Feuille de TD 4: Distributions - Suites et convolution

Exercice 1

Calculer les limites, dans $\mathcal{D}'(\mathbb{R})$, des suites de distributions suivantes :

$$A_n = \sin(nx), \quad B_n = ng(nx) \text{ où } g \in L^1(\mathbb{R}),$$

$$C_n = \frac{1}{n} \sum_{p=0}^{n-1} \delta_{\frac{p}{n}}, \quad D_n = e^{\mathrm{i}nx} \mathrm{vp}\left(\frac{1}{x}\right).$$

Exercice 2

On note T_n , pour tout $n \in \mathbb{N}$, la distribution associée à la fonction localement intégrable $t \mapsto \frac{\sin(nt)}{\pi t}$. Montrer que la suite $(T_n)_{n \in \mathbb{N}}$ converge dans $\mathcal{D}'(\mathbb{R})$ vers la distribution δ_0 . Indication : on pourra se servir de l'identité $\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$

Exercice 3

Montrer que la suite de distributions $(T_n)_{n\geq 1}$ définie par :

$$\forall n \ge 1, \ T_n = n(\delta_{\frac{1}{n}} - \delta_{-\frac{1}{n}}),$$

converge dans $\mathcal{D}'(\mathbb{R})$. L'ordre de la limite d'une suite de distributions d'ordre m est-il toujours m?

Exercice 4

- **1.** Calculer $\delta'_0 \star \delta'_0$ pour $\delta_0 \in \mathcal{D}'(\mathbb{R})$.
- **2.** Soit $T \in \mathcal{D}'(\mathbb{R})$. Montrer qu'il existe une distribution $E \in \mathcal{D}'(\mathbb{R})$, à support compact, telle que $E \star T = T^{(k)}$.
- **3.** Soient T et S dans $\mathcal{D}'(\mathbb{R})$, S étant supposée à support compact. Pour $n \in \mathbb{N}$, on désigne par X^n la fonction de \mathbb{R} dans \mathbb{R} , $x \mapsto x^n$. Démontrer la formule suivante :

$$X^n(T \star S) = \sum_{k=0}^n C_n^k(X^k T) \star (X^{n-k} S).$$

Exercice 5

On note $\mathcal{D}'_{+}(\mathbb{R}) = \{T \in \mathcal{D}'(\mathbb{R}); \text{supp } T \subset [0, +\infty[\}] .$ Soit $\chi \in C^{\infty}(\mathbb{R})$ telle que, $\chi = 1 \text{ sur }] - \frac{1}{2}, +\infty[$ et $\chi = 0 \text{ sur }] - \infty, -1[$.

1.a. Soit $\varphi \in C_0^{\infty}(\mathbb{R})$. Montrer que l'application

$$\varphi^{\Delta}: (x,y) \mapsto \chi(x)\chi(y)\varphi(x+y),$$

est dans $C_0^{\infty}(\mathbb{R}^2)$.

b. Soient $T, S \in \mathcal{D}'_{+}(\mathbb{R})$. On définit

$$\langle T \star S, \varphi \rangle = \langle T_x \otimes S_y, \varphi^{\Delta} \rangle$$
.

Montrer que $T \star S$ est bien définie et est indépendante du choix de χ .

- **c.** Montrer que $T \star S \in \mathcal{D}'_{+}(\mathbb{R})$.
- **2.** On dit que $T \in \mathcal{D}'_+(\mathbb{R})$ est inversible, s'il existe $S \in \mathcal{D}'_+(\mathbb{R})$ telle que $T \star S = \delta_0$. On note $S = T^{-1}$.
- **a.** Montrer que δ'_0 est inversible et calculer son inverse.
- **b.** Montrer que, si $T \in C_0^{\infty}(]0, +\infty[)$, T n'est pas inversible

