dual binary linear code. Then its

length is divisible by 8.

There are analogous considerations that one can do for self-dual binary

linear codes which are not doubly-even or for non-binary codes. For more

details on Invariant Theory applied to self-dual codes see for example [46]

and [53].

1.7 Extremal self-dual binary linear codes

As we pointed out in Section 1.1, codes with large minimum distance are good

for applications. So it is interesting to have upper bounds on the minimum

distance. We have already stated the Singleton inequality and the Griesmer

bound; however there is a tighter bound for self-dual binary linear codes. It

can be obtained by the results of the previous section.

The basic observation in order to get bounds on the minimum distance

of self-dual binary linear codes is the following.

Remark 1.2. If there exists a self-dual binary linear code of length n and

minimum distance d, then there exists a homogeneous polynomial W (x, y)

with nonnegative (integer) coe�cients such that

2
n
2W (x+ y, x− y) = W (x, y) (MacWilliams identity)
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and

W (1, y) = 1 +O(yd) (condition on the minimum distance).

If the code is doubly-even then we have the extra condition

W (x, iy) = W (x, y).

Let C be a self-dual doubly-even [n, n
2
, d] binary linear code (n is a multiple

of 8).

Recall that, by Theorem 1.5, we have WC(x, y) ∈ C[p1(x, y), p2(x, y)]n.

Furthermore, by (1.5),

dimC[p1(x, y), p2(x, y)]n =
⌊ n

24

⌋
+ 1.

So we can arbitrarily �x
⌊
n
24

⌋
+ 1 coe�cients of an homogeneous polynomial

W (x, y) of C[p1(x, y), p2(x, y)]n.

In particular, there exists a unique element W̄ (x, y) ∈ C[p1(x, y), p2(x, y)]n

such that

W̄ (1, y) = 1 +O(y4b n24c+4).

This is known as the extremal weight enumerator and it is, obviously, the

polynomial of C[p1(x, y), p2(x, y)]n with constant term 1 and �rst non-constant

term with highest degree. By these considerations Mallows and Sloane proved

the following fundamental theorem.

Theorem 1.6 ([40]). The minimum distance of a self-dual doubly-even bi-

nary linear code of length n is at most 4
⌊
n
24

⌋
+ 4.

Rains generalized this bound to self-dual binary linear codes (not neces-

sarily doubly-even and so of general even length).

Theorem 1.7 ([54]). Let C be a self-dual [n, n
2
, d] binary linear code. Then

d ≤

{
4
⌊
n
24

⌋
+ 6 if n ≡ 22 mod 24

4
⌊
n
24

⌋
+ 4 otherwise.
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De�nition 1.18. Self-dual binary linear codes with minimum distance rea-

ching the bound in Theorem 1.7 are called extremal.

Lengths which are multiple of 24 are usually called jump lengths.

Clearly, jump lengths are the ones for which the ratio between n and d is

the best, among the self-dual binary linear codes. Another reason for which

jump lengths are interesting is the fact, proved also by Rains in [54], that

extremal self-dual binary linear codes of length a multiple of 24 are always

doubly-even. Furthermore, they have unique weight enumerators.

Let us list the weight distributions of the self-dual [24m, 12m, 4m+ 4]

codes, if they exist,

for m = 1,

i 0-24 8-16 12

Ai 1 759 2576

for m = 2,

i 0-48 12-36 16-32 20-28 24

Ai 1 17296 535095 3995376 7681680

and for m = 3,

i 0-72 16-56 20-52 24-48 28-44 32-40 36

Ai 1 249849 ∼ 2 · 107 ∼ 4 · 108 ∼ 4 · 109 ∼ 1010 ∼ 2, 5 · 1010

Finally, we will see in the next section a nice combinatorial property of

codes with jump length.

Let us conclude the section by giving a brief overview of the state of art

of the classi�cation of extremal self-dual binary linear codes.

In 1999, Zhang [55] proved , using linear programming on coe�cients of

weight enumerators, that extremal self-dual doubly-even binary linear codes

can exist only for lengths less than or equal to 3928. However, the largest

length for the known extremal doubly-even self-dual binary linear code is
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n = 136. In particular [53] there exist extremal self-dual doubly-even binary

linear codes for the following lengths:

8, 16, 24, 32, 40, 48, 56, 64, 80, 88, 104, 136

but their existence at lengths 72 and 96 and all greater lengths is open.

For jump lengths only two extremal doubly-even self-dual binary linear codes

are known: G24, the famous extended binary Golay code, unique (up to

equivalence) with parameters [24, 12, 8] (as Pless proved in [51]) and XQR48,

the extended quadratic residue code of length 48, unique (up to equivalence)

with parameters [48, 24, 12] (as Houghten and others proved in [30]). The

third step of the classi�cation, that is length 72, is still an open problem and

it is one of the main reasons for this dissertation.

Question 1.1. Is there a self-dual [72, 36, 16] code?

1.8 Codes and Designs

Let us introduce brie�y a concept which explains another reason that makes

the extremal self-dual binary linear codes of jump lengths so interesting.

De�nition 1.19. A t-(n, k, λ) design is a pair (P ,B) where P is a set of n

points and B is a collection of distinct subsets of P of size k, called blocks,

such that every subset of points of size t is contained in precisely λ blocks.

There is often a correspondence between codes and designs, in the sense

that codes can give rise to designs and vice versa.

Given a binary linear code, the usual way to obtain a design from a code

is the following: let the coordinates be the points and the supports of the

codewords (i.e. the coordinates in which the codewords are not zero) of a

given length be the blocks. Then these blocks may form a t-design for some

t. In that case we say that the code holds a design.

Example 1.7. Let us consider Ĥ3 (see Example 1.1). If we set the points to

be the 8 coordinates and the blocks to be the 14 codewords of weight 4 of Ĥ3
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it is easy to check that every set of three coordinates is contained in precisely

one block. Thus Ĥ3 holds a 3-(8, 4, 1) design.

The parameters of designs are not independent and t-designs give natu-

rally rise to i-designs for every 0 ≤ i ≤ t, as it states the following Proposi-

tion.

Proposition 1.2 (Chapter 8 [32]). Let (P ,B) be a t-(n, k, λ) design and

0 ≤ i ≤ t. Then the number of blocks is

λ

(
n
t

)(
k
t

) .
and (P ,B) is an i-(n, k, λi) design, where

λi = λ

(
n−i
t−i

)(
k−i
t−i

) .
The main result which links codes to designs is the fundamental theorem

proved by Assmus and Mattson in 1969.

Theorem 1.8 (Assmus and Mattson [2]). Let C be an [n, k, d] code. Suppose

that C⊥ has minimum distance d′. Fix a positive integer t with t < d and let

s := #{i | 0 < i ≤ n− t and there exists a v ∈ C⊥ with wt(v) = i}.

Suppose s ≤ d− t. Then

a) the codewords of weight i (if they exist) in C hold a t-design provided

d ≤ i ≤ n;

b) the codewords of weight i (if they exist) in C⊥ hold a t-design for

d′ ≤ i ≤ n− t.

This theorem has a nice and important application to extremal self-

dual binary linear codes of length a multiple of 24: let C be a self-dual

[24m, 12m, 4m+ 4] code and t = 5 (so that 5 ≤ 4m+ 4). Thus s = 4m− 1 =

4m+ 4− 5. Then the nonzero codewords of a �xed weight hold a 5-design.
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So for example the codewords of weight 8 of the extended binary Golay

code give rise to a 5-(24, 8, 1) design, the codewords of weight 12 of the

extended quadratic residue code of length 48 hold a 5-(48, 12, 8) design. If

a self-dual [72, 36, 16] code exists, then its codewords of weight 16 will give

rise to a 5-(72, 16, 78) design.

1.9 Some preliminaries on KG-modules

If a binary linear code has a non-trivial automorphism group, then we can

deduce many properties via a module-theoretical approach. We explain in

this section some preliminaries on the main objects which will appear in the

dissertation. For very basic facts and de�nitions about modules, the reader

is referred to Chapter VII of [34] or to the introduction of [19].

Throughout the section, let G be a group and K := F2. Recall that the

group algebra KG is de�ned as

KG :=

{∑
g∈G

kgg

∣∣∣∣∣ kg ∈ K
}
,

that is the set of formal linear combination of the elements of G, with sum

and product de�ned in the most natural way.

In the following the action of G on a module will always be from the right

(so that all KG-modules are right modules). In particular, if v ∈ Kn and

G ≤ Sn,

v ·

(∑
g∈G

kgg

)
=
∑
g∈G

kgv
g.

With this product, a binary linear code is a KG-module for any subgroup G

of its automorphism group.

Next we de�ne an object, not so elementary, which plays a fundamental

role in our methods.

De�nition 1.20. A projective (or principal) indecomposable module (PIM )
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of KG is a submodule of KG that is a direct summand of KG and is an

indecomposable module.

A projective indecomposable module W has a unique irreducible sub-

module, say V , and a unique irreducible factor module which is isomorphic

to V .

Notation 1.2. The module W , which is (up to isomorphism) uniquely de-

termined by V , is the projective cover of V and we denote it by P(V ). For a

moduleM we denote by soc(M) its socle, i.e. the largest completely reducible

submodule ofM (as V in W ).

Projective covers for irreducible KG-modules always exist (actually they

exist for any �nite dimensional KG-module).

Let �x two important notations.

Notation 1.3.

• If p is an odd prime, s(p) is the multiplicative order of 2 in Fp, i.e. the
smallest r such that p|2r − 1.

• Cm is the cyclic group of order m.

Since the number s(p) plays a very important role in the following, we

collect in a table the values of s(p) for all odd primes p less than 100.
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Table 1.1: Values of s(p), p < 100

p s(p) p s(p) p s(p)

3 2 29 28 61 60

5 4 31 5 67 66

7 3 37 36 71 35

11 10 41 20 73 9

13 12 43 14 79 39

17 8 47 23 83 82

19 18 53 52 89 11

23 11 59 58 97 48

In next chapters we deal mainly with automorphisms of order p or 2p,

where p is an odd prime. For this reason we put in evidence the following

facts about the structure of the group algebra for G = Cp and G = C2p.

Remark 1.3. Let p be an odd prime and

t :=
p− 1

s(p)
.

Then we have the following.

a) There are 1 + t irreducible KCp-modules V0, V1, . . . , Vt, where V0 = K

(the trivial module) and dimVi = s(p) for i ∈ {1, . . . , t}, so that

KCp = V0 ⊕ V1 ⊕ . . .⊕ Vt.

b) There are 1 + t irreducible KC2p-modules V0, V1, . . . , Vt, as before. Set-

ting Wi := P(Vi), we have Wi =
Vi

Vi
, a non-split extension of Vi by Vi,

so that

KC2p = W0 ⊕W1 ⊕ . . .⊕Wt.

An important concept in the theory of modules is the duality (do not

confuse with the duality of codes).



CHAPTER 1. PRELIMINARIES 25

De�nition 1.21. Given a KG-module W we de�ne the dual module V ? as

follows:

V ? = HomK(V,K).

This is a KG-module by

(φ · g)(v) = φ(vg−1),

where φ ∈ V ?, g ∈ G and v ∈ V .
A module V is self-dual if V ∼= V ? (as KG-modules).

The following result on self-dual modules improves Proposition 3.1 of [41].

Proposition 1.3. Consider G = Cp, the cyclic group of odd prime order p.

a) If s(p) is even, then all irreducible KCp-modules are self-dual.

b) If s(p) is odd, then the trivial module is the only self-dual irreducible

KCp-module.

Proof. a) Let s(p) = 2m and let E := F22m be the extension of K of de-

gree 2m. Furthermore, let W be an irreducible non-trivial KG-module. In

particular, W has dimension 2m. We have

W ⊗K E = ⊕α∈Gal(E/K)V
α (1.6)

where V is an irreducible EG-module and V α is the α-conjugate module of

V . The action of g ∈ G on V α is given by the matrix (ai,j(g)α) if g acts via

the matrix (ai,j(g)) on V . Since p | (2m+1)(2m−1) we get p | 2m+1. Clearly,

the Galois group Gal(E/K) of E over K consists of all automorphisms of the

form x 7→ x2k where 0 ≤ k ≤ 2m− 1.

If V = 〈v〉 then v · g = εv where ε is a non-trivial p-th root of unity in

E. Since p | 2m + 1 we obtain ε2
m+1 = 1, hence ε2

m
= ε−1. Thus there is an

α ∈ Gal(E/K) such that

V ? ∼= V α

and Equation (1.6) implies W ∼= W ?.



26 1.9. SOME PRELIMINARIES ON KG-MODULES

b) Now let s(p) = m be odd. As above the irreducible module W is

self-dual if and only if V ? ∼= V α for some α ∈ Gal(F2m/K), or equivalently

if and only if εα = ε−1. Suppose that such an α exists. Then we may write

εα = ε2
k
where 0 ≤ k ≤ m− 1. Hence ε2

k
= ε−1 for some 0 ≤ k ≤ m− 1 and

therefore 2k ≡ −1 mod p. Now 22k ≡ 1 mod p forces m | 2k. Since m is odd

we get m | k ≤ m− 1, a contradiction.

Remark 1.4. According to Lemma 3.5 in [41] we have s(p) even if p ≡
±3 mod 8 and s(p) odd if p ≡ −1 mod 8.

Let us summarize the results in the following remark.

Remark 1.5. Since KCp ∼= KC?
p (see [34], Chap. VII, Lemma 8.23), Re-

mark 1.3 and Proposition 1.3 imply the following.

a) If s(p) is even, then

KCp = W0 ⊕W1 ⊕ . . .⊕Wt

with Wi
∼= W ?

i for all i ∈ {0, . . . , t}.

b) If s(p) is odd, then t is even (put t = 2m) and

KCp = W0 ⊕W1 ⊕ . . .⊕W2m

with W0
∼= W ?

0 and Wi
∼= W ?

2i for all i ∈ {1, . . . ,m}.
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Automorphisms of self-dual binary linear codes: general

methods

In this chapter we will present some results about the automorphism group

of self-dual binary linear codes. The main idea is to give structure results for

self-dual binary linear codes which have particular automorphisms. Usually,

as we have already said in the introduction, we want to �nd out �smaller

pieces� which are easier to study and then try to construct the whole code

from these �smaller pieces�.

The results of the �rst two sections are mainly known, while the presen-

tation of the last sections is new. Chapter 3 and Chapter 4 will prove the

power of the results presented in this chapter.

2.1 Structure theorems

In this section we make some considerations on the cycle structure (i.e. the

decomposition into disjoint cycles) of automorphisms which can occur in

27
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codes with certain parameters. They mainly follow from the structure of the

�xed codes.

Let C be a binary linear code of length n and σ ∈ Aut(C). Recall that,

as mentioned in Chapter 1, the �xed code of σ is de�ned as C(σ) := {c ∈
C | cσ = c}. Finally, let πσ be the natural projection associated to σ in

De�nition 1.17.

In case σ has odd order, we have a very important and classical theorem

proved by Conway and Pless.

Theorem 2.1 ([18]). Let C be a binary linear code and σ ∈ Aut(C) of odd

order.

• If C is self-orthogonal (self-dual) then πσ(C(σ)) is self-orthogonal (self-

dual).

• If C is doubly-even and all cycles of σ have length ≡ 1 mod 4, then

πσ(C(σ)) is doubly-even.

The assertion of the above theorem does not hold for automorphisms of

even order, in general.

For example, if σ is an automorphism of order 2 and n ≡ 2 mod 4, then

πσ(C(σ)) ≤ F
n
2
2

cannot be self-dual, since n
2
is odd.

In G24 and XQR48 the �xed codes by �xed point free involutions have

self-dual projections. Thus we wonder if the same holds for all extremal

self-dual binary linear codes of jump lengths.

Question 2.1. Let C be a self-dual [24m, 12m, 4m+ 4] code and σ ∈ Aut(C)
a �xed point free involution. Is πσ(C(σ)) always self-dual?

In the next theorem we collect some conditions on the cycle structure of

automorphisms of odd prime order of self-dual binary linear codes. Condi-

tions a),b),c) and d) are a generalization of the results in [18], e) and f) are

proved in [62], g) is obvious by Theorem 2.1 and Corollary 1.2, and h) is

proved in [15].
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Theorem 2.2. Let C be a self-dual [n, n
2
, d] code and suppose σ ∈ Aut(C) of

type p-(c, f), p odd prime. Then the following conditions hold:

a) 2
n
2 ≡ 2

c+f
2 mod p;

b) c+f
2
≥ min{d− 1, f};

c) if p < d and m is the largest integer (≤ c) such that mp < d, then

(c−m)(p− 1) ≥ d− 2;

d) if p < 2d− 3 then c > 1;

e)

pc ≥

(p−1)c
2
−1∑

i=0

⌈
d

2i

⌉
where the equality does not occur if d ≤ 2

(p−1)c
2
−2 − 2;

f) if f > c then

f ≥

f−c
2
−1∑

i=0

⌈
d

2i

⌉
where the equality does not occur if d ≤ 2

f−c
2
−2 − 2;

g) if C is doubly-even and p ≡ 1 mod 4, then 8 divides c+ f ;

h) if C is extremal of length n ≥ 48 and p > 5, then c ≥ f .

Proof. We give the proof only of a), b), c) and d) referring the reader to the

original papers for the other statements.

a) Let us consider the action of the group 〈σ〉 on the codewords of C. The
orbits have cardinality 1, if the codeword is �xed, and p, otherwise.

Thus |C| ≡ |C(σ)| mod p. The conclusion follows from Theorem 2.1

which states that πσ(C(σ)) is self-dual.
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b) Since C has minimum distance d, any d− 1 columns of every generator

matrix G(C) of C are independent. Look at the f coordinates �xed by

σ: a generator matrix G(πσ(C(σ))) (whose f columns are exactly the

same of G(C)) has at least min{d−1, f} columns linearly independent.

The rank of G(πσ(C(σ))) is c+f
2

and this has to be greater than or equal

to min{d− 1, f}.

c) Suppose (c−m)(p−1) < d−2. Consider m cycles. The corresponding

coordinates are independent (see Section 1.1). Hence there is v ∈ C
with only one value equal to 1 on the coordinates of these m cycles.

