Feuille d'exercices 4 Séries numériques

Exercice 1

Les séries suivantes peuvent-elles être convergentes?

a.
$$\sum \frac{p^2 - p + 1}{p^2 + p + 2}$$
 b. $\sum \cos \frac{1}{p}$ c. $\sum \frac{1}{n^{\frac{1}{n}}}$

Exercice 2

Expliciter les sommes partielles S_n des séries suivantes, en déduire la nature de leur convergence et leur somme éventuelle :

a.
$$\sum \frac{1}{p(p+1)}$$
 b. $\sum (-1)^p$ c. $\sum \ln \left(1 + \frac{1}{p}\right)$

La condition $u_p \to 0$ est-elle suffisante pour qu'une série converge ?

Exercice 3

En utilisant le fait que la somme de deux séries convergentes est convergente, montrer que la somme d'une série convergente et d'une série divergente est nécessairement divergente.

Exercice 4

Donner les sommes partielles $S_n(x)$ et la somme S(x) si elle existe de la série géomtrique de terme général $u_k = x^k$, pour $x = \frac{1}{2}$, $x = \frac{1}{3}$ et x = 2.

Exercice 5

Soit $x \in \mathbb{R}$. On considère la série de terme général $v_n = nx^n$. Montrer qu'elle diverge pour $|x| \geq 1$. En utilisant une dérivation, calculer les sommes partielles $S_n(x)$. Montrer qu'on a convergence (resp. divergence) pour |x| < 1 (resp. pour $|x| \geq 1$) et donner la somme S(x) lorsqu'elle existe.

Exercice 6

Soit f est une fonction continue qui, pour x > N, est positive en décroissant vers 0. Soit la suite $u_p = f(p)$. **a.** Montrer graphiquement les inégalités

$$\sum_{p=N+1}^{N+n} u_p \le \int_N^{N+n} f(x) \, \mathrm{d}x \le \sum_{p=N}^{N+n-1} u_p.$$

b. En déduire que $\sum u_n$ et $\int_N^\infty f(x) dx$ sont alors de même nature.

Application : nature des séries $u_p = \frac{1}{p \ln^{\beta} p}$? (Séries de Bertrand).

Exercice 7

Utiliser le théorème de comparaison pour étudier la nature des séries de terme général :

a.
$$\sin^2 \frac{x}{n}$$
, $x \in \mathbb{R}$ b. $\sin \left(\frac{2}{3}\right)^n$

c.
$$\sqrt{\frac{\ln n}{n}}$$
 d. $\frac{1}{\sqrt{n(2n-1)}}$

Exercice 8

Donner la nature des séries de terme général :

a.
$$\frac{2n+1}{n^3-n+2}$$
 b.
$$\ln\left(1+\frac{1}{n^\alpha}\right), \ \alpha>0$$
 c.
$$\frac{1}{n(n-\ln n)}$$
 d.
$$\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}}.$$

Exercice 9

Soit la série de terme général

$$u_n = \frac{1}{\left(1 + \left(\frac{4}{5}\right)^n\right)^{\frac{1}{2}} - 1 - \frac{1}{2}\left(\frac{4}{5}\right)^n}.$$

Préciser sa nature.

Exercice 10

On pose $a_p=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p}-\ln p$ avec $p\geq 1$. Soit la série de terme général $u_p=a_p-a_{p-1}$. Trouver ℓ tel que $u_p=\frac{\ell}{p^2}\left(1+\varepsilon(p)\right)\,(p\to\infty)$. En déduire que la suite $(a_n)_{n\in\mathbb{N}}$ converge lorsque $n\to\infty$ (sa limite est appelée constante d'Euler).

Exercice 11

Donner la nature des séries ci-dessous (a > 0), en utilisant les critères de Cauchy ou de d'Alembert :

a.
$$u_n = \frac{n!}{n^n}$$
 b. $u_n = \frac{n \ln n}{2^n}$ c. $u_n = \left(a - \frac{1}{n}\right)^n$, $a > 0$.

Exercice 12

Étudier la convergence des séries ci-dessous, en précisant dans chaque cas s'il y a convergence absolue :

a.
$$u_n = \frac{\sin n}{n^3}$$
 b. $u_n = (-1)^n \frac{\ln n}{n}$
c. $u_n = e^{\frac{(-1)^n}{\sqrt{n}}} - 1$ d. $u_n = \frac{(-1)^n n + 2}{n^2 + 1}$

e.
$$u_n = (-1)^n \tan \frac{1}{n}$$
 f. $u_n = \frac{1}{2^n} \sin n\theta$.

Exercice 13

Étudier, suivant la valeur du paramètre $\alpha > 0$, la convergence des séries numériques de terme général $u_n = \ln\left(1 + \frac{(-1)^n}{n^{\alpha}}\right)$ $(n \ge 1)$.

Exercice 14

- a. En utilisant la formule de Taylor, rappeler pourquoi on a $\sum_{n=0}^{\infty} \frac{1}{n!} = e$. **b.** En utilisant ce résultat, calculer :

$$\sum_{n=1}^{\infty} \frac{n+1}{n!} \quad \text{et} \quad \sum_{n=1}^{\infty} \frac{n^2 - 1}{n!}.$$

Exercice 15

Soit la série de terme général $u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x} dx$

- **a.** Montrer que (u_n) est convergente.
- b. En utilisant le théorème de la moyenne, montrer que u_n n'est pas absolument convergente. En déduire que $\int_0^\infty \frac{\sin x}{x} dx$ n'est pas absolument convergente.

Exercice 16

Soit la série $\sum \frac{(-1)^p}{p+(-1)^p}$. Le théorème des séries alternées lui est-il applicable? L'étudier en groupant deux termes consécutifs.

Exercice 17

Soit la série de terme général $u_n = \int_{n\pi}^{(n+1)\pi} e^{-x} \sin x \, dx$. Exprimer u_n en fonction de u_0 . En déduire la somme

$$\sum_{p=0}^{\infty} u_p.$$