Feuille de TD n°4: Quelques problèmes d'analyse spectrale

Problème 1

Soit E l'espace de Hilbert des fonctions 2π -périodiques sur \mathbb{R} , localement de carré intégrables par rapport à la mesure de Lebesgue, muni du produit scalaire :

$$(u|v) = \int_0^{2\pi} u(x)\overline{v(x)} \frac{dx}{2\pi}$$

et de la norme || || associée. On désigne par $(e_k)_{k\in\mathbb{Z}}$ la base hilbertienne de E donnée par $e_k(x)=e^{ikx}$ et on note pour tout $u\in E$, pour tout $k\in\mathbb{Z}$, $\hat{u}(k)=(u|e_k)$, les coefficients de Fourier de u. Enfin on désigne par E_1 le sous-espace vectoriel de E constitué des fonctions u telles que $(k\hat{u}(k))\in\ell^2(\mathbb{Z})$, muni du produit scalaire :

$$(u|v)_1 = \sum_{k \in \mathbb{Z}} (1+k^2)\hat{u}(k)\overline{\hat{v}(k)}$$

et $|| ||_1$ la norme associée.

1. Montrer que E_1 est un espace de Hilbert.

2. Soit $j: E_1 \to E$ l'injection canonique et soit P_N le projecteur orthogonal de E sur l'espace vectoriel engendré par la famille $(e_k)_{|k| \le N}$. Montrer que $P_N j$ converge vers j dans $\mathcal{L}(E_1, E)$ quand N tend vers l'infini et en déduire que l'application j est compacte.

3. Soit ∂ l'opérateur non borné sur E de domaine E_1 défini par

$$\partial u = \sum_{k \in \mathbb{Z}} ik \hat{u}(k) e_k$$

Montrer que $\partial^* = -\partial$. Que vaut ∂u si u est de classe C^1 ?

4. Soit $a: \mathbb{R} \to \mathbb{R}$ une fonction mesurable 2π -périodique telle qu'il existe des nombres α, β strictement positifs vérifiant :

$$\forall x \in \mathbb{R}, \ \alpha \le a(x) \le \beta$$

a. On définit sur E_1 le produit scalaire :

$$(u|v)_2 = \int_0^{2\pi} a(x)\partial u(x)\overline{\partial v(x)}\frac{dx}{2\pi} + \int_0^{2\pi} u(x)\overline{v(x)}\frac{dx}{2\pi}$$

et la norme $|| \ ||_2$ associée. Montrer que les normes $|| \ ||_1$ et $|| \ ||_2$ sont équivalentes.

b. On définit sur E l'opérateur A par

$$D(A) = \{ u \in E_1 \mid a\partial u \in E_1 \}, Au = -\partial(a\partial u)$$

Montrer que A+1 est bijectif. En déduire que A est autoadjoint.

c. Montrer que l'application $(A+1)^{-1}: E \to E_1$ est continue. En déduire qu'il existe une base hilbertienne $(\varphi_n)_{n\geq 1}$ de E vérifiant $\varphi_n\in D(A)$ et $A\varphi_n=\lambda_n\varphi_n$ où

 $(\lambda_n)_{n\geq 1}$ est une suite croissante de réels positifs ou nuls tendant vers $+\infty$. Que vaut λ_1 ? Déterminer la suite (λ_n) dans le cas particulier où la fonction a est constante.

d. Montrer que les $\psi_n = (1 + \lambda_n)^{-\frac{1}{2}} \varphi_n$ forment une base hilbertienne de E_1 pour le produit scalaire (|)₂. En déduire que

$$(a\partial u|\partial u) = \sum_{n=1}^{+\infty} \lambda_n |(u|\varphi_n)|^2$$

pour tout $u \in E_1$ puis pour tout $n \ge 1$:

$$\lambda_n = \min_{F \in \mathcal{F}_n} \lambda(F)$$

avec $\lambda_F = \sup\{(a\partial u|\partial u) \mid u \in F, ||u|| = 1\}$ et \mathcal{F}_n désignant l'ensemble des sous-espaces de dimension n de E_1 .