On a general cycle Ω we have that wt(v|Ω + vσ|Ω) is obviously even and

so it less than p. Thus

wt(v + vσ) ≤ 2 + (c−m)(p− 1) < d,

a contradiction.

d) Suppose c = 1. As in c), there exists v ∈ C such that min{d − 1, p}
values on the coordinates of the single cycle are all 0 except for only

one 1. Then

wt(v + vσ) ≤ 2 + (p− (d− 1)) < d,

a contradiction again.

Other restrictions on the cycle structure of the automorphisms can be

obtained by the following observations, contained again in [18].

Let C be a binary linear code of length n and let σ be an automorphism

of type p-(c, f), p an odd prime.

As we have underlined in Remark 1.1, we may suppose, up to a permu-

tation of the coordinates, that the f �xed coordinates are the last ones. We

choose a generator matrix

G(πσ(C(σ))) =

 A 0

0 B

D E


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where

• A is a generator matrix of A := πσ(C(σ))Tf , the shortened code on the

set Tf of �xed coordinates;

• B is a generator matrix of B := πσ(C(σ))Tc , the shortened code on Tc

which is the set of remaining coordinates.

Obviously, B is also the CT , where T are the �rst pc coordinates. In particular,

the minimum distance of B is greater than or equal to d.

Let D and E be the subspace generated by D and E respectively and let

kA, kB, kD and kE the rank of the matrices A,B,D and E respectively.

We have a nice theorem which relates these ranks to the cycle structure

and gives further properties.

Theorem 2.3 ([52]). If C is self-dual, then

a) kD = kE;

b) c = 2kA + kD;

c) f = 2kB + kE;

d) A⊥ = A+D, B⊥ = B + E.

Notice that B is an [f, kB, d] code. By the well-known Hamming Bound,

that is

A(f, d)
d∑
i=0

(
n

i

)
≤ 2f ,

where A(f, d) is the maximum size of a binary code of length f and min-

imum distance d, one obtains further restrictions on the possible type of

automorphisms.

Many examples of this last method are contained in [18], in which Conway

and Pless excluded many types of automorphisms of the putative extremal

self-dual binary linear code of length 72.
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Let us underline that restrictions on the type of automorphisms of prime

order have implications on the possible automorphisms of non-prime order.

For example, if all the possible automorphisms of order p of a code are of

type p-(c, f) with c not divisible by p, then obviously the code has no auto-

morphism of order p2.

It holds even more, as we can see in the following result.

Proposition 2.1 ([14]). Let C be a binary linear code of length n. Suppose

that for every automorphism of C of type p-(c, f), c is not divisible by p and

f < p. Then p2 does not divide |Aut(C)|.

To conclude, let us mention that further information about the cardinality

of the automorphism group can be obtained by Burnside Lemma, which in

particular says that

t :=
1

|Aut(C)|
∑

σ∈Aut(C)

Fix(σ)

has to be a nonnegative integer (since it is the number of the orbits of the

action on the coordinates).

We show the power of these results in the next chapters.

2.2 Decomposition of a code with an automor-

phism of odd prime order

In the search of codes with certain parameters, it is often useful to decompose

them as a direct sum of smaller pieces which are easier to determine. In this

section we will present a classical decomposition of codes with automorphisms

of odd prime order. Such decomposition is just a particular reformulation of

Maschke's Theorem. However, in this context we want to present it from a

di�erent point of view, i.e. with polynomials, because in this way it is easier

to implement for calculations.
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Let V := Fn2 and σ ∈ Sn a permutation of odd prime order p. Then, it is

trivial to prove that

V = V(σ)⊕ V(σ)⊥

where

• V(σ) is the subspace �xed by σ (that is the set of vectors constant on

the orbits of σ);

• V(σ)⊥ it the dual of V(σ) (that is the set of even-weight vectors on the

orbits of σ).

We underline here that, when we say direct sum, we mean the normal direct

sum between subspaces. This will hold throughout the dissertation.

We will divide the presentation into three parts, dealing �rstly with the

easiest case, going then to the general case and �nally dealing with a special

case.

2.2.1 Case n = p

Let n = p, so that σ has only one orbit of order p. Thus

G(V(σ)) =
[

1 1 1 1 . . . 1 1
]
∈ Mat1,p(F2)

and

G(V(σ)⊥) =


1 1 0 0 . . . 0 0

0 1 1 0 . . . 0 0

0 0 1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1

 ∈ Matp−1,p(F2)

There is a natural identi�cation between

ϕ : Fp2 → F2[x]/(xp + 1) =: Q (2.1)

which maps (v0, . . . , vp−1) 7→ v0 + . . .+ vp−1x
p−1.
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Notice that xp + 1 = (x+ 1)(xp−1 + xp−2 + . . .+ x+ 1), with (x+ 1) and

(xp−1 + xp−2 + . . .+ x+ 1) coprime (since p is odd).

As usual, s(p) denotes the order of 2 in F×p , so it is the minimal positive

integer l such that p|2l − 1.

Lemma 2.1. The polynomial xp−1 +xp−2 + . . .+x+ 1 ∈ F2[x] is the product

of t := p−1
s(p)

irreducible polynomials of degree s(p).

Proof. Consider F2s(p) . Since p|2s(p)−1 we take α ∈ F×
2s(p) such that 〈α〉 ∼= Cp.

Then F2(β) = F2s(p) for every β ∈ 〈α〉 \ {1}, since s(p) is minimal. Now

xp−1 + xp−2 + . . .+ x+ 1 =
xp − 1

x− 1
=

∏
β∈〈α〉\{1}

(x− β)

To conclude, it is enough to remember that∏
q(x) irr. in F2[x], deg q(x)=s(p)

q(x) =
∏

ζ s.t. F2(ζ)=F
2s(p)

(x− ζ),

so that ∏
q(x) irr. in F2[x], deg q(x)=s(p)

q(x) = (xp−1 + xp−2 + . . .+ x+ 1) · r(x)

for a certain r(x) ∈ F2[x].

Let xp+1 = q0(x)q1(x) . . . qt(x), where q0(x) := x+1 and the other terms

are the t irreducible polynomials of Lemma 2.1. By the Chinese Remainder

Theorem we have

F2[x]/(xp + 1) = Q ∼= F2[x]/(q0(x))⊕ F2[x]/(q1(x))⊕ . . .⊕ F2[x]/(qt(x)) ∼=
∼= F2 ⊕ F2s(p) ⊕ . . .⊕ F2s(p)

Furthermore, calling Qj := xp+1
qj(x)

we have

F2[x]/(qj(x)) ∼= (Qj) =: Ij

which is a principal ideal of F2[x]/(xp + 1) generated by Qj. Notice that (the

equalities are mod xp + 1)
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• Q2
j = Qj,

• QiQj = 0 if i 6= j.

Then

F2[x]/(xp + 1) = I0 ⊥ I1 ⊥ . . . ⊥ It

is an orthogonal sum of ideals (generated by orthogonal idempotents), such

that I0
∼= F2 and I1

∼= . . . ∼= It ∼= F2s(p) .

2.2.2 General case

Let now n be general and σ of type p-(c, f). Without lost of generality we

can relabel the coordinates to have

σ = (1, . . . , p)(p+ 1, . . . , 2p) . . . , ((c− 1)p+ 1, . . . , pc)

Recall that V(σ)⊥ is the set of all even-weight vectors on the orbits of σ.

Thus it holds vi = 0, i = pc+ 1, . . . , n for every v ∈ V(σ)⊥. Let us call

(V(σ)⊥)∗ ≤ Fpc2

the space obtained puncturing V(σ)⊥ on the last f coordinates.

We de�ned in (2.1) the map ϕ : Fp2 → Q, where Q = F2[x]/(xp+1). Now,

we can extend cycle-wise the map ϕ to a map ϕp in the following way:

ϕp := ϕ× . . .× ϕ︸ ︷︷ ︸
c times

: Fpc2 → Qc,

via the natural identi�cation (Fp2)c = Fpc2 .
Let ϕ′p the map ϕp × idf , where idf := Ff2 → Ff2 is the identity map, so

that

ϕ′p : Fn2
∼→ Qc ⊕ Ff2 .

This map gives us the identi�cation

Fn2 ∼= Fc+f2 ⊕ Fc2s(p) ⊕ . . .⊕ Fc2s(p)
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It is easy to observe that

ϕ′p(V(σ)) ∼= Fc+f2 and ϕp(V(σ)⊥
∗
) ∼= Fc2s(p) ⊕ . . .⊕ Fc2s(p) .

Notice that ϕ′p|V(σ)
is the projection πσ de�ned in Section 1.5.

Now, we note that C(σ) = C ∩ V(σ) and we de�ne E(σ) := C ∩ V(σ)⊥.

Then we have the following classical theorem.

Theorem 2.4. Let C be a self-dual binary linear code and suppose σ ∈ Aut(C)
of odd prime order. Then

C = C(σ)⊕ E(σ), (2.2)

where C(σ) is the �xed code of σ and E(σ) is the subcode of even-weight

codewords on the cycle of σ.

As we have said in the introduction of this section, this result is just

a particular case of Maschke's Theorem: let us consider the group algebra

F2〈σ〉. Then we have

F2〈σ〉 = J0 ⊕ J1 ⊕ . . .⊕ Jt

where Ji are two-sided ideals. If we write

1 = f0 + f1 + . . .+ ft

with fi ∈ Ji then fifj = δi,jfi, where δi,j is the Kronecker's delta. This is

called a decomposition of 1 in (central) orthogonal idempotents. Whenever

Ji is isomorphic to a �eld we say that the idempotent is primitive. Decom-

position (2.2) comes by taking

f0 := 1 + σ + . . .+ σp−1

and

f1 := σ + . . .+ σp−1.

It is straightforward to observe that C(σ) = Cf0 and E(σ) = Cf1. Thus it is

clear that C(σ) and E(σ) are also F2〈σ〉-submodules of C.
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2.2.3 Case n general and s(p) = p− 1

Let us consider now the important case in which s(p) = p − 1. Then

ϕ(V(σ)⊥
∗
) ∼= Fc2p−1 and, on the other hand, the idempotents f0 and f1 are

both primitive. So

πσ(C(σ)) ≤ Fc+f2 and ϕp(E(σ)∗) ≤ Fc2p−1 .

We state now a very important theorem, proved by Yorgov.

Theorem 2.5 ([62]). Let C be a binary linear code with an automorphism σ

of odd prime order p, with s(p) = p− 1. Then the following are equivalent:

a) C is self-dual.

b) πσ(C(σ)) is self-dual and ϕp(E(σ)∗) is Hermitian self-dual.

Thus we have the following.

Corollary 2.1. Let C a self-dual binary linear code with an automorphism

σ of type p-(c, f), where p is an odd prime with s(p) = p− 1. Then c and f

are even.

Proof. Since ϕp(E(σ)∗) is Hermitian self-dual, its length c has to even. Also

πσ(C(σ)) is self-dual, so that its length c+ f is even. Then f is even.

Let us conclude this section with an example in the signi�cant case p = 3.

Example 2.1. Let p = 3. In this case the identi�cation is given by table 2.1.

Let now C be a self-dual [8, 4, 2] code with generator matrix

G(C) :=


1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0

0 0 0 0 0 0 1 1

 .
We have an automorphism σ := (1, 2, 3)(4, 5, 6). Then

G(C(σ)) :=

[
1 1 1 1 1 1 0 0

0 0 0 0 0 0 1 1

]
,
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Table 2.1: Identi�cation F3
2(σ)⊥ - F4

F3
2(σ)⊥ F4

(0, 0, 0) 0

(0, 1, 1) 1

(1, 1, 0) ω

(1, 0, 1) ω2

G(E(σ)) :=

[
1 1 0 1 1 0 0 0

0 1 1 0 1 1 0 0

]
so that

G(πσ(C(σ))) :=

[
1 1 0 0

0 0 1 1

]
G(ϕ3(E(σ)∗)) :=

[
ω ω

]
,

self-dual [4, 2, 2] code and Hermitian self-dual [2, 1, 2]4 code respectively.

2.3 Self-dual codes with an automorphism of

order 2p, p odd prime

Throughout this section let C be a self-dual binary linear code of length n

(remember that n has to be even) with an automorphism σ2p of order 2p,

where p is an odd prime. We will study some module theoretical properties

of such a code, showing a nice connection with the structure of the �xed code

of the involution σp2p.

2.3.1 Main theorem

Suppose that σ2p ∈ Aut(C) is of order 2p, where p is an odd prime. Further-

more suppose that the involution σ2 := σp2p acts �xed point freely on the n

coordinates. Without loss of generality, we may assume that

σ2 = σp2p = (1, 2)(3, 4) . . . (n− 1, n).
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We consider the natural projection πσ2 : C(σ2)→ F
n
2
2 (de�ned in Section 1.5)

and the map

φ : C → F
n
2
2 , (2.3)

with (c1, c2, . . . , cn−1, cn)
φ7→ (c1 + c2, . . . , cn−1 + cn).

Bouyuklieva proved that ([11], Theorem 1)

φ(C) ≤ πσ2(C(σ2)) = φ(C)⊥.

In particular,

φ(C) = πσ2(C(σ2)) = φ(C)⊥ (i.e. πσ2(C(σ2)) is self-dual)

if and only if

dim πσ2(C(σ2)) = dim C(σ2) =
n

4
.

Recall that a projective F2G-module is a �nite direct sum of projective in-

decomposable modules, or, in other words, it is a direct summand of a �nite

direct sum of copies isomorphic to the group algebra F2G (as F2G-modules).

Then we have the following result (that is the crucial theorem of our joint

work with Wolfgang Willems [10]).

Theorem 2.6. The code C is a projective F2〈σ2p〉-module if and only if

πσ2(C(σ2)) is self-dual.

Proof. First note that for an arbitrary �nite group G a F2G-module is pro-

jective if and only if its restriction to a Sylow 2-subgroup is projective.

Thus we have to consider the restriction C|〈σ2〉
, i.e., C with the action of 〈σ2〉.

Since the only indecomposable modules in F2〈σ2〉 are the trivial one, K ∼= F2,

of dimension 1, and the regular one, R, of dimension 2, we have that C, as a
F2〈σ2〉-module, is

C ∼= R⊕ . . .⊕R︸ ︷︷ ︸
a times

⊕K ⊕ . . .⊕K︸ ︷︷ ︸
n
2
−2a times

.

Then

C(σ2) = soc(C) = K ⊕ . . .⊕K︸ ︷︷ ︸
a times

⊕K ⊕ . . .⊕K︸ ︷︷ ︸
n
2
−2a times

∼= K
n
2
−a.
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Thus C is projective if and only if n
2
− 2a = 0, hence if and only if a = n

4
.

This happens if and only if dim C(σ2) = n
4
. This is equivalent to the fact that

πσ2(C(σ2)) is self-dual.

The main reason for which it is so interesting to determine if a code is

projective, is the following remark, which helps a lot in constructing codes.

Remark 2.1. Let G be a �nite group and M a projective KG-submodule.

Then for every decomposition

soc(M) = V1 ⊕ . . .⊕ Vm

of the socle in irreducible KG-submodules, we have

M∼= P(V1)⊕ . . .⊕ P(Vm),

where P(Vi) is the projective cover of Vi inM, for all i ∈ {1, . . . ,m}.

So, whenever we have a projective module, there are several restrictions

on its structure and, in particular, the knowledge of its socle gives us a lot

of information about the whole module.

2.3.2 Consequences on the structure of C

Next we deduce some properties of C related to the action of the automor-

phism σ2p. This may also help to decide whether πσ2(C(σ2)) is self-dual or

not.

Since σ2 acts �xed point freely, σ2p has x 2p-cycles and w 2-cycles, with

n = 2px+ 2w. (2.4)

Thus, as an F2〈σ2p〉-module, we have the decomposition

Fn2 = F2〈σ2p〉 ⊕ . . .⊕ F2〈σ2p〉︸ ︷︷ ︸
x times

⊕F2〈σ2〉 ⊕ . . .⊕ F2〈σ2〉︸ ︷︷ ︸
w times

.

Using Remark 1.3 and setting V0
∼= F2, we get
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Fn2 =
V0

V0

⊕ . . .⊕
V0

V0︸ ︷︷ ︸
x+w times

⊕ . . .⊕
Vt

Vt
⊕ . . .⊕

Vt

Vt︸ ︷︷ ︸
x times

.

The action of 〈σ2p〉 on Fn2 and the self-duality of C restrict the possibilities
for C as a subspace of Fn2 : let us prove a technical lemma and then prove a

more precise proposition.

Lemma 2.2. Let C be a binary linear code of length n and let G ≤ Aut(C)
so that C is a F2G-module. Then

Fn2/C⊥ ∼= C?,

as F2G-modules, where C? is the dual module of C.
In particular, if C is self-dual, we have

Fn2/C ∼= C?.

Proof. Recall that C? = HomF2(C,F2). We de�ne the map

ψ : Fn2 → C?

by ψ(v) = 〈v, · 〉, where 〈·, ·〉 is the standard inner product. The map ψ is

obviously F2-linear. Since

ψ(vσ)(w) = 〈vσ, w〉 = 〈v, wσ−1〉 = ψ(v)(wσ
−1

) = (ψ(v) · σ)(w),

the map ψ is also an F2G-module homomorphism.

Clearly, we have kerψ = C⊥. Finally, |Fn2/C⊥| = |C?|. So ψ is surjective

and the assertion is proved.

Now we can state the proposition.

Proposition 2.2. Let C be a self-dual binary linear code and let us sup-

pose σ2p ∈ Aut(C). Then, as a F2〈σ2p〉-module, the code C has the following

structure:

C =
V0

V0

⊕ . . .⊕
V0

V0︸ ︷︷ ︸
y0 times

⊕ V0 ⊕ . . .⊕ V0︸ ︷︷ ︸
z0 times

⊕ . . .
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. . .⊕
Vt

Vt
⊕ . . .⊕

Vt

Vt︸ ︷︷ ︸
yt times

⊕ Vt ⊕ . . .⊕ Vt︸ ︷︷ ︸
zt

,

where

a) 2y0 + z0 = x+ w,

b1) 2yi + zi = x for all i ∈ {1, . . . , t}, if s(p) is even,

b2) zi = z2i and yi + y2i + zi = x for all i ∈ {1, . . . , t}, if s(p) is odd.