Exercice 6 - Équation des ondes 1D

On considère la distribution de $\mathcal{D}'(\mathbb{R}^2)$ donnée par la fonction intégrable :

$$\forall (t,x) \in \mathbb{R}^2, \ E(x,t) = \begin{cases} \frac{1}{2} & \text{si} \ t - |x| > 0\\ 0 & \text{si} \ t - |x| \le 0 \end{cases}.$$

- **1.** Calculer $(\partial_{tt}^2 \partial_{xx}^2)E$ dans $\mathcal{D}'(\mathbb{R}^2)$.
- **2.** En déduire une solution $u \in \mathcal{D}'(\mathbb{R}^2)$ de l'équation aux dérivées partielles :

$$\partial_{tt}^2 u - \partial_{xx}^2 u = f,$$

où $f \in \mathcal{D}'(\mathbb{R}^2)$ est à support compact.

3. Si $f \in C_0^{\infty}(\Omega)$, Ω ouvert de \mathbb{R}^2 , que peut-on dire de u?

Exercice 7 - Équation de Laplace

Soit $d \geq 1$. On considère la distribution de $\mathcal{D}'(\mathbb{R}^d)$ donnée par la fonction localement intégrable :

$$\forall x \in \mathbb{R}^d, \ E(x) = \begin{cases} x_+ = \max(x, 0) & \text{si} \quad d = 1\\ \frac{1}{2\pi} \log|x| & \text{si} \quad d = 2\\ -\frac{1}{(d-2)\sigma(S^{d-1})} \frac{1}{|x|^{d-2}} & \text{si} \quad d \ge 3 \end{cases}$$

où $\sigma(S^{d-1})$ désigne l'aire de la sphère unité de \mathbb{R}^d .

- 1. Pour d=1, vérifier que $E''=\delta_0$.
- **2.** On suppose dans la suite $d \geq 2$. Soit $f \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 et soit $F \in C^2(\mathbb{R}^d \setminus \{0\})$ définie par : $\forall x \in \mathbb{R}^d \setminus \{0\}, F(x) = f(|x|)$. Montrer que :

$$\forall x \in \mathbb{R}^d \setminus \{0\}, \ \Delta F(x) = f''(|x|) + \frac{d-1}{|x|} f'(|x|).$$

3. Résoudre sur \mathbb{R}_+^* l'équation différentielle :

$$f''(r) + \frac{d-1}{r}f'(r) = 0.$$

4. Soit $F: \mathbb{R}^d \setminus \{0\} \to \mathbb{R}$ la fonction localement intégrable donnée par :

$$\forall x \in \mathbb{R}^d \setminus \{0\}, \ F(x) = \left\{ \begin{array}{ll} \log|x| & \text{si} \quad d = 2\\ \frac{1}{|x|^{d-2}} & \text{si} \quad d \ge 3 \end{array} \right..$$

Soit $\varepsilon > 0$ et soit Ω_{ε} l'ouvert $\mathbb{R}^d \setminus B(0,\varepsilon)$. Soit enfin $\varphi \in C_0^{\infty}(\mathbb{R}^d)$. En appliquant la formule de Green à F et φ sur l'ouvert Ω_{ε} , puis en faisant tendre ε vers 0, calculer $< \Delta F, \varphi >$.

5. En déduire que $\Delta E = \delta_0$, pour tout $d \geq 2$.

- **6.** On admet le théorème de Liouville (version faible) : Soit $u \in C^{\infty}(\mathbb{R}^d \setminus \{0\})$ telle que $\Delta u = 0$. Si u(x) tend vers 0 lorsque |x| tend vers l'infini alors u est nulle.
- **a.** Soit $\rho \in \mathcal{D}'(\mathbb{R}^3)$ une distribution à support compact. Montrer que l'équation $-\Delta V = \rho$ admet une unique solution qui tend vers 0 à l'infini.
- **b.** Calculer l'expression de cette solution pour $\rho = \delta_0$ (charge unique à l'origine) et pour $\rho = \delta'_{x_0}$ avec $x_0 \neq 0$ (cas du dipôle).