Feuille de TD 2: Distributions - Exemples, ordre et support.

Exercice 1

1. Soit $\varphi \in C_0^{\infty}(\mathbb{R})$. Montrer que l'expression suivante définit une distribution T d'ordre au plus 1:

$$\int_0^{+\infty} \varphi'(x) \log(x) \, \mathrm{d}x.$$

- **2.** Soit φ_n une fonction plateau valant 1 sur $\left[\frac{1}{n}, 1\right]$ et dont le support est inclus dans $\left[\frac{1}{2n}, 2\right]$.
- **a.** Minorer $| < T, \varphi_n > |$.
- ${\bf b.}$ En déduire que T est une distribution d'ordre exactement 1.
- $\bf 3.$ Déterminer le support de T.

Exercice 2 - Valeur principale de $\frac{1}{x}$

Soit $\varphi \in C_0^{\infty}(\mathbb{R})$.

- **1.** Montrer qu'il existe $\psi \in C^{\infty}(\mathbb{R})$ telle que, pour tout $x \in \mathbb{R}$, $\varphi(x) = \varphi(0) + x\psi(x)$.
- 2. Montrer que la limite

$$\lim_{\varepsilon \to 0^+} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, \mathrm{d}x$$

existe.

- **3.** Montrer que cette expression définit une distribution d'ordre au plus 1, appelée valeur principale de $\frac{1}{x}$ et notée $\operatorname{vp}(\frac{1}{x})$.
- **4.** En considérant φ_n comme à l'exercice 1, montrer que $\operatorname{vp}(\frac{1}{x})$ est d'ordre exactement 1.

Exercice 3

Soit $\varphi \in C_0^{\infty}(\mathbb{R})$.

- **1.** Montrer qu'il existe $\psi \in C^{\infty}(\mathbb{R})$ telle que, pour tout $x \in \mathbb{R}$, $\varphi(x) = \varphi(0) + x\psi(x)$.
- 2. Montrer que les limites

$$\lim_{\varepsilon \to 0^+} \operatorname{Re} \left(\int_{\mathbb{R}} \frac{\varphi(x)}{x - \mathrm{i}\varepsilon} \, \mathrm{d}x \right) \, \text{ et } \lim_{\varepsilon \to 0^+} \operatorname{Im} \left(\int_{\mathbb{R}} \frac{\varphi(x)}{x - \mathrm{i}\varepsilon} \, \mathrm{d}x \right)$$

existent

3. En déduire que l'expression

$$< T, \varphi > = \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} \frac{\varphi(x)}{x - \mathrm{i}\varepsilon} \; \mathrm{d}x$$

définit une distribution T dont on identifiera la partie réelle et la partie imaginaire. Donner l'ordre de T.

Exercice 4

Soit $\varphi \in C_0^{\infty}(\mathbb{R}^2)$.

1. Montrer que l'expression suivante définit une distribution T d'ordre au plus 1 :

$$\langle T, \varphi \rangle = \int_0^\infty \left(\varphi(1/t^2, \sin t) - \varphi(0, \sin t) \right) dt.$$

2. Calculer le support de T.

Exercice 5

Soit $I \subset \mathbb{R}$ un intervalle ouvert et soit $x_0 \in I$. Montrer qu'il n'existe pas de fonction $f \in L^1_{loc}(I)$ telle que $T_f = \delta_{x_0}$.

Indication : on pourra utiliser le résultat de l'exercice 7 de la Feuille 1.

Exercice 6 - Distribution d'ordre infini

Soit $\varphi \in C_0^{\infty}(\mathbb{R})$. Montrer que l'expression

$$\langle T, \varphi \rangle = \sum_{p=0}^{\infty} \varphi^{(p)}(p)$$

définit une distribution sur \mathbb{R} , d'ordre infini.

Exercice 7

Soit u une fonction continue sur $\mathbb{R}^n \setminus \{0\}$ telle que

$$\forall t > 0, \ \forall x \in \mathbb{R}^n \setminus \{0\}, \ u(tx) = t^{-n} \ u(x).$$

1. Soient $\varepsilon > 0$ et $\varphi \in C_0^{\infty}(\mathbb{R}^n)$. On pose

$$I_{\varepsilon}(\varphi) = \int_{|x|>\varepsilon} u(x)\varphi(x)\mathrm{d}x.$$

Montrer que $\lim_{\varepsilon\to 0^+}I_\varepsilon(\varphi)$ existe pour toute $\varphi\in C_0^\infty(\mathbb{R}^n)$ si et seulement si

$$\int_{|\omega|=1} u(\omega) d\omega = 0.$$
 (1)

Indication : Passer en coordonnées polaires $(r, \omega) \in]0, +\infty[\times S^{n-1} \ pour \ |x| \ge \varepsilon$. Puis utiliser la formule de Taylor avec reste intégral à l'ordre 1.

2. On suppose que la condition (1) est satisfaite. On pose alors, pour toute $\varphi \in C_0^{\infty}(\mathbb{R}^n)$,

$$\langle T, \varphi \rangle = \lim_{\varepsilon \to 0^+} I_{\varepsilon}(\varphi).$$

Montrer que T définit un élément de $\mathcal{D}'(\mathbb{R})$ d'ordre au plus 1.