Proof. Recall that Fn2/C ∼= C?. The conditions on the multiplicities are an

easy consequence of this fact. Let us prove, for example, part b2): if

C = . . .⊕
Vi

Vi
⊕ . . .⊕

Vi

Vi︸ ︷︷ ︸
yi times

⊕ Vi ⊕ . . .⊕ Vi︸ ︷︷ ︸
zi times

⊕ . . .

. . .⊕
V2i

V2i

⊕ . . .⊕
V2i

V2i︸ ︷︷ ︸
y2i times

⊕ V2i ⊕ . . .⊕ V2i︸ ︷︷ ︸
z2i

⊕ . . . ,

then

Fn2/C = . . .⊕
Vi

Vi
⊕ . . .⊕

Vi

Vi︸ ︷︷ ︸
x−zi−yi times

⊕ Vi ⊕ . . .⊕ Vi︸ ︷︷ ︸
zi times

⊕ . . .

. . .⊕
V2i

V2i

⊕ . . .⊕
V2i

V2i︸ ︷︷ ︸
x−z2i−y2i times

⊕ V2i ⊕ . . .⊕ V2i︸ ︷︷ ︸
z2i

⊕ . . .

and since Vi ∼= V ?
2i,

C? = . . .⊕
V2i

V2i

⊕ . . .⊕
V2i

V2i︸ ︷︷ ︸
yi times

⊕ V2i ⊕ . . .⊕ V2i︸ ︷︷ ︸
zi times

⊕ . . .
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. . .⊕
Vi

Vi
⊕ . . .⊕

Vi

Vi︸ ︷︷ ︸
y2i times

⊕ Vi ⊕ . . .⊕ Vi︸ ︷︷ ︸
z2i

⊕ . . . .

Thus zi = z2i and x− zi − yi = y2i.

Proposition 2.2 implies that

φ(C)⊥ = πσ2(C(σ2)) = πσ2

 t⊕
i=0

Vi ⊕ . . .⊕ Vi︸ ︷︷ ︸
yi+zi times

 . (2.5)

where φ is the map (2.3).

Since kerφ = C(σ2), we furthermore have

φ(C) ∼= C/ kerφ ∼=
t⊕
i=0

Vi ⊕ . . .⊕ Vi︸ ︷︷ ︸
yi times

,

which leads to

φ(C)⊥/φ(C) ∼=
t⊕
i=0

Vi ⊕ . . .⊕ Vi︸ ︷︷ ︸
zi times

.

Taking dimensions we get

dimφ(C)⊥/φ(C) = z0 + s(p)

(
t∑
i=1

zi

)
. (2.6)

Proposition 2.3. Let C be a self-dual binary linear code of length n and

suppose σ2p ∈ Aut(C). Then we have

a) x ≡ w mod 2, if n ≡ 0 mod 4,

b) x 6≡ w mod 2, if n ≡ 2 mod 4.

Furthermore, if s(p) is even, then

x ≡ z1 ≡ . . . ≡ zt mod 2.
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Proof. a) and b) follow immediately from (2.4). The last fact is a consequence

of 2yi + zi = x, if s(p) is even, which is stated in Proposition 2.2.

Corollary 2.2. Let C be a self-dual binary linear code of length n. Suppose

σ2p ∈ Aut(C) and let φ be as in (2.3). Then

a) φ(C)⊥/φ(C) is of even dimension, if n ≡ 0 mod 4,

b) φ(C)⊥/φ(C) is of odd dimension, if n ≡ 2 mod 4.

Proof. First note that s(p)
∑t

i=1 zi ≡ 0 mod 2 whatever s(p) is odd or even.

In case s(p) odd this follows from zi = z2i for i ∈ {1, . . . , 2r = t} (see

Proposition 2.2). Furthermore, z0 ≡ x + w mod 2, hence z0 even, if 4 | n,
and z0 odd, if n ≡ 2 mod 4, according to Proposition 2.3. Thus (2.6) yields

dimφ(C)⊥/φ(C) ≡ z0 ≡ 0 mod 2, if n ≡ 0 mod 4

and

dimφ(C)⊥/φ(C) ≡ z0 ≡ 1 mod 2, if n ≡ 2 mod 4.

Corollary 2.3. Let C be a self-dual binary linear code of length n ≡ 0 mod 4.

Suppose σ2p ∈ Aut(C) and s(p) even. If w is odd, then

dim C(σ2) = dim πσ2(C(σ2)) ≥ n

4
+

s(p)t

2
=
n

4
+
p− 1

2
,

where σ2 = σp2p.

In particular, φ(C) < φ(C)⊥.

Proof. By Proposition 2.3, the condition 4 | n forces that w and x have the

same parity. Thus w odd implies that x is odd and by Proposition 2.2, we

get zi ≥ 1 for i ∈ {1, . . . t}. Since

φ(C) ≤ φ(C)⊥ = πσ2(C(σ2)) ≤ F
n
2
2 ,

we have

dim πσ2(C(σ2)) ≥ n

4
+

1

2
dimφ(C)⊥/φ(C).
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Therefore, according to (2.6),

dim C(σ2) = dim πσ2(C(σ2)) ≥ n

4
+

s(p)t

2
=
n

4
+
p− 1

2
.

We may ask whether φ(C) < φ(C)⊥ implies that w is odd. This is not

true in general. For instance, there exist self-dual [36, 18, 8] codes and au-

tomorphisms of order 6 (note that s(3) is even) for which πσ2(C(σ2)) is not

self-dual, but w is even.

Furthermore, notice that if the answer to Question 2.1 (Section 2.1) is

positive, then for extremal self-dual binary linear codes of jump lengths w

has to be even. Actually, it holds the following.

Corollary 2.4. Let C be a self-dual binary linear code of length n ≡ 0 mod 4.

Suppose σ2p ∈ Aut(C) and s(p) even.

If σ2p has an odd number of cycles of order 2, then C is not projective as a

F2〈σ2p〉-module (or equivalently, πσp2p(C(σ
p
2p)) is not self-dual).

Proof. If the number of 2-cycles of σ2p is odd, then w is odd. Thus, by

Corollary 2.3 and Theorem 2.6, the assertion follows.

Since Aut(C) ≤ Sn, the largest possible prime which may occur as the

order of an automorphism of a self-dual binary linear code of length n is

p = n− 1. If n ≡ 0 mod 8, then s(p) is odd (see Remark 1.4). Obviously, in

this case we cannot have an automorphism of order 2p.

Let C be an extremal self-dual binary linear code of length n ≥ 48. Ac-

cording to Theorem 2.2 an automorphism of type p-(c, f) with p > 5 satis�es

c ≥ f . Hence the second largest possible prime p satis�es n = 2p+ 2.

Corollary 2.5. Let C be a self-dual binary linear code of length n = 2p+ 2,

where p is an odd prime, and minimum distance greater than 4. Suppose that

all involutions in Aut(C) are �xed point free. If s(p) is even, then Aut(C)
does not contain an element of order 2p.

In case C is doubly-even, the condition s(p) even may be replaced by the

condition p 6≡ −1 mod 8.
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Proof. Suppose that σ2p is an automorphism of order 2p. Thus σ2p has one

cycle of length 2p and one of length 2. Let σ2 := σp2p. By Corollary 2.3, we

get

dim πσ2(C(σ2)) ≥ n

4
+
p− 1

2
= p.

Since πσ2(C(σ2)) ≤ F
n
2
2 = Fp+1

2 , we see that πσ2(C(σ2)) has minimum distance

1 or 2, a contradiction.

In case that C is doubly-even we only have to show that p ≡ 1 mod 8

does not occur (see Remark 1.4). If p ≡ 1 mod 8 then n = 2p+ 2 ≡ 4 mod 8,

contradicting Theorem 1.5.

Finally we give a result about extremal self-dual binary linear codes of

jump lengths.

Corollary 2.6. Let C be a self-dual [24m, 12m, 4m + 4] code and suppose

σ2p ∈ Aut(C). If s(p) is even and w is odd, then p ≤ n
4
− 1.

Proof. By Corollary 2.3, πσ2(C(σ2)) has parameters[
12m,≥ 6m+

p− 1

2
,≥ 2m+ 2

]
.

According to the Griesmer bound (1.2), we have

12m ≥
∑6m+ p−1

2
−1

i=0

⌈
2m+2

2i

⌉
≥ (2m+ 2) + (m+ 1) + (6m+ p−1

2
)− 2.

This implies p ≤ 6m− 1 = n
4
− 1.

Clearly, the estimation in Corollary 2.6 is very crude for m large. For

instance, if m = 5 the statement in Corollary 2.6 leads to p ≤ 29, but

computing all terms in the sum shows that p ≤ 23.
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2.4 Self-dual codes with automorphisms which

form a dihedral group

In this section we want to generalize the main idea used by Nebe and Feulner

to approach the case D10 for the extremal self-dual binary linear code of

length 72 in [24]. We will use these results to exclude S3 for the same code

in the next chapter. The assumptions which we make may be seen too

restrictive, but they make the notations easier and they are su�cient for our

purposes.

Let us now suppose that

• p is an odd prime with s(p) = p− 1;

• C is a self-dual binary linear code of length n (n divisible by 2p);

• σp ∈ Aut(C) acts �xed point free of order p (so that the number of

cycles is c = n
p
);

• σ2 ∈ Aut(C) acts �xed point free of order 2;

• 〈σp〉o 〈σ2〉 ∼= D2p is a dihedral group of order 2p.

The main idea is that we have the decomposition explained in Section

2.2, given by σp, and then the involution σ2 which acts on it and gives a

restrictive structure.

Finally, note that we can �x without lost of generality

σp := (1, . . . , p)(p+ 1, . . . , 2p) . . . (n− p+ 1, . . . , n)

and

σ2 := (1, p+ 1)(2, 2p) . . . (p, p+ 2) . . . (n− p, n− p+ 2).

2.4.1 Preliminaries

We need to understand better the structure of the �eld F2p−1 in its realization

as an ideal I of F2[x]/(xp + 1), presented in Section 2.2.
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Notation 2.1. In the following we will indicate with a mod b the nonnega-

tive integer less than b that is the remainder of the division of a by b.

Furthermore, we will indentify the cosets of F2[x]/(xp + 1) with their repre-

sentatives (the remainders of the division by (xp + 1)).

Remember that the ideal I is generated by (1 + x). It is straightforward

to observe that (x+ x2 + . . .+ xp−1) ∈ I is the identity of the �eld.

Since s(p) = p− 1 we have that

(1 + x), (1 + x)2, (1 + x)4, . . . , (1 + x)2p−2

is an F2-basis of F2p−1 . Furthermore

a0(1 + x) + a1(1 + x)2 + . . .+ ap−2(1 + x)2p−2

=

= (a0 + . . .+ ap−2) + a0x+ a1x
2 + . . .+ ap−2x

2p−2

.

Let ψ : i 7→ i + p−1
2

mod p − 1 and ϕ
2
p−1

2
the Frobenius automorphism of

F2p−1 .

ϕ
2
p−1

2
((a0 + . . .+ ap−1) + a0x+ a1x

2 + . . .+ ap−2x
2p−2

) =

= (a0 + . . .+ ap−1) + aψ−1(0)x+ aψ−1(1)x
2 + . . .+ aψ−1(p−2)x

2p−2

.

If we identify every polynomial with the ordered vector of Fp2 of its coe�cients,

the Frobenius automorphism corresponds to a permutation of Sp.
Since [2

p−1
2 ]p = [−1]p we have that the permutation

p−1
2∏
i=1

(2i mod p, 2ψ(i) mod p) = (1, p− 1)(2, p− 2)(3, p− 3) . . .

(
p− 1

2
,
p+ 1

2

)
and so the Frobenius automorphism corresponds to the following permutation

on the coe�cients of polynomials

(2, p)(3, p− 1)(4, p− 2) . . .

(
p+ 1

2
,
p+ 3

2

)
that inverts the order on the last p− 1 coordinates of the p-cycle.
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Let us consider now the cartesian product of two copies of F2p−1 , so that

the coe�cients live in F2p
2 . The permutation (in S2p)

(1, p+ 1)(2, 2p)(3, 2p− 1)(4, 2p− 2) . . . (p, p+ 2)

corresponds to (α, β) 7→ (ϕ
2
p−1

2
(β), ϕ

2
p−1

2
(α)) over F2

2p−1 .

Notation 2.2. Let us denote with α := ϕ
2
p−1

2
(α) = α2

p−1
2 .

It is now clear that, if we consider the cartesian product of c copies (note

that c is even) of F2p−1 , the permutation

σ2 = (1, p+ 1)(2, 2p) . . . (p, p+ 2) . . . (n− p, n− p+ 2)

acts as follows

(α1, α2, . . . , αc−1, αc) 7→ (α2, α1, . . . , αc, αc−1)

2.4.2 Main theorem

We can now state the main result which describes the rigid structure of a

self-dual binary linear code whose automorphism group contains a dihedral

group (with appropriate restrictions). The notations are those �xed in the

introduction of this section.

Theorem 2.7. Let C be a self-dual binary linear code of length n such that

〈σp〉o 〈σ2〉 ≤ Aut(C). If πσ2(C(σ2)) is self-dual, then there exist

• A ≤ F
n
2
2 , which is a self-dual binary linear code,

• B ⊆ F
c
2

2p−1, which is a F
2
p−1

2
-linear trace-Hermitian self-dual code,

such that

C = π−1
σp (A)⊕ ϕ−1

p

(
〈π−1(B)〉F2p−1

)
where πσp is the natural projection associated to σp, ϕp is the map de�ned in

Section 2.2 and

π := Fc2p−1 → F
c
2

2p−1

maps (ε1, ε2, . . . , εc−1, εc) 7→ (ε1, . . . , εc−1).
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Proof. Recall that, as we proved in Section 2.2,

C = C(σp)⊕ E(σp).

Put A := πσp(C(σp)) ≤ Fc+f2 . This is self-dual by Theorem 2.5.

Let us consider ϕp(E(σp)) ≤ Fc2p−1 . This is an Hermitian self-dual linear

code, again by Theorem 2.5. As we have just shown the action of σ2 on

ϕp(E(σp)) is the following

(ε1, ε2, . . . , εc−1, εc)
σ2 = (ε2, ε1, . . . , εc, εc−1)

Note that this action is only F
2
p−1

2
-linear. Then, the �xed code is

ϕp(E(σp))(σ2) := {(ε1, ε1, . . . , ε c
2
, ε c

2
) ∈ ϕp(E(σp))}.

Put B := π(ϕp(E(σp))(σ2)).

For γ, ε ∈ B the Hermitian inner product of their preimages in

ϕp(E(σp))(σ2) is
c
2∑
i=1

(εiγi + εiγi)

which is 0 since ϕp(E(σp)) is Hermitian self-dual. Therefore B is trace-

Hermitian self-orthogonal. We have

dimF2(B) = dimF2(ϕp(E(σp))(σ2)) =
1

2
dimF2(ϕp(E(σp)))

since ϕp(E(σp)) is a projective F2〈σ2〉-module (since πσ2(C(σ2)) is self-dual),

and so B is self-dual.

Since dimF2(B) = dimF2p−1 (ϕp(E(σp))), the F2p−1-linear code ϕp(E(σp)) ≤
Fc2p−1 is obtained from B as stated.

2.5 Interaction between �xed subcodes

In this section we will investigate the situation in which we have an automor-

phism group of a binary linear code which is a semidirect product (abelian

or not) of two subgroups.
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2.5.1 Non-abelian semidirect products of two subgroups

In this subsection we want to give an idea of what can be said when the

automorphism group of a binary linear code (not necessarily self-dual) has a

subgroup H that is a non-abelian semidirect product of two subgroups, say

H = AoB.

Actually, in this case we have an action of H on the normal subgroup A

and in particular on the �xed codes by the automorphisms belonging to A.

We restrict our attention on a particular case, since it will be useful in the

next chapter. However, this case gives some �avor of what can be done in

general.

Notation 2.3. If τ, σ ∈ Sn then we denote by

τσ := σ−1τσ,

the conjugate of τ by σ.

Let us start with a basic lemma.

Lemma 2.3. Let C be a binary linear code of length n and take τ ∈ Aut(C).
If σ is a permutation of Sn then

τσ ∈ Aut(Cσ)

and

C(τ)σ = C(τσ).

Proof. Let c ∈ C. We have

c ∈ C(τ)σ ⇔ cσ
−1 ∈ C(τ)⇔ cσ

−1τ = cσ
−1 ⇔ cτ

σ

= c⇔ c ∈ C(τσ)

which proves the assertion.

This easy observation suggests a construction for codes with semidirect

automorphism groups.
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Theorem 2.8. Let C be a binary linear code. Suppose that G = Em oH ≤
Aut(C), where Em is an elementary abelian p-group and H acts transitively

on E×m. Then ∑
ε∈E×m

C(ε) =
∑
κ∈H

C(ε0)κ

for any ε0 ∈ E×m.

Proof. It follows directly from Lemma 2.3.

Corollary 2.7. Let p be a Mersenne prime, i.e. p = 2r − 1 for a certain

nonnegative integer r. Let E2r be an elementary abelian group of order 2r

and let G = E2r o 〈σp〉, where σp is an automorphism of order p (G non

abelian).

Suppose that C is a binary linear code such that G ≤ Aut(C). Then for any

involution ε0 ∈ E2r it holds that

∑
ε∈E×2r

C(ε) =

p−1∑
i=0

C(ε0)σ
i
p .

Proof. |E×2r | = 2r − 1. The cyclic group 〈σp〉 acts on it. The orbits for this

action can have order p or order 1. Since p = |E×2r | there is only one orbit of

order p: supposing the contrary we have G abelian, a contradiction. So the

action is transitive and the assertion follows from Theorem 2.8.