e. Montrer que pour tout p > 1

$$\alpha p^2 \le \lambda_{2p} \le \lambda_{2p+1} \le \beta p^2$$

Problème 2

1. Soit A un opérateur autoadjoint non borné sur un espace de Hilbert E. On se propose de montrer qu'un nombre réel λ appartient au spectre de A si et seulement s'il vérifie la propriété suivante notée (\mathcal{P}_{λ}) : il existe une suite (u_n) de D(A) telle que $||u_n|| = 1$ et $||(A - \lambda)u_n|| \to 0$.

a. Montrer que si (\mathcal{P}_{λ}) est vérifiée, λ appartient au spectre de A.

b. Soit λ tel que (\mathcal{P}_{λ}) ne soit pas vérifiée. Montrer qu'il existe c > 0 tel que pour tout $u \in D(A)$, $||(A - \lambda)u|| \ge c||u||$. En déduire que l'image de $A - \lambda$ est dense dans E puis montrer qu'elle est fermée. Conclure.

2. On note $E = L^2(\mathbb{R}^d)$ et on se donne $V : \mathbb{R}^d \to \mathbb{R}$ mesurable bornée. On considère l'opérateur A_0 de domaine $C_0^{\infty}(\mathbb{R}^d)$ défini par $A_0u = -\Delta u + Vu$ pour tout $u \in D(A_0)$.

a. Montrer que A_0 est essentiellement autoadjoint.

b. On note $A = \overline{A_0}$ et on suppose qu'il existe une suite (x_n) de points de \mathbb{R}^d tendant vers l'infini, et une suite (r_n) de nombres positifs tendant vers l'infini, telles que :

$$\sup_{|x-x_n| \le r_n} |V(x)| \to 0$$

Soit $\chi\in C_0^\infty(\mathbb{R}^d)$ à support dans la boule unité telle que $||\chi||_{L^2}=1$. Pour tout $\xi\in\mathbb{R}^d$, on pose

$$u_n(x) = r_n^{-\frac{d}{2}} e^{ix.\xi} \chi\left(\frac{x - x_n}{r_n}\right)$$

Calculer $(A - |\xi|^2)u_n$. En déduire que $[0, +\infty[\subset \sigma(A)]$.

Problème 3

Soit K une fonction continue sur $[0,1] \times [0,1]$ à valeurs complexes. On désigne par T_K l'élément de $\mathcal{L}(L^2([0,1],dx))$ défini par :

$$T_K f(x) = \int_0^1 K(x, y) f(y) dy$$

On suppose que l'opérateur T_K est autoadjoint et positif $i.e\ (T_K f|f) \ge 0$ pour tout $f \in L^2([0,1])$.

1. Montrer que pour tout intervalle I contenu dans [0,1], on a

$$\int_{I} \int_{I} K(x, y) dx dy \in \mathbb{R}_{+}$$

En déduire que, pour tout $x \in [0,1], K(x,x) \in \mathbb{R}_+$.

2. Soit (λ_n) la suite des valeurs propres non nulles de T_K répétées selon leur multiplicité et soit (φ_n) une base hilbertienne de l'orthogonal de $\ker(T_K)$ vérifiant pour tout n.

$$T_K \varphi_n = \lambda_n \varphi_n$$

On a donc pour tout $f \in L^2([0,1])$ l'identité

$$T_K f = \sum_n \lambda_n(f|\varphi_n)\varphi_n$$

la convergence de la série ayant lieu dans $L^2([0,1])$.

- **a.** Vérifier que chaque φ_n est continue.
- **b.** En appliquant la question 1 à un noyau K_N convenable, montrer que pour tout N et tout $x \in [0, 1]$,

$$K(x,x) \ge \sum_{n \le N} \lambda_n |\varphi_n(x)|^2$$

- 3. a. Montrer que la série de terme général λ_n converge.
- **b.** Montrer que la série de terme général $\lambda_n(f|\varphi_n)\varphi_n$ converge uniformément pour $x\in[0,1]$. Quelle est sa somme?
- **c.** Montrer que <u>pour</u> tout $x \in [0,1]$, la série de terme général $\lambda_n \varphi_n(x) \overline{\varphi_n(y)}$ converge uniformément en $y \in [0,1]$. Quelle est sa somme?
- **d.** Exprimer la somme des λ_n en fonction de K.