Obviously, similar results can be deduced for other groups. Notice that

A4 satis�es the hypothesis of Corollary 2.7 with p = 3.

Let us conclude this short subsection, underlining a very useful tool to

continue the study of a code with such an automorphism group.

Let D :=
∑

ε∈E×m C(ε). The group G acts on Q := D⊥/D with kernel con-

taining Em. The space Q is hence a F2〈σp〉-module. On this space we still

have a decomposition in the �xed part by σp and its complement and we can

repeat arguments totally analogous to the ones in Section 2.2. This gives

again a very restrictive structure.
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2.5.2 Direct products of cyclic groups

Let us conclude this chapter with a few considerations on the interaction

between �xed subcodes by di�erent automorphisms. We will consider codes

with automorphisms which commute. The results of this subsection can be

generalized to any abelian �nite group, but the notation would become too

complex and it is not so relevant for our purposes to deal with the general

case.

We consider in particular the group Cp × Cq with p, q not necessarily

distinct primes. This case gives an idea of what can be said in a general

context.

Let us suppose that C is a binary linear code (not necessarily self-dual,

nor extremal) such that Cp ×Cq ≤ Aut(C) with Cp = 〈σp〉, Cq = 〈σq〉, cyclic
groups of prime (not necessarily distinct) order.

Let σp be of type p-(c, f). Then

πσp(C(σp)) ≤ Fc+f2 .

Every element of the centralizer of σp in Sn, indicated with CSn(σp), acts

on the orbits of σp. So we can de�ne naturally a projection

ησp : CSn(σp)→ Sc+f

that maps τ ∈ CSn(σp) on the permutation corresponding to the action of τ

on the orbits of σp.

If σq is of type q-(c
′, f ′) we can de�ne in a completely analogous way

ησq : CSn(σq)→ Sc′+f ′ .

We collect in the following some of observations.

Remark 2.2. Let C be a binary linear code such that Cp×Cq ≤ Aut(C) with
Cp = 〈σp〉, Cq = 〈σq〉, cyclic groups of prime (not necessarily distinct) order.
Then

a) ησp(σq) ∈ Aut(πσp(C(σp)));
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b) ησq(σp) ∈ Aut(πσq(C(σq)));

c) ηησp (σq)(πσp(C(σp))(ησp(σq))) = ηησq (σp)(πσq(C(σq))(ησq(σp)));

d) if p, q are distinct and σpσq is of type pq-(α, β, γ; δ) then ησp(σq) is of

type q-(γ + β, α + δ) and ησq(σp) is of type p-(γ + α, β + δ).

Notice that a) and b) are strong conditions on the �xed codes.
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On the automorphism group of an extremal self-dual

code of length 72

The existence of a self-dual extremal binary linear code of length 72 is a

long-standing open problem of classical Coding Theory. In this chapter we

will present our results on the automorphism group of such a putative code.

Remark 3.1. Most of the computations are done with Magma [17]. The

times of the main computations can be found in Appendix A.

We begin recalling the state of art before our contribution [45]:

(∗) Let C be a self-dual [72, 36, 16] code. Then |Aut(C)| is either 5 or

divides 24. If 8 divides |Aut(C)| then its Sylow 2-subgroup is either D8 or

C2 × C2 × C2.

Our results allow us to exclude most of the left subgroups in (∗), coming

to the following.

Theorem 3.1. Let C be a self-dual [72, 36, 16] code. Then |Aut(C)| is at

most 5.

55
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Remark 3.2. The possible automorphism groups of a putative extremal self-

dual binary linear code of length 72 are abelian and very small. So this code is

almost a rigid object (i.e. without symmetries) and it might be very di�cult

to �nd it, if it exists.

In Section 3.1 we give a brief overview of the results which led to (∗).
Notice that we do not follow the chronological order, since some older results

are made obsolete by more recent ones (proved independently). In Section

3.2 we present our �rst result [7], about elements of order 6. In Section 3.3

and 3.4 we present our joint work with Francesca Dalla Volta and Gabriele

Nebe [9], about some remaining possible groups. In Section 3.5 we present

our last result [8].

3.1 Previous results

For all this section let C be a self-dual [72, 36, 16] code.

3.1.1 Cycle-structure of the automorphisms

In order to get information on the whole group Aut(C), we begin to investi-

gate the cycle-structure of the possible automorphisms.

John H. Conway and Vera Pless, in a paper submitted in 1979 [18], were

the �rst who faced this problem. In particular they focused on the possible

automorphisms of odd prime order. Using mainly the results introduced in

Section 2.1, they proved that

• only 9 types of automorphism of odd prime order may occur in Aut(C),
namely 23-(3, 3), 17-(4, 4), 11-(6, 6), 7-(10, 2), 5-(14, 2), 3-(18, 18), 3-

(20, 12), 3-(22, 6) and 3-(24, 0).

Between 1981 and 1987, Vera Pless, John G. Thompson, W. Cary Hu�man

and Vassil Y. Yorgov [49, 48, 33] proved that

• automorphisms of orders 23, 17 and 11 cannot occur in Aut(C).
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Between 2002 and 2004, Stefka Bouyuklieva [13, 12] proved that

• the eventual elements of order 2 and 3 in Aut(C) are �xed point free.

More recentely, in 2012, Thomas Feulner and Gabriele Nebe [24] showed that

also

• automorphisms of orders 7 cannot occur in Aut(C).

The techniques used are di�erent case by case, but the main tool is the

decomposition of codes with an automorphism of odd prime order discussed

in Section 2.2. Let us summarized these results.

Proposition 3.1. Let σ be an automorphism of prime order of a self-dual

[72, 36, 16] code. Then σ can be only of the following types:

• 2-(36, 0),

• 3-(24, 0),

• 5-(14, 2).

An immediate consequence of this result is that Aut(C) does not contain
elements of order 16, 27, 25 and 15. Furthermore, the possible composite

orders are 4, 6, 8, 9, 12, 18, 36, 72 (�xed point free and with all cycles of the

same length) and 10 (7 10-cycles and one 2-cycle). In [28], Annika Günter and

G. Nebe pointed out that automorphisms of order 8 cannot occur, a result

proved implicitly by Neil J.A. Sloane and J.G. Thompson in [59]. Finally,

even more recently, G. Nebe and Nikolay Yankov [45, 61], excluded orders

10 and 9. Then we have the following.

Proposition 3.2. Let σ be an automorphism of non-prime non-trivial order

of a self-dual [72, 36, 16] code. Then σ can be only

• of order 4, with 18 cycles of length 4,

• of order 6, with 12 cycles of length 6,
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• of order 12, with 6 cycles of length 12.

A very important information for the search of extremal codes, as we

have already mentioned, is the classi�cation of the possible �xed codes by

the automorphisms.

We will strongly use such information, so let us collect all the results in

a proposition.

Proposition 3.3. Let σi ∈ Aut(C) be an element of order i. Then we have

a) πσ2(C(σ2)) ∼ K , where K is one of the 41 self-dual [36, 18, 8] codes

classi�ed by Mechor and Gaborit [42];

b) πσ3(C(σ3)) ∼ G24, the extended binary Golay code;

c) πσ5(C(σ5)) ∼ Ĥ3⊕Ĥ3 direct sum (of codes) of two copies of the extended

Hamming code Ĥ3;

d) πσ6(C(σ6)) ∼ F , a self-dual [12, 6, 4] code with generator matrix

M =

[ 1 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1

]
;

e) πσ12(C(σ12)) ∼ L, a self-dual [6, 3, 2] code with generator matrix

M =
[

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

]
;

f) πσ4(C(σ4)) ∼ H, a self-dual [18, 9, 4] code (there are only two such

codes, up to equivalence [50]).

Proof. a) is proved in [45]. b) and c) are proved in [18].

By b), πσ2
6
C(σ2

6) = G24. Obviously πσ2
6
(σ6) is a �xed point free automor-

phism of order 2 of the extended binary Golay code. The automorphism

group of G24 has just one such automorphism up to conjugacy. Let ρ be a

representative of this conjugacy class; we have πσ6(C(σ6)) ∼ πρ(G24(ρ)) ∼ F .
So d) is proved. The same arguments can be used to prove e).
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It is a little more complicate to prove f), since here we need some repre-

sentation theory. By [45] we have that C is a free F2〈σ4〉-module (of rank 9).

This implies that C(σ4), which is the socle of such module, has dimension 9.

The other parameters are trivially determined.

3.1.2 Structure of the whole group

Once we have all the information on the structure of the automorphisms, we

can investigate the structure of the whole group.

By Proposition 3.1 we have immediately that

|Aut(C)| = 2a3b5c

with a, b, c nonnegative integers.

Bouyuklieva was the �rst, in 2004, to have studied the order of Aut(C).
She proved [12] that 49 does not divide |Aut(C)|. Actually, this result is an
easy consequence of [24] (which is proved later independently). In the same

paper Bouyuklieva said, without giving an explicit proof, that the same holds

for 25. For completeness and to give an idea of the techniques involved, let

us prove it.

• 25 does not divide |Aut(C)|.

Proof. Suppose that 25 divides |Aut(C)|. According to Sylow's Theorem,

there exists a subgroup H ≤ Aut(C) of order 25. By Proposition 3.2, H is

elementary abelian. Let H = 〈σ, τ〉, where σ and τ are elements of type

5-(14, 2) which commutes. Let

Ω1, . . . ,Ω14

be the non-trivial orbits of σ. Obviously, τ acts on these orbits and it �xes

at least 4 of them, say Ω1,Ω2,Ω3 and Ω4. Since τ has only 2 �xed points, it

does not �x any point in such orbits (otherwise it should �x every point). So

σ|Ω1
and τ|Ω1

are permutation of order 5 on Ω1. Without loss of generality we
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can suppose σ|Ω1
= (1, 2, 3, 4, 5). Now, 1τ = j with 1 < j ≤ 5. Notice that

1σ
j−1

= j and so τσ1−j is an automorphism of order 5 with at least 3 �xed

points, a contradiction by Proposition 3.2.

This means that

|Aut(C)| = 2a3b5c

with a, b nonnegative integers and c = 0, 1.

If c = 1 then

• if σ ∈ Aut(C) has order 5, |NAut(C)(σ)| = 2d5, with d = 0, 1 [63].

• #{aut. of order 5 in Aut(C)} = 4 · |Aut(C)|
2δ5

.

So, by Burnside Lemma,

1

|Aut(C)|

(
72 + γ · 2 · 4 · |Aut(C)|

2γ5

)
=

72

2α3β5γ
+ γ · 8

2δ5
∈ N

⇓

|Aut(C)| ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 18, 24, 30, 36, 60, 72, 180, 360}.

By Proposition 3.2,

• |Aut(C)| is not 30 or 180,

since all groups of such order have elements of order 15.

Furthermore, among all the 281 possible groups with the remaining orders

(for a library of Small Groups see for example [5]) only 76 satisfy the condition

of Proposition 3.2. In particular, A5 and A6 are the only possible groups of

order 60 and 360 respectively. In 2006, Bouyklieva together with Eamonn

O'Brien and Wolfgang Willems introduced the language and the methods of

representation theory in the study of the problem and they proved [16] that

A5 (and then A6) cannot occur. So they proved

• |Aut(C)| is not 60 or 360 (so that the group is solvable).

Lately, in 2011, the last two authors improved their results proving [47] that
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• |Aut(C)| is not 72 and if |Aut(C)| = 36, then Aut(C) ∼= A4 × C3.

Feulner and Nebe [24], in 2012, proved that Aut(C) 6∼= C3 × C3 and

Aut(C) 6∼= D10 (the case of the dihedral group of order 10 involves the meth-

ods of Section 2.4), proving then that

• |Aut(C)| is not 9, 10, 18 or 36.

Finally Nebe proved [45] that Aut(C) is not isomorphic to C2 × C4 or Q8.

Let us summarize all these results in a theorem.

Theorem 3.2 (Pless, Conway, Thompson, Hu�man, Yorgov, Bouyuklieva,

O'Brien, Willems, Yankov, Feulner, Nebe).

Let C be self-dual [72, 36, 16] code. Then Aut(C) is trivial or is isomorphic

to one of the following:

• Order 2: C2;

• Order 3: C3;

• Order 4: C4 or C2 × C2;

• Order 5: C5;

• Order 6: S3 or C6;

• Order 8: C2 × C2 × C2 or D8;

• Order 12: A4, C12, C6 × C2, D12 or C3 o C4;

• Order 24: S4, D24, (C6 × C2) : C2, D8 × C3, A4 × C2, D12 × C2 or

C6 × C2 × C2.
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3.2 Case Aut(C) containing elements of order 6

In this section we will present our original result about automorphism of

order 6 in extremal self-dual binary linear codes of length 72 [7].

Following and deepening the methods of O'Brien and Willems and doing

extensive calculations withMagma we proved that the automorphism group

of a putative extremal self-dual binary linear code of length 72 does not

contain element of order 6, halving the number of the possible automorphism

groups.

Let us explain our method. For all this section we set

• K := F2;

• V := K72;

• C a self-dual [72, 36, 16] code

and suppose

• σ6 ∈ Aut(C) of order 6.

By Proposition 3.2, σ6 has no �xed point. Thus we can suppose, without

lost of generality, that

σ6 = (1, 2, 3, 4, 5, 6) . . . (67, 68, 69, 70, 71, 72). (3.1)

The subcode C(σ2
6) plays an important role in our method; actually σ2

6

has order 3 and so, by Theorem 2.4,

C = C(σ2
6)⊕ E(σ2

6),

where E(σ2
6) is the subcode of even-weight codewords on the cycles of σ2

6.

Furthermore, by Proposition 3.3 we have πσ2
6
(C(σ2

6)) ∼ G24, so that C(σ2
6) is

a [72, 12, 24] code and

dim E(σ2
6) = dim C − dim C(σ2

6) = 36 − 12 = 24.
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The decomposition above follows, as observed in Section 2.2, by representa-

tion theory arguments: let us take G = 〈σ6〉 and observe that

1 = (1 + σ2
6 + σ4

6)︸ ︷︷ ︸
f0

+ (σ2
6 + σ4

6)︸ ︷︷ ︸
f1

is a decomposition of 1 into (central) orthogonal idempotents of K〈σ6〉.

Remark 3.3. We point out that

• C(σ2
6) = Cf0 and E(σ2

6) = Cf1;

• V(σ2
6) = Vf0, the subspace of all vectors �xed by σ2

6;

• V(σ2
6)⊥ = Vf1 is the set of vectors of even weight on the orbits of σ2

6.

All spaces C(σ2
6), E(σ2

6), V(σ2
6), V(σ2

6)⊥ are K〈σ6〉-modules.

By Table 1.1 we have s(3) = 2, so that the group algebraK〈σ6〉 has exact-
ly two irreducible submodules: the trivial one, say K and a 2-dimensional

one, say V . Since K〈σ6〉 is the tensor product of K〈σ2
6〉 and K〈σ3

6〉,

K〈σ6〉 = P(K)⊕ P(V )

where P(K) =
K

K
is a non-split extension of K by K and P(V ) =

V

V

is a non-split extension of V by V . P(K) and P(V ) are the two projective

indecomposable modules for K〈σ6〉.
Since σ6 has no �xed points, V ∼= K〈σ6〉12. Then

V ∼=
K

K
⊕ . . .⊕

K

K︸ ︷︷ ︸
12 times

⊕
V

V
⊕ . . .⊕

V

V︸ ︷︷ ︸
12 times

Obviously

V(σ2
6) ∼=

K

K
⊕ . . .⊕

K

K︸ ︷︷ ︸
12 times
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and

V(σ2
6)⊥ ∼=

V

V
⊕ . . .⊕

V

V︸ ︷︷ ︸
12 times

.

In particular, V is the only composition factor of V(σ2
6)⊥.

Note that soc(V) = V(σ3
6) and soc(V(σ2

6)) = V(σ6).

Remark 3.4. By Proposition 3.3, πσ3
6
(C(σ3

6)) is self-dual. So, Theorem 2.6

tells us that C is projective.

Furthermore, by Proposition 3.3 again,

C(σ2
6) ∩ C(σ3

6) = C(σ6)

with dim C(σ2
6) = 12, dim C(σ3

6) = 18 and dim C(σ6) = 6, so that C has the

following structure

C ∼=
K

K
⊕ . . .⊕

K

K︸ ︷︷ ︸
6 times

⊕
V1

V1

⊕
V2

V2

⊕
V3

V3

⊕
V4

V4

⊕
V5

V5

⊕
V6

V6

.

where Vi ∼= V for every i ∈ {1, . . . , 6}. In particular, C is a free K〈σ6〉-module
of rank 6.

Finally, note that dim(C(σ2
6) + C(σ3

6)) = 24.

We know that soc(E(σ2
6)) = (C(σ2

6) + C(σ3
6)) ∩ V(σ2

6)⊥. Then, in order

to get soc(E(σ2
6)), we determine the possible spaces C(σ2

6) + C(σ3
6).

In particular, we will prove in Subsection 3.2.1 the following theorem.

Theorem 3.3. C(σ2
6) + C(σ3

6) belongs, up to equivalence, to a set L of

cardinality 38. Every element of L is a binary self-orthogonal doubly-even

[72, 24, 16] code.

We need to modify a little the set L.

Remark 3.5. Theorem 3.3 implies that, if C does exist, there are L ∈ L and

ρ ∈ S72 such that

(C(σ2
6) + C(σ3

6))ρ = L.
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We remark that, a priori, σρ6 can be di�erent from σ6.

However, σρ6 is an automorphism of L of order 6 and it has the same

cycle structure as σ6. Furthermore L = L((σ2
6)ρ) + L((σ3

6)ρ). There are few

elements with these features in Aut(L), L ∈ L.
For every L ∈ L, let us call BL = {β1, . . . , βnL} the set of representatives of

conjugacy classes of such elements and choose ρ1, . . . , ρnL such that β
ρi
i = σ6.

We de�ne a new set, say L′, substituting each L with the set {Lρ1 , . . . ,LρnL}.
So there exist L′ ∈ L′ and ψ ∈ S72 with

(C(σ2
6) + C(σ3

6))ψ = L′ and σψ6 = σ6.

We conclude the construction following the track carried out in Remark

2.1: we know the possible socles of E(σ2
6). So we look at all the possible

projective covers, doing an exhaustive search with Magma. We will explain

all the details in Subsection 3.2.2.

With exhaustive search we did not �nd any extremal self-dual binary

linear code. Thus we prove the following.

Theorem 3.4. The automorphism group of a self-dual [72, 36, 16] code does

not contain elements of order 6.

Corollary 3.1. The automorphism group of a self-dual [72, 36, 16] code is

not isomorphic to C6, C12, C6 × C2, D12, C3 o C4, D24, (C6 × C2) : C2,

D8 × C3, A4 × C2, D12 × C2 or C6 × C2 × C2.

3.2.1 Proof of Theorem 3.3

By (3.1), Proposition 3.3 and Section 2.5 we have

• σ2
6 = (1, 3, 5)(2, 4, 6) . . . (67, 69, 71)(68, 70, 72);

• σ3
6 = (1, 4)(2, 5)(3, 6) . . . (67, 70)(68, 71)(69, 72);

• πσ2
6
(C(σ2

6)) ∼ G24;
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• πσ3
6
(C(σ3

6)) ∼ K, where K is one of the 41 self-dual [36, 18, 8] codes

classi�ed by Mechor and Gaborit;

• πσ6(C(σ6)) ∼ F , with F self-dual [12, 6, 4] code with generator matrix

M ;

• ησ3
6
(σ6) ∈ Aut(πσ2

6
(C(σ2

6))) of type 2-(12, 0);

• ησ2
6
(σ6) ∈ Aut(πσ3

6
(C(σ3

6))) of type 3-(12, 0);

Let us denote

σ2 := ησ3
6
(σ6) = (1, 2)(3, 4) . . . (23, 24),

σ3 := ησ2
6
(σ6) = (1, 2, 3)(4, 5, 6) . . . (34, 35, 36).

We have only one conjugacy class of such an element in the automorphism

group of the extended binary Golay code, so the action of σ6 on πσ2
6
(C(σ2

6))

is completely determined. Furthermore, the natural projection of the �xed

code by this element is equivalent to F .
Only 13 out of the 41 codes classi�ed by Mechor and Gaborit have automor-

phisms of type 3-(12, 0) (for a total of 19 conjugacy classes). We collect them

in a set called D. Moreover, we have that the natural projections of the �xed

codes by such elements are equivalent to F .
Now we describe the step of the proof, which is mainly algorithmic.

Step 1. Choose a particular extended binary Golay code, say G, and �nd a

representant, say µ, of the only conjugacy class of element of type 2-(12, 0).

CallM = G(µ). Denote by τ an element of S24 such that

πσ2(Mτ ) = F .

The element µτ is of type 2-(12, 0) and it �xes π−1
σ2

(F). The only element

with these features in Aut(π−1
σ2

(F)) is σ2, by calculations. So µτ = σ2.

Set G ′ = Gτ . Denote A = Aut(π−1
σ2

(F)) and G = G ′A, i.e. G is the orbit of

G ′ under the action of A. We remark that |G| = |A|
|A∩Aut(G′)| = 12, 288.
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Lemma 3.1. G is the set of all extended binary Golay codes which have

π−1
σ2

(F) as �xed code of σ2.

Proof. Take an extended binary Golay code J with π−1
σ2

(F) as subcode �xed

by σ2. Then, there exists η ∈ S24 such that J η = G. Since there is only

one conjugacy class of elements of type 2-(12, 0) there exists η′ ∈ Aut(M)

such that σ2
ηη′ = µ, so that (π−1

σ2
(F))ηη

′
= G(µ) =M. Then (π−1

σ2
(F))ηη

′τ =

Mτ = π−1
σ2

(F), so that ηη′τ ∈ A. But J ηη′τ = G ′ and then J ∈ G ′A = G.

Step 2. Take the codes in D, say D1, . . . ,D13.

Denote
{ε1,1, . . . , ε1,n1} ⊂ Aut(D1),

...

{ε13,1, . . . , ε13,n13} ⊂ Aut(D13)

the sets of representatives of conjugacy classes of automorphisms of order 3

and degree 36 of Aut(D1), . . . ,Aut(D13) respectively.

Find µi,j ∈ S36 such that ε
µi,j
i,j = σ3 and (Di(εi,j))µi,j = π−1

σ3
(F). Set Di,j =

Dµi,ji .

Put H = {Di,j}.
H is a proper subset of all the codes equivalent to D1, . . . ,D13 which contain

π−1
σ3

(F). The following lemma shows that H is large enough to allow us to

determine all the possible C(σ2
6) + C(σ3

6).

Lemma 3.2. There exist G ∈ G and H ∈ H such that C(σ2
6) + C(σ3

6) is

equivalent to

πσ3
6

−1(G) + πσ2
6

−1(H).

Proof. Up to equivalence, we can suppose

C(σ2
6) ∩ C(σ3

6) = π−1
σ6

(F).

There exist i ∈ {1, . . . , 13} and µ ∈ S36 such that πσ3(C(σ3
6))µ = Di. There

exist j ∈ {i, . . . , ni} and µ′ ∈ Aut(Di) such that

σ3
µµ′ = εi,j.

Set τ = µµ′µi,j. We have
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a) πσ3
6
(C(σ3

6))τ = Di,j;

b) τ ∈ CS36(σ3);

c) τ ∈ Aut(π−1
σ3

(F)).

It is now possible to construct an element τ ∈ S72 with the following prop-

erties:

a) πσ3
6
(cτ ) = (πσ3

6
(c))τ for all c ∈ C(σ3

6);

b) τ ∈ CS72(σ6);

c) τ ∈ Aut(π−1
σ6

(F)).

This element is of course in η−1
σ3

6
(τ), but here we want to give an explicit

construction, which we will do in Remark 3.6.

a) implies that πσ3
6
(C(σ3

6)τ ) ∈ H.
b) implies that C(σ2

6)τ = Cτ (σ2
6). Actually, if c ∈ C(σ2

6), then (cτ )σ
2
6 =

(cτ )τ
−1σ2

6τ = cτ ; it follows that every word of C(σ2
6)τ is �xed by σ2

6. So C(σ2
6)τ ,

whose dimension is obviously 12, is contained in Cτ (σ2
6). As Cτ is a self-dual

[72, 36, 16] code with σ6 as automorphism, Cτ (σ2
6) has dimension 12 too, and

thus C(σ2
6)τ = Cτ (σ2

6). This implies that πσ2
6
(C(σ2

6)τ ) is an extended binary

Golay code.

c) implies that π−1
σ2

(F) is a subcode of πσ2
6
(C(σ2

6)τ ). Indeed,

π−1
σ2

(F) = πσ2
6
(π−1

σ6
(F)) =

= πσ2
6
((π−1

σ6
(F))t)).

Thus πσ2
6
(C(σ2

6)τ ) ∈ G.

Remark 3.6. For reader's convenience we give an explicit construction of τ

through wreath product.

Let ∆ = {1, 2} and Γ = {1, 2, 3}. We have S∆ ' S2 and SΓ ' S3. We

describe the action of the wreath product S∆ o SΓ on the coordinates of F6
2.

Firstly, we can see

∆× Γ = ∆1 ∪∆2 ∪∆3
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with ∆1 = {1, 4}, ∆2 = {2, 5} and ∆3 = {3, 6}. This can be send in the

ordered set Ω = {1, 2, 3, 4, 5, 6} in a natural way, that is sending the �rst

element of ∆1 in the �rst element of Ω, the second element of ∆1 in the

fourth element of Ω, the �rst element of ∆2 in the second element of Ω and

so on, i.e. by sending i in i, in the ordered set Ω. We denote this map

ϕ : ∆1 ∪∆2 ∪∆3 → Ω.

An element µ of S∆ o SΓ has the shape

µ = (δ1, δ2, δ3, γ) ∈ S∆ × S∆ × S∆ × SΓ.

The action of µ on ∆1 ∪∆2 ∪∆3 is the following:

(∆1 ∪∆2 ∪∆3)µ =

= (∆γ−11)δγ−11 ∪ (∆γ−12)δγ−12 ∪ (∆γ−13)δγ−13 .

With this notation it is possible to check that, for example,

(1, 2, 3, 4, 5, 6) = ϕ−1(Id, Id, (1, 2), (1, 2, 3))ϕ.

In a similar way, we have that

S2 o S36 = S∆ o SΓ36 ,

where Γ36 = {1, . . . , 36}, acts on the coordinates of F72
2 , thanks to a suitable

ϕ36 : {1, 4}︸ ︷︷ ︸
∆1

∪{2, 5}︸ ︷︷ ︸
∆2

∪{3, 6}︸ ︷︷ ︸
∆3

∪ . . . ∪ {69, 72}︸ ︷︷ ︸
∆36

→ Ω72,

where Ω72 = {1, . . . , 72}. With this notation we have that

σ6 = ϕ−1
36 (Id, Id, (1, 2), . . . , Id, Id, (1, 2), σ3)ϕ36.

Now, the τ ∈ S72 that we were looking for is

τ = ϕ−1
36 (Id, Id, (1, 2), . . . , Id, Id, (1, 2), τ)ϕ36.

This τ has all the required properties (it is checkable by hand).

Step 3. Construct the set of all πσ2
−1(G)+πσ3

−1(H), with G ∈ G and H ∈ H
and take one representant for each equivalence class of this set. Collect them

in the set L.
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3.2.2 Description of the exhaustive search

We know that (C(σ2
6) + C(σ3

6))ψ = L and σψ6 = σ6 for some L ∈ L′ and
ψ ∈ S72. Put C ′ = Cψ. Then C ′ is a self-dual [72, 36, 16] code which admits

σ6 as automorphism. We have C ′ = C ′(σ2
6) ⊕ E ′(σ2

6). From Remark 3.4 we

have soc(E ′(σ6)) = (C ′(σ2
6) + C ′(σ3

6)) ∩ V(σ2
6)⊥ = L ∩ V(σ2

6)⊥. Let us �x

L ∩ V(σ2
6)⊥ = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5 ⊕ V6,

a decomposition of L ∩ V(σ2
6)⊥ in irreducible K〈σ6〉-modules.

By Remark 2.1 and Remark 3.4 we have that

E ′(σ2
6) =

V1

V1

⊕
V2

V2

⊕
V3

V3

⊕
V4

V4

⊕
V5

V5

⊕
V6

V6

,

where P(Vi) =
Vi

Vi
is a projective indecomposable module with socle Vi, for

i ∈ {1, . . . , 6}.

Remark 3.7. Since 1 + σ3
6 is in the Jacobson radical of K〈σ6〉, we get

Vi = P(Vi)(1 + σ3
6).

Remark 3.8. We have L ⊂ C ′ = C ′⊥ ⊂ L⊥. In particular

L ∩ V(σ2
6)⊥ ⊂ E ′(σ2

6) ⊂ L⊥ ∩ V(σ2
6)⊥.

Let us call U a subspace of L⊥ ∩ V(σ2
6)⊥ such that

(L ∩ V(σ2
6)⊥)⊕ U = L⊥ ∩ V(σ2

6)⊥

(by simple calculations dim(U) = 24). Obviously there exist W1, . . . ,W6,

2-dimensional subspaces of U , such that

P(Vi) = Vi ⊕Wi,

for i ∈ {1, . . . , 6}. Let us underline that every Wi is a subspace but not a

K〈σ6〉-module. Furthermore, by Remark 3.7, Wi(1 + σ3
6) is contained in Vi.
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Finally, it is easy to prove that, for every nonzero vi ∈ Vi, there exists a

wi ∈ Wi such that

wi ·K〈σ6〉 = P(Vi) and wi(1 + σ3
6) = vi.

These remarks give us all the tools to do an exhaustive search. Let us

explain our algorithm.

Take the set L′ de�ned in Remark 3.5 and, for every L ∈ L′, do:
Step 1. Find 6 irreducible K〈σ6〉-modules, say V1, . . . , V6, such that

L ∩ V(σ2
6)⊥ = V1 ⊕ . . .⊕ V6.

Choose one nonzero element vi ∈ Vi for every i ∈ {1, . . . , 6}.
Step 2. Set U := L⊥ ∩ V(σ2

6)⊥ and, for every i ∈ {1, . . . , 6}, �nd the sets

(HL)i := {u ∈ U | u(1 + σ3
6) = vi}.

By linear algebra arguments, (HL)i is the coset ker(m) + wi, where

m : U → soc(V(σ2
6)⊥)

is the map u 7→ u(1 + σ3
6) and m(wi) = vi.

Moreover | ker(m)| = 212 = 4096.

For every i ∈ {1, . . . , 6}, �nd the sets

(HL′)i := {w ∈ (HL)i | L+K〈σ6〉 is doubly-even}

and then

(HL′′)i := {w ∈ (HL′)i | d(L+ w ·K〈σ6〉) ≥ 16}.

We can remark that |(HL′′)i| < 211 = 2048, by calculations.

Step 3. Find the subset PL of (HL′′)1 × (HL′′)2 so de�ned

PL := {(w1, w2)| d(L+ w1 ·K〈σ6〉+ w2 ·K〈g〉) ≥ 16}.

Find the subset TL of PL × (HL′′)3 so de�ned

TL := {(w1, . . . , w3) | d(L+ w1 ·K〈σ6〉+ . . .+ w3 ·K〈σ6〉) ≥ 16}.
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Find the subset QL of TL × (HL′′)4 so de�ned

QL := {(w1, . . . , w4) | d(L+ w1 ·K〈σ6〉+ . . .+ w4 ·K〈σ6〉) ≥ 16}.

Find the subset FL of QL × (HL′′)5 so de�ned

FL := {(w1, . . . , w5) | d(L+ w1 ·K〈σ6〉+ . . .+ w5 ·K〈σ6〉) ≥ 16}.

Find the subset SL of FL × (HL′′)6 so de�ned

SL := {(w1, . . . , w6) | d(L+ w1 ·K〈σ6〉+ . . .+ w6 ·K〈σ6〉) ≥ 16}.

Theorem 3.3 tells us that, if a self-dual [72, 36, 16] code with automor-

phism of order 6 exists, then it has a subcode equivalent to one of the 38

codes in L.
Remarks 3.5 and 3.8 imply that the eventual code can be found in the sets

{L+ w1 ·K〈σ6〉+ . . .+ w6 ·K〈σ6〉 | (w1, . . . , w6) ∈ SL}L∈L′ .

Magma calculations �nd SL empty, for every L ∈ L′. So a self-dual [72, 36, 16]

code with automorphism of order 6 does not exist.

3.3 Case Aut(C) containing a subgroup isomor-

phic to S3

In this section we will get that the automorphism groups of extremal self-

dual binary linear codes of length 72 cannot be of order 6, excluding also the

non-abelian case. We apply here the methods of Section 2.4, which are, as

we said, a generalization of those used by Nebe and Feulner in [24] for the

non-abelian automorphism group of order 10.

Let C be a self-dual [72, 36, 16] code and suppose that G ≤ Aut(C) with

G ∼= S3.
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Let σ2 denote an element of order 2 and σ3 an element of order 3 in G.

By Proposition 3.1, σ2 and σ3 are �xed point free automorphisms. So we can

suppose that

σ2 = (1, 4)(2, 6)(3, 5) . . . (67, 70)(68, 72)(69, 71)

and

σ3 = (1, 2, 3)(4, 5, 6) . . . (67, 68, 69)(70, 71, 72).

As we have seen in Section 2.2,

C = C(σ3)⊕ E(σ3)

where E(σ3) is the subcode of C of all the codewords with an even weight on

the cycles of σ3, of dimension 24.

Since σ2 and σ3 are �xed point free, s(3) = 3 − 1 and πσ2(C(σ2)) is self-

dual, all the requirements of Theorem 2.7 are satis�ed. Then

C = π−1
σ3

(A)⊕ ϕ−1
3 (〈π−1(B)〉F4)

where A ≤ F24
2 , self-dual binary linear code, B ⊆ F12

4 , F2-linear (additive)

trace-Hermitian self-dual quaternary code, ϕ3 is the map de�ned in Section

2.2 and

π := F12
4 → F6

4

maps (ε1, ε2, . . . , ε11, ε12) 7→ (ε1, . . . , ε11).

We have, in particular,

C(σ3) = π−1
σ3

(A)

and

E(σ3) = ϕ−1
3 (〈π−1(B)〉F4).

Since every nonzero element of the �eld correspond to a vector of weight

2, we have that the minimum distance of ϕ3(E(σ3)) is ≥ 8. So the code B is

an additive trace-Hermitian self-dual (12, 212,≥ 4)4 code. All additive trace-

Hermitian self-dual codes in F12
4 are classi�ed in [20]. There are 195, 520 such

codes that have minimum distance ≥ 4 up to monomial equivalence.
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Remark 3.9. If X and Y are monomial equivalent, via a 12× 12 monomial

matrix M := (mi,j), then ϕ3(X ) and ϕ3(Y) are monomial equivalent too,

via the 24 × 24 monomial matrix M ′ := (m′i,j), where m
′
2i−1,2j−1 = mi,j and

m′2i,2j = mi,j, for all i, j ∈ {1, . . . , 12}.

An exhaustive search with Magma shows that the minimum distance

of 〈π−1(B)〉F4 is ≤ 6, for each of the 195, 520 additive trace-Hermitian self-

dual (12, 212,≥ 4)4 codes. But E(g)′ should have minimum distance ≥ 8, a

contradiction. So we proved the following.

Theorem 3.1. The automorphism group of a self-dual [72, 36, 16] code does

not contain a subgroup isomorphic to S3.

In particular we exclude S3 and S4.

3.4 Case Aut(C) containing a subgroup isomor-

phic to A4 or to D8

In this section we will prove that the automorphism group of the putative

extremal self-dual binary linear code of length 72 is not isomorphic to A4 or

D8, excluding the last possible non-abelian automorphism groups.

The methods for the two groups are very similar, so we will present them

in parallel. In facts, we �rstly look at the action of the Klein four group,

which is a normal subgroup of both, �nding the sum of the codes �xed by

the involutions using the action of the full group, with methods similar to

those exposed in Section 2.5. Then we build the whole code, with di�erent

methods for the two cases. Doing an exhaustive search with Magma, we

check that no extremal code occurs.

3.4.1 The action of the Klein four group

First of all, we note, as we said above, that the Klein four group V4 is a normal

subgroup of both the alternating group A4 of degree 4 and the dihedral
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group D8 of order 8. In particular, we point out their structure as semidirect

product:

A4
∼= V4 o C3

∼= (C2 × C2) o C3

D8
∼= V4 o C2

∼= (C2 × C2) o C2

Let now C be a self-dual [72, 36, 16] code such that H ≤ Aut(C) where

H ∼= A4 or H ∼= D8.

By Proposition 3.1 all non-trivial elements in H are �xed point free and

we can suppose, without lost of generality, that H = 〈α, β〉o 〈σi〉, i = 3 and

i = 2 respectively, with

α := (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12) . . . (71, 72)

β := (1, 3)(2, 4)(5, 7)(6, 8)(9, 11)(10, 12) . . . (70, 72)

σ3 := (1, 5, 9)(2, 7, 12)(3, 8, 10)(4, 6, 11) . . . (64, 66, 71)

σ2 := (1, 5)(2, 8)(3, 7)(4, 6) . . . (68, 70)

Let

G := CS72(H) = {τ ∈ S72 | τα = ατ, τβ = βτ, τσi = σiτ}

(i = 2, 3 respectively) denote the centralizer of H in S72.

Then G acts on the set of extremal self-dual binary linear codes with H

subgroup of their automorphism group and we aim to �nd a system of orbit

representatives for this action.

As usual we de�ne πα : F72
2 → F36

2 . Then we have

π′ : {v ∈ F72
2 | vα = v and vβ = v} → F18

2

(v1, v1, v1, v1, v2, . . . , v18) 7→ (v1, v2, . . . , v18)

the bijection between the �xed space of 〈α, β〉 and F18
2 . Then β acts on the

image of F18
2 as

(1, 2)(3, 4) . . . (35, 36).

Let
π′′ : {v ∈ F36

2 | vηα(β) = v} → F18
2 ,

(v1, v1, v2, v2, . . . , v18, v18) 7→ (v1, v2, . . . , v18),

so that π′ = π′′ ◦ πα.
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Remark 3.10. As in Section 2.5 we note that CS72(α) ∼= C2 o S36 acts on the

set of �xed points of α and so we denote by ηα the map

ηα : CS72(α)→ S36

with kernel C36
2 . Similarly we obtain the epimorphism

η′′ : CS36(ηα(β))→ S18.

The normalizer NS72(〈α, β〉) acts on the set of 〈α, β〉-orbits which de�nes a

homomorphism

η′ : NS72(〈α, β〉)→ S18.

We know by Proposition 3.1 that the code πα(C(α)) is, up to equivalence,

one among the 41 codes classi�ed in [42]. Let

Y1, . . . ,Y41

be a system of representatives of these extremal self-dual binary linear codes

of length 36.

Remark 3.11. We have that C(α) ∈ D where

D :=

{
D ≤ F36

2

∣∣∣∣∣ D = D⊥, d(D) = 8, ηα(β) ∈ Aut(D)

and η′′(σi) ∈ Aut(π′′(D(ηα(β))))

}
.

For 1 ≤ k ≤ 41 let Dk := {D ∈ D | D ∼= Yk}.

Let G36 := {τ ∈ CS36(ηα(β)) | η′′(τ)η′(σi) = η′(σi)η
′′(τ)}.

Remark 3.12. The following facts hold, by direct calculations:

• for H ∼= A4 the group G36 is isomorphic to C2 o C3 o S6. It contains

ηα(G) ∼= A4 o S6 and of index [G36 : ηα(G)] = 64;

• for H ∼= D8 we get G36 = ηα(G) ∼= C2 o C2 o S9.

Now we want to compute a set of representatives of the G36-orbits on Dk.

Thus we perform the following steps:
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• Let β1, . . . , βs represent the conjugacy classes of �xed point free ele-

ments of order 2 in Aut(Yk).

• Compute elements τ1, . . . , τs ∈ S36 such that τ−1
i βiτi = ηα(β) and put

Di := Yτik so that ηα(β) ∈ Aut(Di).

• For all Di let ζ1, . . . , ζti a set of representives of the action by conjuga-

tion by the subgroup η′′(CAut(Di)(ηα(β))) on �xed point free elements of

order 3 (forH ∼= A4) respectively 2 (forH ∼= D8) in Aut(πα(Di(ηα(β)))).

• Compute elements ρ1, . . . ρti ∈ S18 such that ρ−1
j ζjρj = η′′(σι) (ι = 3, 2

respectively), lift ρj naturally to a permutation ρ̃j ∈ S36 commuting

with ηα(β) (de�ned by ρ̃j(2a − 1) = 2ρj(a) − 1, ρ̃j(2a) = 2ρj(a)) and

put

Di,j := (Di)ρ̃j = Yτiρ̃jk

so that ηα(σι) ∈ Aut(π′(Di,j(ηα(β)))).

Lemma 3.3. The set {Di,j | 1 ≤ i ≤ s, 1 ≤ j ≤ ti} de�ned above represents

the G36-orbits on Dk.

Proof. Clearly these codes lie in Dk.

Now assume that there is some τ ∈ G36 such that

Yτi′ ρ̃j′τk = Dτi′,j′ = Di,j = Yτiρ̃jk .

Then

ε := τi′ ρ̃j′τ ρ̃
−1
j τ−1

i ∈ Aut(Yk)

satis�es εβiε
−1 = βi′ , so βi and βi′ are conjugate in Aut(Yk), which implies

i = i′ (and so τi = τi′). Now,

Yτiρ̃j′τk = Dρ̃j′τi = Dρ̃ji = Yτiρ̃jk .

Then

ε′ := ρ̃j′τ ρ̃
−1
j ∈ Aut(Di)
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commutes with ηα(β). We compute that η′′(ε′)ζjη
′′(ε′−1) = ζj′ and hence

j = j′.

Now let D ∈ Dk and choose some ξ ∈ S36 such that Dξ = Yk. Then

ηα(β)ξ is conjugate to some of the chosen representatives βi ∈ Aut(Yk)
(i ∈ 1, . . . , s) and we may multiply ξ by some automorphism of Yk so that

ηα(β)ξ = βi = ηα(β)τ
−1
i . So ξτi ∈ CS36(ηα(β)) and Dξτi = Yτik = Di. Since

η′′(σι) ∈ Aut(π′′(D(ηα(β)))) we get

η′′(ξτi)
−1η′′(σι)η

′′(ξτi) ∈ Aut(π′′(Di(ηα(β))))

and so there is some automorphism µ ∈ η′′(CAut(Di)(ηα(β))) and some

j ∈ {1, . . . , ti} such that µ−1η′′(ξτi)
−1η′′(σι)η

′′(ξτi)µ = ζj. Then

Dξτiµ̃ρ̃j = Di,j

where ξτiµ̃ρ̃j ∈ G36.

Next we will deal separately the two cases.

3.4.2 Case H ∼= A4

We now deal with the case H ∼= A4.

Remark 3.13. We use the algorithm given in Lemma 3.3 to compute, with

Magma, that there are exactly 25, 299 G36-orbits on D, represented by, say,

X1, . . . ,X25,299.

By Remark 3.12 we have [G36 : πα(G)] = 64. Let α1, . . . , α64 ∈ G36 be a

left transversal of πα(G) in G36 .

Then the set

{X αj
i | 1 ≤ i ≤ 25, 299, 1 ≤ j ≤ 64}

contains a set of representatives of the ηα(G)-orbits on D.
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Remark 3.14. For all 1 ≤ i ≤ 25, 299, 1 ≤ j ≤ 64 we compute, with

Magma, the code

E := E(X αj
i , σ3) := D̃ + D̃σ3 + D̃σ2

3 , where D̃ = π−1
α (X αj

i ).

For three Xi there are two codes D̃i,1 = π−1
α (X αj1

i ) and D̃i,2 = π−1
α (X αj2

i ) such

that E(X αj1
i , σ3) and E(X αj2

i , σ3) are doubly even and of minimum distance

16. In all three cases, the two codes are equivalent. Let us call the inequiva-

lent codes E1, E2 and E3, respectively. They have dimension 26, 26, and 25,

respectively, minimum distance 16 and their automorphism groups are

Aut(E1) ∼= S4,Aut(E2) of order 432,Aut(E3) ∼= (A4 ×A5) : 2.

All three groups contain a unique conjugacy class of subgroups conjugate in

S72 to A4 (which is normal for E1 and E3).

Thus we have the following result, which is a direct consequence of Re-

mark 3.14 and of Theorem 2.8.

Theorem 3.5. The code C(α) + C(β) + C(αβ) is equivalent under the action

of G to one of the three codes E1, E2 or E3 of Remark 3.14.

Now, we know, up to equivalence, a quite large subcode of our putative

extremal self-dual binary linear code. Next, we try to construct the whole

code.

Let E be one of these three codes. The group A4 acts on V := E⊥/E
with kernel 〈α, β〉. The space V is hence an F2〈σ3〉-module supporting a σ3-

invariant form such that C is a self-dual submodule of V . We obtain as usual

a canonical decomposition, as in Section 2.2,

V = V(σ3)⊕W

where V(σ3) is the �xed space of σ3 and σ3 acts as a primitive third root of

unity on W .
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For E = E1 or E = E2 we compute that V(σ3) ∼= F4
2 and W ∼= F8

4. For

both codes the full preimage of every self-dual submodule of V(σ3) is a code

of minimum distance < 16.

For E = E3 the dimension of V(σ) is 2 and there is a unique self-dual

submodule of V(σ3) so that the full preimage E3 is doubly-even and of mi-

nimum distance ≥ 16. The element σ3 acts on E⊥3 /E3
∼= W with irreducible

minimal polynomial, so E⊥3 /E3
∼= F10

4 . The code C is a preimage of one of

the 58, 963, 707 maximal isotropic F4-subspaces of the Hermitian F4-space

E⊥3 /E3.

The unitary group GU(10, 2) of E⊥3 /E3
∼= F10

4 acts transitively on the

maximal isotropic subspaces. So a quite convenient way to enumerate all

these spaces is to compute an isometry of E⊥3 /E3 with the standard model used

in Magma and then compute the GU(10, 2)-orbit of one maximal isotropic

space (e.g. the one spanned by the �rst 5 basis vectors in the standard model).

For computational reasons, we �rst compute all 142, 855 one dimensional

isotropic subspaces E3/E3 ≤F4 E⊥3 /E3 for which the code E3 has minimum

distance ≥ 16. The automorphism group Aut(E3) = Aut(E3) acts on these

codes with 1, 264 orbits. For all these 1, 264 orbit representatives E3 we

compute the 114, 939 maximal isotropic subspaces of E⊥3 /E3 (as the orbits

of one given subspace under the unitary group GU(8, 2) in Magma) and

check whether the corresponding self-dual doubly-even binary linear code

has minimum distance 16. No such code is found.

This computation concludes the proof of the following theorem.

Theorem 3.2. The automorphism group of a self-dual [72, 36, 16] code does

not contain a subgroup isomorphic to A4.

3.4.3 Case H ∼= D8

For this subsection we assume that H ∼= D8.

Then, by Remark 3.12, πα(G) = G36 and we may use Lemma 3.3 to

compute, with Magma a system of representatives of the ηα(G)-orbits on

the set D.
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Remark 3.15. The group ηα(G) acts on D with exactly 9, 590 orbits repre-

sented by, say, X1, . . . ,X9,590. For all 1 ≤ i ≤ 9, 590 we compute the code

E := E(Xi, σ2) := D̃ + D̃σ2 , where D̃ = π−1
α (Xi).

For four Xi the code E(Xi, σ2) is doubly even and of minimum distance 16.

Let us call the inequivalent codes E1, E2, E3 and E4, respectively. All have

dimension 26 and minimum distance 16.

Thus we have the following result, which is a direct consequence of Re-

mark 3.15 and of direct calculations.

Lemma 3.4. The code C(α) + C(β) + C(αβ) is equivalent under the action

of G to one of the four codes E1, E2, E3 or E4 of Remark 3.15.

As it seems to be quite hard to compute all D8-invariant self-dual over-

codes of Ei for these four codes Ei we apply a di�erent strategy which is based

on the fact that β = (ασ2)2 is the square of an element of order 4. So let

κ := ασ2 = (1, 8, 3, 6)(2, 5, 4, 7) . . . (66, 69, 68, 71) ∈ D8.

By [45], C is a free F2〈κ〉-module (of rank 9). Since 〈κ〉 is abelian, the

module is both left and right; here we use the right notation. The regular

module F2〈κ〉 has a unique irreducible module, 1-dimensional, called the

socle, that is 〈(1 + κ + κ2 + κ3)〉. So C, as a free F2〈κ〉-module, has socle

C(κ) = C · (1 + κ + κ2 + κ3). This implies that, for every basis b1, . . . , b9 of

C(κ), there exist w1, . . . , w9 such that wi · (1 + κ+ κ2 + κ3) = bi and

C = w1 · F2〈κ〉 ⊕ . . .⊕ w9 · F2〈κ〉.

To get all the possible overcodes of Ei, we choose a basis of the socle Ei(κ),

say b1, . . . , b9, and look at the sets

Wi,j := {w+Ei ∈ E⊥i /Ei | w ·(1+κ+κ2 +κ3) = bj and d(Ei+w ·F2〈κ〉) ≥ 16}

For every i we have at least one j for which the set Wi,j is empty. This

computation then shows the following result.

Theorem 3.3. The automorphism group of a self-dual [72, 36, 16] code does

not contain a subgroup isomorphic to D8.
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C2 × C2 × C2

3.5 Case Aut(C) containing a subgroup isomor-

phic to C2 × C2 × C2

In this section we will present our last result [8] on the automorphism group

of the putative extremal self-dual binary linear code of length 72, excluding

the elementary abelian group of order 8.

Partially inspired by the methods of the previous section, here the situa-

tion it is quite di�erent, because of the abelianity of the group: the point is

that we do not have a non-trivial action of a group on a normal subgroup,

since the group is abelian. However, after the classi�cation of the sum of two

�xed codes, a simple dimension argument gives the contradiction.

3.5.1 Preliminary observations and main theorem

Let us start with some preliminary observations.

Suppose C is a self-dual [72, 36, 16] code such that

Aut(C) ∼= C2 × C2 × C2.

By Proposition 3.1 all non-trivial elements of Aut(C) are �xed point free

and so, without lost of generality, we may suppose that Aut(C) = 〈α, β, γ〉
with

α := (1, 2)(3, 4)(5, 6)(7, 8) . . . (71, 72),

β := (1, 3)(2, 4)(5, 7)(6, 8) . . . (70, 72),

γ := (1, 5)(2, 6)(3, 7)(4, 8) . . . (68, 72).

Let V := F72
2 .

We de�ne the projections

πα : V(α)→ F36
2 , πβ : V(β)→ F36

2 and πγ : V(γ)→ F36
2

as in De�nition 1.17. As usual we get epimorphisms

ηα : CS72(α)→ S36, ηβ : CS72(β)→ S36 and ηγ : CS72(γ)→ S36
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all with kernel C36
2 .

By Proposition 3.3 we have that πα(C(α)), πβ(C(β)) and πγ(C(γ)) are

self-dual [36, 18, 8] codes. As we have said many times there 41 such codes,

up to equivalence.

Denoted

χ = (1, 2)(3, 4) . . . (35, 36)

and

µ = (1, 3)(2, 4) . . . (34, 36),

we have

H := 〈χ, µ〉 = 〈ηα(β), ηα(γ)〉 = 〈ηβ(α), ηβ(γ)〉 = 〈πγ(α), ηγ(β)〉,

and in particular, H ≤ Aut(πα(C(α))), H ≤ Aut(πβ(C(β))) and H ≤
Aut(πγ(C(γ))) respectively.

By direct calculations we have that exactly 14 of the 41 self-dual [36, 18, 8]

codes, say

Y := {Y1, . . . ,Y14}, (3.2)

have an automorphism group which contains at least one subgroup conju-

gated to H. Furthermore, we get the following conditions on the dimensions

of intersections of �xed codes.

Lemma 3.5. Let

(χ′, µ′, ζ ′) ∈ {(α, β, γ), (α, γ, β), (β, α, γ), (β, γ, α), (γ, α, β), (γ, β, α)}.

Then we have only the following possibilities:

Let G := CS72(Aut(C)). Then G acts on the set of extremal self-dual

binary linear codes with automorphism group 〈α, β, γ〉. We aim to �nd a

system of orbit representatives for this action.

As we have observed in Section 2.5, we have

πα(C(α))(χ) = πβ(C(β))(χ) (3.3)
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Table 3.1: Intersections of �xed codes

dim(C(χ′) ∩ C(µ′) ∩ C(ζ ′)) dim(C(χ′) ∩ C(µ′)) dim(C(χ′) ∩ C(ζ ′))
5 9 9

5 9 10

6 9 9

6 9 10

6 9 11

6 10 10

6 10 11

and similar relations hold for the other pairs of �xed codes.

The above property allows us to combine properly C(α) and C(β) classi-

fying their sum. We will get contradiction just by referring to Table 3.1.

So we will prove the following.

Theorem 3.6. The automorphism group of a self-dual [72, 36, 16] code does

not contain a subgroup isomorphic to C2 × C2 × C2.

3.5.2 Proof of Theorem 3.6

Let

D := {D = D⊥ ≤ F36
2 | d(D) = 8, 〈χ, µ〉 ≤ Aut(D)}.

The group

G36 := CS36(H) = ηα(G) = ηβ(G) = ηγ(G)

acts, naturally, on this set.

A set of representatives of the G36-orbits on D can be computed by per-

forming the following computations on each Y ∈ Y (where Y is as in (3.2)):

• Let χ1, . . . , χs represent the conjugacy classes of �xed point free ele-

ments of order 2 in Aut(Y).

• Compute elements τ1, . . . , τs ∈ S36 such that τ−1
k χkτk = χ and put

Yk := Yτk so that χ ∈ Aut(Yk).
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• For every Yk, consider the set of �xed point free elements µ̃ of order 2 in

CAut(Yk)(χ) such that 〈χ, µ̃〉 is conjugate to 〈χ, µ〉 in S36. Let µ1, . . . , µtk
represent the CAut(Yk)(χ)-conjugacy classes in this set.

• Compute elements σ1, . . . , σtk ∈ CS36(χ) such that σ−1
l µlσl = µ and put

Yk,l := Yσlk so that 〈χ, µ〉 ≤ Aut(Yk,l).

Lemma 3.6. The set D′ := {Yk,l | Y ∈ Y, 1 ≤ k ≤ s, 1 ≤ l ≤ tk} represents
the G36-orbits on D.

Proof. Clearly these codes lie in D.
Since G36 ≤ S36, if we consider di�erent (and so non-equivalent) elements in

Y ,Y ′ ∈ Y, then Y ′k′,l′ and Yk,l, de�ned as above, are not in the same orbit,

for any k′, l′, k, l.

Now assume that there is some λ ∈ G36 such that

Yτk′σl′ = Yλk′,l′ = Yk,l = Yτkσl .

Then

ε := τk′σl′λσ
−1
l τ−1

k ∈ Aut(Y)

satis�es εχkε
−1 = χk′ , so χk and χk′ are conjugate in Aut(Y), which implies

k = k′ (and so τk = τk′). Now,

Yτkσl′λ = Yσl′λk = Yσlk = Yτkσl .

Then

ε′ := σl′λσ
−1
l ∈ Aut(Yk)

commutes with χ. Furthermore ε′σlε
′−1 = σl′ and hence l = l′.

Now let Z ∈ D and choose some ξ ∈ S36 such that Zξ = Y ∈ Y.
Then ξ−1χξ is conjugate to some of the chosen representatives χk ∈ Aut(Y)

(i = 1, . . . , s) and we may multiply ξ by some automorphism of Y so that

ξ−1χξ = χk = τkχτ
−1
k .
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So ξτk ∈ CS36(χ) and Zξτk = Yτk = Yk.
It is straightforward to prove that the element (ξτk)

−1µ(ξτk) ∈ Aut(Yk) is a
�xed point free element of order 2 in CAut(Yk)(χ) such that 〈χ, (ξτk)−1µ(ξτk)〉
is conjugate to 〈χ, µ〉 in S36. So there is some automorphism ω ∈ CAut(Yk)(χ)

and some l ∈ {1, . . . , tk} such that (ξτkω)−1µ(ξτkω) = µl. Then

Yξτkωσl = Yk,l

where ξτkωσl ∈ G36.

With Magma we compute that |D′| = 242. For our purposes we need

to slightly modify this set: consider {Y(χ) | Y ∈ D} and take a set of

representatives for the action of G36 on this set, say E := {E1, . . . , Em}. By

calculations m = 40. For every i ∈ {1, . . . ,m} de�ne the set

D̃i := {Yε | Y ∈ D′ such that there exists ε ∈ G36 so that Y(χ)ε = Ei}.

Clearly
⋃m
i=1 D̃i is still a set of representatives of the G36-orbits on D. How-

ever, here we have Yj(χ) = Yk(χ) if and only if Yj,Yk ∈ D̃i. Furthermore, if

Yj and Yk do not belong to the same D̃i, we have that Yj(χ) and Yk(χ) are

not equivalent via the action of G36 (that is they are not in the same orbit).

Let

D(α,β)i
= {π−1

α (Yα)+(π−1
β (Yβ))ω ≤ F72

2 | Yα,Yβ ∈ D̃i, ω ∈ CAut(Yβ(χ))(〈χ, µ〉)}.

Remark 3.16. We observe that, in order to make the computations faster,

we can consider (π−1
β (Yβ))τ with τ varying in a right transversal of

Aut(Yβ(χ)) ∩ CAut(Yβ(χ))(〈χ, µ〉)

in

CAut(Yβ(χ))(〈χ, µ〉),

instead of (π−1
β (Yβ))ω with ω varying in CAut(Yβ(χ))(〈χ, µ〉).

Then we have the following fundamental result.
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Theorem 3.7. The code C(α) + C(β) is equivalent, via the action of G, to

an element of
⋃m
i=1 D(a,b)i

.

Proof. By Lemma 3.6 and by construction of
⋃m
i=1 D̃i, there exist

i ∈ {1, . . . ,m}, Ya ∈ D̃i and ρ̄ ∈ G36 such that πα(C(α))ρ̄ = Yα. Choose

ρ ∈ η−1
α (ρ). Then it is easy to observe that

• πβ(Cρ(β)) is a self-dual [36, 18, 8] code;

• 〈χ, µ〉 ≤ Aut(πβ(Cρ(β))) (since ρ ∈ G);

• (πβ(Cρ(β)))(χ) = (πα(Cρ(α)))(χ) = Ei (as in (3.3)).

Now, {(Yβ)τ | Yβ ∈ D̃i, τ ∈ CAut(Yβ(χ))(〈χ, µ〉)} is the set of all possible such
codes, so (πβ(Cρ(β)))(χ) is one of these codes.

Remark 3.17. There are, up to equivalence in the full symmetric group S72,

only 22 codes in
⋃m
i=1 D(α,β)i

such that the minimum distance is at least 16,

say D1, . . . ,D22. They are all [72, 26, 16] codes. In particular

dim(Di(α) ∩ Di(β)) = 10.

Corollary 3.2. The code C(α) +C(β) is equivalent, via the action of the full

symmetric group S72, to a code Di, with i ∈ {1, . . . , 22}.

We can repeat in a completely analogous way all the procedure for the

pairs (α, γ) and (β, γ), interchanging the roles of the elements α, β and γ.

Then we get the following.

Corollary 3.3. The codes C(α) + C(γ) and C(β) + C(γ) are equivalent, via

the action of the full symmetric group S72, to some codes Dj and Dk, with
j, k ∈ {1, . . . , 22}.

This implies that

dim(C(α) ∩ C(γ)) = 10 and dim(C(β) ∩ C(γ)) = 10. (3.4)
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Furthermore, by Magma calculations we get that

dim(C(α) ∩ C(β) ∩ C(γ)) = 5. (3.5)

Both statements can be veri�ed by taking all the elements α′, β′, γ′ of order

2 and degree 72 in Aut(Di) such that 〈α′, β′, γ′〉 is conjugate to 〈α, β, γ〉 in
S72.

To get a contradiction it is now enough to observe that (3.4) and (3.5)

are not compatible with the Table 3.1. So we have the thesis of Theorem 3.6.

3.6 Conclusion

Putting together all the results of these sections, we get the following theo-

rem, which summarize the actual state of art on the problem of the auto-

morphism group of a putative extremal self-dual binary linear code of length

72.

Theorem 3.8 (Pless, Conway, Thompson, Hu�man, Yorgov, Bouyuklieva,

O'Brien, Willems, Yankov, Feulner, Nebe, Borello, Dalla Volta).

Let C be self-dual [72, 36, 16] code. Then Aut(C) is trivial or it is isomorphic
to one of the following:

• Order 2: C2;

• Order 3: C3;

• Order 4: C4 or C2 × C2;

• Order 5: C5.

Remark 3.18. When this dissertation was already under review a preprint

by Vassil I. Yorgov and Daniel Yorgov [64] on the subject appeared. In this

paper they claim that the automorphism group of a self-dual [72, 36, 16] code

does not contain elements of order 4. We presented our result about the
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dihedral group of order 8, since the methods are interesting in any case and,

even if our result is weaker, the computations are much faster. In a recent

preprint [6] we review the current state of research in the light of the result

of the Yorgovs.

As one can see, the possible groups are abelian and very small, so that

the putative code has very few symmetries. We can say that it is �almost

rigid�. This does not prove its non-existence. However, if such code does

exist, it would be very di�cult to �nd it, at least with methods related to

automorphisms.

The following question remains open.

Question 3.1. Is a putative extremal self-dual binary linear code of length

72 rigid (i.e. with trivial automorphism group)?

In case of a positive answer to Question 3.1, it would be still possible,

of course, that the code exists. However, a classical module-theoretical ap-

proach would be useless in this case. The surveys [23] and [35] suggest some

ideas for a di�erent approach to the problem. In any case, the following

question is still completely open.

Question 3.2. How can we prove that an extremal self-dual binary linear

code of length 72 does exist or not?





CHAPTER 4

Some results on extremal self-dual binary linear codes of

other jump lengths

In this short chapter we present some results on automorphism groups of

extremal self-dual binary linear codes of jump lengths greater than 72, which

are investigated a bit in literature. We focus in particular on the case of

length 120, which is quite extensively studied. Our aim is mainly to show

that the methods of Chapter 2, thought to approach the case 72, may be

applied to many other codes.

It should be possible to deepen more the study of such cases, but this is

beyond the aim of this dissertation. Let us just mention that, to investigate

the automorphism groups of extremal self-dual binary linear codes of a certain

length with our methods, we need a classi�cation of codes of smaller lengths,

as we saw for example in Proposition 3.3. The actual state of the research is

often not advanced enough.

91
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4.1 Structure of automorphisms of prime order

In Chapter 3 we pointed out the following result by Bouyuklieva: all the

possible involutions in the automorphism group of a self-dual [72, 36, 16] code

are �xed point free. Her result however is more general. In fact she proved

the following theorem.

Theorem 4.1 ([13]). Let C be a self-dual [24m, 12m, 4m + 4] code and

σ2 ∈ Aut(C) of type 2-(c, f). Then

• (c, f) = (8, 8) or (c, f) = (12, 0), if m = 1;

• (c, f) = (48, 24) or (c, f) = (60, 0), if m = 5;

• f = 0, otherwise.

It is well-known that the automorphism group of the extended binary

Golay code (length 24) contains involutions with �xed points. In all the

other cases the involutions are �xed point free, except, maybe, for m = 5. It

is natural to ask the following.

Question 4.1. Are the automorphisms of order 2 of a self-dual [120, 60, 24]

code �xed point free?

If we look at the automorphisms of odd prime order, no general strong

result is known.

However, we get some partial results using the methods of Chapter 2.

Firstly, we reduce the possible orders and types of automorphisms, just

applying Theorem 2.2. In Table 4.1 we show which odd prime orders satis�es

the conditions of the theorem for some self-dual [24m, 12m, 4m+ 4] codes.

We observe that the table could be re�ned with other methods. For

example, a signi�cant classi�cation result about extremal extended cyclic

codes contained in the Ph.D thesis [39] of Anton Malevich (Theorem 2.4.14.)

implies that the primes in bold of the above table can be excluded.

In the following section we focus on the case of length 120.



CHAPTER 4. OTHER JUMP LENGTHS 93

Table 4.1: Automorphisms of odd prime order in jump lengths

parameters possible odd prime orders by Theorem 2.2

[96, 48, 20] 3, 5, 7, 11, 23, 31, 47

[120, 60, 24] 3, 5, 7, 11, 17, 19, 23, 29, 59

[144, 72, 28] 3, 5, 7, 11, 17, 23, 47, 71

[168, 84, 32] 3, 5, 7, 11, 13, 23, 41, 83, 167

[192, 96, 36] 3, 5, 7, 11, 13, 17, 19, 23, 31, 47, 191

[216, 108, 40] 3, 5, 7, 11, 13, 17, 23, 53, 71, 107

[240, 120, 44] 3, 5, 7, 11, 13, 17, 19, 23, 29, 47, 59, 79, 239

. . . . . .

[2400, 1200, 404] 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47,

59, 79, 109, 149, 199, 239, 479, 599, 2399

. . . . . .

4.2 Automorphisms of order 2p of the putative

self-dual [120, 60, 24] code

In this section we show an application of the methods contained in Section

2.3 to the putative extremal self-dual binary linear code of length 120.

From now on, let C be a self-dual [120, 60, 24] code.

Next theorem gives the most recent results about the cycle structure of

the automorphisms of C.

Theorem 4.2 ([21]). Let σ ∈ Aut(C). Then

a) if σ has order 2, then it is of type 2-(48, 24) or 2-(60, 0);

b) if σ has odd prime order, then it is of type 3-(40, 0), 5-(24, 0), 7-(17, 1),

19-(6, 6), 23-(5, 5) or 29-(4, 4);

c) if σ has odd composite order, then it is of type 3 · 5-(0, 0, 8; 0), 3 · 19-

(2, 0, 2; 0) or 5 · 23-(1, 0, 1; 0).
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The even composite orders are not considered in Theorem 4.2. So it is

natural to ask what is the cycle structure of an element σ2p ∈ Aut(C) of

order 2p, where p is an odd prime.

Statement a) of Theorem 4.2 a�rms that the involution σ2 := σp2p has

no or exactly 24 �xed points. The following result gives the possible cycle

structure of σ2p in both cases.

Lemma 4.1. If the involution σ2 has no �xed points, then σ2p is of type

• 2 · 29-(2, 0, 2; 0),

• 2 · 19-(3, 0, 3; 0),

• 2 · 5-(0, 0, 12; 0),

• or 2 · 3-(0, 0, 20; 0).

If σ2 has 24 �xed points then σ2p is of type

• 2 · 23-(2, 1, 2; 1),

• or 2 · 3-(0, 8, 16; 0).

Note that Aut(C) does not contain elements of order 2 · 7.

Proof. The proof is straightforward by considering the possible cycle struc-

tures of σp2p and of σ2
2p given in Theorem 4.2.

The above Lemma shows that σ2p satis�es the hypothesis of Corollary 2.3

if and only if p = 19. In this case we have

dim C(σ2) ≥ 120

4
+

19− 1

2
= 39

so that πσ2(C(σ2)) is a [60,≥ 39,≥ 12] code. According to Grassl's list [26]

a binary linear code of length 60 and dimension greater than or equal to 39

has minimum distance at most 10. This proves the following.
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Theorem 4.3. The automorphism group of a self-dual [120, 60, 24] code does

not contain elements of order 38.

The situation is slightly more complicated for the possible automorphism

σ58 of order 58. By Lemma 4.1, we know that σ58 is of type 2 · 29-(2, 0, 2; 0).

Therefore σ29 := σ2
58 is of type 29-(4, 4) and σ2 := σ58

29 is of type 2-(60, 0).

Thus, without loss of generality, we may assume that

σ29 = (1, . . . , 29)(30, . . . , 58)(59, . . . , 87)(88, . . . , 116)

and

σ2 = (1, 30) . . . (59, 88) . . . (117, 118)(119, 120).

If πσ29 : C(σ29) → F8
2 is the usual projection, the code πσ29(C(σ29)) is a

self-dual binary linear code of length 8, according to Theorem 2.1, and its

minimum distance must be greater than or equal to 4, since C is doubly-even
and of minimum distance 24. It is well-known that, up to equivalence, the

only code with such parameters is the extended Hamming code Ĥ3.

LetK := F2. According to Remark 1.3, the structure ofK120 as aK〈σ58〉-
module is

K120 =
K K K K

K K K K
⊕

V V

V V

where V is an irreducible module of dimension 28. Since C(σ29) has dimension

4, the code C(σ58) = (C(σ29))(σ2) has dimension at least 2.

Let ĤS8
3 be the set of all self-dual [8, 4, 4] codes. By direct calculations

with Magma we verify that

dim((π−1
σ29

(A))(σ58)) ≤ 2

for every A ∈ ĤS8
3 . Note that |ĤS8

3 | = |S8|
|Aut(Ĥ3)| = 30. Thus dim C(σ58) = 2

and the possible structures for C are only

a) C =
K K

K K
⊕ V ⊕ V or
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b) C =
K K

K K
⊕

V

V
.

Next we look at C(σ2). Obviously B := πσ2(B) is a [60,≥ 30,≥ 12] code.

In case a) we have dimB = 58, a contradiction.

We are left with the case b).

According to Theorem 2.6, C is projective and B is a self-dual [60, 30, 12] code.

Furthermore B has an automorphism of type 29-(2, 2). We have the following

result (for the de�nition of bordered double-circulant see, for example, [29]).

Proposition 4.1. Every self-dual [60, 30, 12] code B with an automorphism

of type 29-(2, 2) is bordered double-circulant. There are (up to equivalence)

three such codes.

Proof. We can easily determine the submodule of B �xed by the given auto-

morphism. Then we investigate its complement inK60 through an exhaustive

search withMagma (following the methods described in Section 2.2 and con-

sidering the complement as a vector space over F228). It turns out that B is

equivalent to one of the three bordered double-circulant even codes of length

60 classi�ed by Harada, Gulliver and Kaneta in [29].

It is computationally easy to check that there are exactly 14 conjugacy

classes of elements of type 29-(2, 2) in Aut(B) for each of the three possiblities

for B.
Using this we are able to do an exhaustive search for C along the methods

introduced in Section 3.2. Without repeating all the details, we just recall

the two main steps of the search.

First we determine a set, say L, such that there exists a permutation

τ ∈ CS120(σ58) and L ∈ L such that (C(σ2) + C(σ29))τ = L. It turns out

that |L| = 42. In the second step, as in Section 3.2, we construct all possible

codes with socle L(σ′2), with L ∈ L and σ′2 varying in all representatives of

conjugacy classes of �xed point free elements of order 2 in Aut(L). Checking

the minimum distance we see no code is extremal. This proves the following.
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Theorem 4.4. The automorphism group of a self-dual [120, 60, 24] code does

not contain elements of order 58.

Bouyuklieva, Willems and De la Cruz recentely used these results in [14],

where they investigate carefully the structure of the whole automorphism

group of C.
As in the general case, also for length 120 the following question is still

open.

Question 4.2. Can we say something more on the automorphism group of

a self-dual [120, 60, 24] code using the methods of Chapter 2?





CHAPTER 5

New bounds for semi self-dual codes

In Chapter 2 we posed Question 2.1 about the self-duality of the natural

projection of �xed codes by involutions. In this chapter, which is a presen-

tation of some results obtained with Gabriele Nebe during a visit to RTWH

Aachen, we give a partial answer to the question. To do this, we introduce

a new class of codes of even length - the semi self-dual codes - and we prove

some bounds for the minimum distance of their dual.

De�nition 5.1. Let n ≥ 4 even. We call D ≤ Fn2 semi self-dual code if

• D is self-orthogonal;

• dimD = n
2
− 1;

• 1 ∈ D.

It follows directly from the de�nition that for D semi self-dual code we have

〈1〉 ≤ D < D⊥ ≤ 〈1〉⊥ < Fn2 ,

99



100 5.1. MAIN RESULT

where 〈1〉 is the 1-dimensional code generated by 1 and 〈1〉⊥, its dual, is the
set of all even weight vectors.

We want to determine an upper bound for d(D⊥).

5.1 Main Result

Theorem 1.7 gives easily a bound for the minimum distance of the dual of a

semi self-dual code: let D a semi self-dual code and set D < F = F⊥ < D⊥

an intermediate self-dual code. Then

d(D⊥) ≤ d(F) ≤

{
4
⌊
n
24

⌋
+ 6 if n ≡ 22 mod 24

4
⌊
n
24

⌋
+ 4 otherwise.

(5.1)

We improve this bound, proving the following.

Theorem 5.1. Let D ≤ Fn2 (n ≥ 4 even) a semi self-dual code. Then

d(D⊥) ≤


4
⌊
n
24

⌋
+ 2 if n ≡ 0, 2, 4, 6, 8, 10, 12, 14 mod 24,

4
⌊
n
24

⌋
+ 4 if n ≡ 16, 18, 20 mod 24,

4
⌊
n
24

⌋
+ 6 if n ≡ 22 mod 24.

Furthermore, if n ≡ 0 mod 24 and D doubly-even,

d(D⊥) ≤ 4
⌊ n

24

⌋
.

By direct calculations with Magma, using a database [44] of all self-dual

binary linear codes of length up to 40, we get the following.

Remark 5.1. There exist semi self-dual codes such that their dual codes have

parameters [4, 3, 2], [6, 4, 2], [8, 5, 2], [10, 6, 2], [12, 7, 2], [14, 8, 2], [16, 9, 4],

[18, 10, 4], [20, 11, 4] and [22, 11, 6].

So the bound is reached for n ≡ 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 mod 24.

There exists a semi self-dual code with dual code of parameters [24, 13, 4]

code with doubly-even dual code.

So the bound is reached for n ≡ 0 mod 24 in the doubly-even case.
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Question 5.1. Semi self-dual codes with dual codes of parameters [24, 13, 6]

and [26, 14, 6] do not exist.

Is it possible to improve the bound for n ≡ 0, 2 mod 24?

The proof of this theorem is divided into two parts. For reader's con-

venience we will state two di�erent propositions and we will prove them

separately. Theorem 5.1 will be a direct consequence of them.

Before stating and proving the propositions, let us show some strong

consequences of Theorem 5.1.

Corollary 5.1. Let C be a self-dual [24m, 12m, 4m + 4] code, with m odd,

and let σ2 be �xed point free automorphism of order 2. Then πσ2(C(σ2)) is an

extremal self-dual [12m, 6m, 2m+ 2] code. In particular C is a free F2〈σ2〉-
module.

Proof. By [11] there exists a subcode E ≤ πσ2(C(σ2)) ≤ F12m
2 such that

E ≤ E⊥ = πσ2(C(σ2)). (5.2)

Since C is doubly-even, E⊥ ≤ 〈1〉⊥.
If the equality holds in (5.2), then the thesis is proved. Suppose, on the

contrary, that E < E⊥. Then there exists D of dimension 6m− 1 such that

〈1〉 ≤ E ≤ D < D⊥ ≤ E⊥ ≤ 〈1〉⊥.

Clearly d(E⊥) ≥ d(C)
2
. So D⊥ has parameters [12m, 6m+ 1,≥ 2m+ 2].

Let n = 12m. If m is odd, then m = 2
⌊
n
24

⌋
+ 1. Furthermore n ≡

12 mod 24.

Then D⊥ has parameters [n, n
2

+ 1,≥ 4
⌊
n
24

⌋
+ 4], a contradiction with the

bounds in Theorem 5.1.

Remark 5.2. Theorem 3.1 in [45] a�rms that the natural projection of the

�xed code by an involution in an extremal self-dual binary linear code of length

72 is self-dual. The proof is based on the classi�cation of self-dual [36, 18, 8]

codes. Corollary 5.1 gives a direct proof of that result, without classi�cation.
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We have an easy consequence for the cycle-structure of automorphism of

order 2p of extremal self-dual binary linear codes of jump lengths.

Corollary 5.2. Let C be a self-dual [24m, 12m, 4m + 4] code with m odd.

Suppose that σ2p ∈ Aut(C) is an automorphism of type 2 · p-(w, 0, x; 0) with

s(p) even. Then w is even.

Proof. It follows directly by Corollary 2.3 and Corollary 5.1.

Remark 5.3. Corollary 5.2 gives a new direct proof of Theorem 4.3 of Chap-

ter 4.

Let us conclude this section with few considerations related to Question

2.1.

Corollary 5.1 gives a positive answer in the case of m odd. Unfortunately

it is not enough to repeat the same arguments if m is even. Actually, if m is

even the lower bound for d(D⊥) is compatible with the upper bound given in

Theorem 5.1. Anyway we could not �nd a counterexample and the problem

is still open.

Let us underline that there exist extremal doubly-even self-dual binary

linear codes of parameters [8, 4, 4], [16, 8, 4], [32, 16, 8] and [40, 20, 8] for which

the natural projections of �xed codes of �xed point free involutions are not

self-dual.

5.2 Proof of Theorem 5.1

From now on let D be a semi self-dual code of length n ≥ 4, even. Further-

more, let µ =
⌊
n
24

⌋
.

Proposition 5.1. If D is doubly-even, then

d(D⊥) ≤


4µ if n ≡ 0 mod 24

4µ+ 2 if n ≡ 4, 8, 12 mod 24

4µ+ 4 if n ≡ 16, 20 mod 24
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Proof. Since every doubly-even binary linear code is self-orthogonal, D⊥

cannot be doubly-even and so in D⊥ there exists a codeword of weight

w ≡ 2 mod 4. Thus we can take D < F = F⊥ < D⊥ with F not doubly-

even, so that D = F0 (i.e. the maximal doubly-even subcode of F introduced

in Theorem 1.2).

Let S := D⊥ −F . By [4],

2d(F) + d(S) ≤ 4 +
n

2
. (5.3)

Note that d(D⊥) = min{d(F), d(S)}, since D⊥ = S ∪ F . Since we have the
bound (5.3), the maximum for min{d(F), d(S} is reached if

d(D⊥) = d(F) = d(S) =

⌊
4 + n

2

3

⌋
so that

d(D⊥) ≤
⌊

8 + n

6

⌋
,

which is the same bound in the thesis, remembering that d(D⊥) is even.

Furthermore, it holds the following.

Proposition 5.2. If D is not doubly even, then

d(D⊥) ≤

{
4µ+ 2 if n ≡ 0, 2, 4, 6, 8, 10, 12, 14 mod 24

4µ+ 4 if n ≡ 16, 18, 20, 22 mod 24

Before proving it we need to introduce some notations, objects and to

prove a lemma. Most of the proof is inspired and motivated by [54].

Let us de�ne the following:

• N := n
2
;

• A(x, y) :=
∑N

i=0 aix
2N−2iy2i weight enumerator of D;

• D(x, y) := A(x+y√
2
, x−y√

2
) =

∑N
i=0 dix

2N−2iy2i, so that 2D is the weight

enumerator of D⊥;
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• B(x, y) := A(x, y)−D(x, y) =
∑N

i=0 bix
2N−2iy2i;

• F (x, y) := B
(
x+y√

2
, ix−y√

2

)
.

The polynomial B(x, y) is anti-invariant under the MacWilliams trans-

formation:

B
(
x+y√

2
, x−y√

2

)
= A

(
x+y√

2
, x−y√

2

)
−D(x+y√

2
, x−y√

2
) = D(x, y)−A(x, y) = −B(x, y).

The following holds for anti-invariant polynomials under the MacWilliams

transformation.

Lemma 5.1. The set of all anti-invariants polynomials under the MacWilliams

transformation is

A := (x− (
√

2 + 1)y) · C[x+ (
√

2− 1)y, x2 + 2xy − y2].

Proof. It is easy to prove, with arguments similar to those of Section 1.6,

that

C[x+ (
√

2− 1)y, x2 + 2xy − y2]

is the set of all polynomials which are invariant under the MacWilliams

transformation. Since x − (
√

2 + 1)y is anti-invariant, all polynomials in A
are anti-invariant.

Vice versa, let a(x, y) be an anti-invariant polynomial. We have that

a((
√

2 + 1)y, y) = −a

(
(
√

2 + 1)y + y√
2

,
(
√

2 + 1)y − y√
2

)
= −a((

√
2 + 1)y, y),

so that a((
√

2 + 1)y, y) = 0. Thus a(x, y) is divisible by x − (
√

2 + 1)y.

Finally, their quotient is obviously an invariant polynomial.

Thus B(x, y) ∈ A. Furthermore, B(x, y) is invariant for the transforma-

tion I := x 7→ −x; i.e. it has only even powers of x (and y).

Let AI the set of all polynomials in A invariant under I and AI
d the subset

of AI of polynomials of degree d. Clearly AI
0 = C and AI

d = ∅ for all odd d.
Furthermore AI

2 = ∅. Finally it is easy to prove that

(x4 − 6x2y2 + y4) = (x− (
√

2 + 1)y)(x+ (
√

2− 1)y)(x2 + 2xy − y2)
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divides every polynomial in AI and, as before, the quotient is invariant both

under MacWilliams transformation and under I. Thus we get the following.

Lemma 5.2. Let

• p(x, y) := (x4 − 6x2y2 + y4),

• f0(x, y) := x2 + y2,

• f1(x, y) := x2y2(x2 − y2)2.

Then

AI = p(x, y) · C[f0(x, y), f1(x, y)].

Since B(x, y) ∈ AI , we can write

B(x, y) = (x4 − 6x2y2 + y4) ·
bN−2

4
c∑

i=0

ei(x
2 + y2)N−2−4i(x2y2(x2 − y2)2)i (5.4)

and, consequently,

F (x, y) = 2(x4 + y4) ·
bN−2

4
c∑

i=0

ei(2xy)N−2−4i

(
−1

4
x8 +

1

2
x4y4 − 1

4
y8

)i
. (5.5)

Notice that (5.5) implies that the degrees of the monomials of F (x, y) are

congruent to N − 2 modulo 4.

The following lemma insures us that F (x, y) has nonnegative integer co-

e�cients.

Lemma 5.3. F (x, y) is the weight enumerator of a coset in D⊥0 /D, so that

its coe�cients are integers and nonnegative.

Proof. Recall that 〈1〉 < D < D⊥ < 〈1〉⊥ < F2N
2 with dimD = N − 1. There

are exactly 3 self-dual binary linear codes, say C1, C2 and C3, which contains

D (since dimD⊥/D = 2). Notice that it holds

D⊥ = C1 t (C2 \ D) t (C3 \ D).
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This implies that

2A(x, y)+2D(x, y) = 2WD(x, y)+WD⊥(x, y) = WC1(x, y)+WC2(x, y)+WC3(x, y)

so that

2F (x, y) = (4A− (2A+ 2D))

(
x+ y

2
, i
x− y

2

)
=

2WD⊥0 \D⊥(x, y)−
3∑
i=1

WC⊥i,0\Ci(x, y).

Consider D⊥0 /D ∼= F3
2. We choose a basis v1, v2, v3 of D⊥0 /D such that

D⊥/D = 〈v1, v2〉, C1/D = 〈v1〉, C2/D = 〈v2〉, C3/D = 〈v1 + v2〉. So

D⊥0 \ D⊥ = {v3, v1 + v3, v2 + v3, v1 + v2 + v3};
C⊥1,0 \ C1 = {v3, v1 + v3};
C⊥2,0 \ C2 = {v3, v2 + v3};
C⊥3,0 \ C3 = {v1 + v3, v2 + v3}.

So

F (x, y) = Wv1+v2+v3(x, y),

where Wa+D(x, y) :=
∑

c∈D x
2N−wt(a+c)ywt(a+c).

Then we get the following.

Corollary 5.3. Let {ei} be as in (5.4) and (5.5). Then ei ·ei−1 ≤ 0 for every

i, 1 ≤ i ≤ bN−2
4
c.

Proof. We have

F (1, y) = (1 + y4)yN−2 ·
bN−2

4
c∑

i=0

εiy
−4i(1− y4)2i.

with εi := (−1)i2N−1−6iei. Substitute bN−2
4
c − i = h.

F (1, y) = yN−2−4bN−2
4
c(1 + y4)(1− y4)2bN−2

4
c ·
bN−2

4
c∑

h=0

εbN−2
4
c−h(y

4(1− y4)−2)h.
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Let r := N − 2− 4bN−2
4
c. Note that

r =


2 if N ≡ 0 mod 4

3 if N ≡ 1 mod 4

0 if N ≡ 2 mod 4

1 if N ≡ 3 mod 4

F (1, y) =
∑2N

j=0 fjy
j = f0 + . . .+ fr−1y

r−1 + yr
∑2N

j=r fjy
j−r =

= yr(1 + y4)(1− y4)2bN−2
4
c ·
∑bN−2

4
c

h=0 εbN−2
4
c−h(y

4(1− y4)−2)h.

Then fj = 0 if j 6≡ r mod 4. Set j = 4k + r and Z = y4. Then

∑
k

f4k+rZ
k = (1 + Z)(1− Z)2bN−2

4
c ·
bN−2

4
c∑

h=0

εbN−2
4
c−h(Z(1− Z)−2)h.

Put

f(Z) := (1 + Z)−1(1− Z)−2bN−2
4
c, g(Z) := Z(1− Z)−2.

Find coe�cient γh,k such that

Zkf(Z) =

bN−2
4
c∑

h=0

γh,kg(Z)h

Clearly γh,k = 0 if h < k (g(Z) has a zero of order 1 in 0). Then

εbN−2
4
c−h =

∑
4k+r≤h

γh,kf4k+r.

Since g(0) = 0 and g′(0) 6= 0, we can apply Bürmann-Lagrange theorem, in

the version of Lemma 8 [54]

γh,k = [coe�. of Zh−k in (1− Z)−1−2bN−2
4 c+2h]

Note that −1 − 2
⌊
N−2

4

⌋
+ 2h is negative, for every h (h ≤

⌊
N−2

4

⌋
), so

(1 − Z)−1−2bN−2
4 c+2h is a power of the geometric series. Thus γh,k is al-

ways nonnegative.

So

εbN−2
4 c−h =

∑
4k+r≤h

γh,kf4k+r ≥ 0.
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Now,

ei = (−1)i26iεi.

This implies that ei · ei+1 ≤ 0 for all i.

We can �nally prove the proposition.

Proof of Proposition 5.2. We have that

B(1, Y ) = 1/2 +
∑N−d

j=d bjY
j + 1/2Y N =

= (1− 6Y + Y 2)(1 + Y )N−2
∑bN−2

4
c

i=0 ei(Y (1− Y )2(1 + Y )−4)i

Let

f(Y ) := (1− 6Y + Y 2)−1(1 + Y )2−N , g(Y ) := Y (1− Y )2(1 + Y )−4.

Find coe�cient αi(N) such that

f(Y ) =

bN−2
4
c∑

i=0

αi(N)g(Y )i.

Then, for i < d,

ei =
1

2
αi(N).

Since g(0) = 0 and g′(0) 6= 0, we can apply Bürmann-Lagrange theorem,

in the version of Lemma 8, Rains,

αi(N) = [coe�. of Y i in (1 + Y )1−N+4i(1− Y )−2i−1]

that is

1

i!
(
di

dY i
(1 + Y )1−N+4i(1− Y )−2i−1)(0)

so that

αi(N) =
i∑

a=0

(−1)a
(
N − 2− 4i+ a

a

)(
3i− a
i− a

)
.
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Let N = 12m+ q.

Case q = 0, 1, 2, 3, 5, 6, 7. Let d > 2m+ 1. Then,

e2m · e2m+1 =
1

4
α2m(12m+ q) · α2m+1(12m+ q) > 0

by direct calculations (and the previous are nonpositives). A contradic-

tion with Corollary 5.3. So d ≤ 2m+ 1.

Case q = 8, 9, 10, 11. Let d > 2m+ 3. Then

e2m+2 · e2m+3 =
1

4
α2m+2(12m+ q) · α2m+3(12m+ q) > 0.

by direct calculations (and the previous are nonpositives). A contradic-

tion. So d ≤ 2m + 3. In this case the bound is weaker than (or equal to)

(5.1).





APPENDIX A

Times of computation

In this very short appendix we collect some details about the computations.

In the following website all the main Magma programs of the dissertation

are available:

sites.google.com/a/campus.unimib.it/mborello/programs

The machines we used are the following:

• Machine A: Intel(R) Xeon(R) CPU X5460 (3.16GHz)

• Machine B: Core i7 870 (2.93GHz)

In Tables A.1 and A.2 the CPU times of the computations for the self-

dual [72, 36, 16] code and for the self-dual [120, 60, 24] code respectively are

collected. A product a ·b means that the computations were split into a jobs,

each of about b CPU time.
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Table A.1: Times of main computations (case 72)

Case CPU time Machine

C6 182 hours A

S3 7 minutes A

A4 26 hours A

A4 10 · 7, 5 hours B

D8 9 minutes A

C2 × C2 × C2 307 hours A

Table A.2: Times of main computations (case 120)

Case CPU time Machine

C58 2 minutes A

C58 42 · 65 hours A
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