Examen d'Analyse 2

9 janvier 2019

Durée de l'épreuve : 3 heures. Les parties I et II sont à rendre sur des *copies séparées*. Seuls les documents de cours et de TD sont autorisés, à l'exclusion de tout autre document. Les calculatrices et moyens de communication sont interdits.

Partie I

Exercice 1.

1. (a) Soit $\varphi \in \mathcal{S}(\mathbb{R})$. Justifier l'existence de la limite

$$\lim_{\varepsilon \to 0^+} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \mathrm{d}x.$$

On pose alors,

$$\langle \operatorname{vp}\left(\frac{1}{x}\right), \varphi \rangle = \lim_{\varepsilon \to 0^+} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \mathrm{d}x.$$

- (b) Montrer que cette expression définit une distribution tempérée.
- 2. (a) Soit $\varepsilon > 0$. Justifier que l'on peut associer à la fonction $x \mapsto \frac{1}{x-i\varepsilon}$ une distribution tempérée définie par la formule

$$\forall \varphi \in \mathcal{S}(\mathbb{R}), \ \langle \frac{1}{x - \mathrm{i}\varepsilon}, \varphi \rangle = \int_{\mathbb{R}} \frac{\varphi(x)}{x - \mathrm{i}\varepsilon} \mathrm{d}x.$$

(b) Montrer que, dans $\mathcal{S}'(\mathbb{R})$,

$$\frac{1}{x - i\varepsilon} \xrightarrow[\varepsilon \to 0^+]{} vp\left(\frac{1}{x}\right) + i\pi\delta_0.$$

3. Soit $H : \mathbb{R} \to \mathbb{R}$ la fonction de Heaviside définie par

$$\forall x \in \mathbb{R}, \ H(x) = \begin{cases} 1 & \text{si } x \ge 0 \\ 0 & \text{si } x < 0. \end{cases}$$

- (a) Soit $\varepsilon > 0$. Calculer la transformée de Fourier de la fonction $He^{-\varepsilon}$: $x \mapsto H(x)e^{-\varepsilon x}$.
- (b) Montrer que, dans $\mathcal{S}'(\mathbb{R})$, $He^{-\varepsilon} \xrightarrow[\varepsilon \to 0]{} H$.
- (c) En déduire que la transformée de Fourier de H dans $\mathcal{S}'(\mathbb{R})$ est donnée par

$$\mathcal{F}(H) = \pi \delta_0 - \text{ivp}\left(\frac{1}{\xi}\right).$$

4. (a) En utilisant l'identité : $\forall x \in \mathbb{R}, \ |x| = xH(x) - xH(-x)$, montrer que

$$\mathcal{F}(|\cdot|) = \mathrm{i}\frac{\mathrm{d}}{\mathrm{d}\xi} \left(\mathcal{F}(H) - \mathcal{F}(H \circ (-\mathrm{Id})) \right) \quad \text{ où Id} : \begin{array}{c} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x. \end{array}$$

- (b) Justifier que $\mathcal{F}(H \circ (-\mathrm{Id})) = \pi \delta_0 + \mathrm{ivp}\left(\frac{1}{\xi}\right)$.
- 5. (a) Soit $\varphi \in \mathcal{S}(\mathbb{R})$. Justifier l'existence de la limite

$$\lim_{\varepsilon \to 0^+} \left(\int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x^2} dx - 2 \frac{\varphi(0)}{\varepsilon} \right) := \langle \operatorname{Pf} \left(\frac{1}{x^2} \right), \varphi \rangle.$$

- (b) Montrer que la forme linéaire Pf $\left(\frac{1}{x^2}\right)$ ainsi définie sur $\mathcal{S}(\mathbb{R})$ est une distribution tempérée.
- (c) Montrer que, dans $S'(\mathbb{R})$, $\left(\operatorname{vp}\left(\frac{1}{x}\right)\right)' = -\operatorname{Pf}\left(\frac{1}{x^2}\right)$.
- (d) En déduire la transformée de Fourier dans $\mathcal{S}'(\mathbb{R})$ de $|\cdot|: x \mapsto |x|$.
- (e) En déduire que, dans $\mathcal{S}'(\mathbb{R})$, $\mathcal{F}\left(\operatorname{Pf}\left(\frac{1}{r^2}\right)\right) = -\pi |\xi|$.

Partie II

Exercice 2. Soit $a \in \mathbb{R} \setminus \mathbb{Z}$ et $f : \mathbb{R} \to \mathbb{C}$ la fonction 2π -périodique donnée par $f(x) = e^{-iax}$ pour tout $x \in [0, 2\pi[$.

- 1. Calculer les coefficients de Fourier $c_n(f)$ pour tout $n \in \mathbb{Z}$.
- 2. En déduire que

$$\sum_{n \in \mathbb{Z}} \frac{1}{(n+a)^2} = \frac{\pi^2}{\sin^2(\pi a)}.$$

Exercice 3. Soit A une partie mesurable de \mathbb{R}^d , et soit E l'ensemble des fonctions de $L^2(\mathbb{R}^d)$ qui sont nulles presque partout sur A.

- 1. Vérifier que E est un sous-espace vectoriel. Montrer que E est fermé dans $L^2(\mathbb{R}^d)$ (Indication : on pensera à utiliser la fonction $\mathbb{1}_A$).
- 2. Montrer que pour tout $f \in L^2(\mathbb{R}^d)$, la projection orthogonale P(f) de f sur E est donnée par $P(f) = f \cdot \mathbbm{1}_{A^c}$, où $A^c = \mathbb{R}^d \setminus A$.

Exercice 4. Soit H un \mathbb{C} -espace de Hilbert séparable et $(e_n)_{n\in\mathbb{Z}}$ une base hilbertienne de H.

1. Soit $\phi: H \to H$ une application linéaire continue. Montrer que

(1)
$$\forall u \in H, \quad \phi(u) = \sum_{n = -\infty}^{\infty} (u, e_n) \phi(e_n)$$

(et que la série au second membre de (1) converge dans H).

2. On prend $H = L^2(]0, 2\pi[;\mathbb{C})$ et $e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$. Soit $(\lambda_n)_{n\in\mathbb{Z}}$ une suite bornée de nombres complexes. On appelle multiplicateur de Fourier associé à (λ_n) l'application $T: H \to H$ définie par

$$\forall f \in H, \quad T(f) = \sum_{n \in \mathbb{Z}} \lambda_n c_n(f) e_n,$$

où les $c_n(f)$ sont les coefficients de Fourier de f associés aux e_n .

- a. Montrer que T est une application linéaire continue et que $||T|| = \sup_{n \in \mathbb{Z}} |\lambda_n|$.
- b. Pour tout $h \in \mathbb{R}$, on définit l'opérateur de translation τ_h par $(\tau_h f)(x) = f(x h)$ pour tout $f \in H$ (les fonctions de H étant étendues à \mathbb{R} comme fonctions 2π -périodiques). Montrer que T commute avec les translations, i.e. $\forall h \in \mathbb{R}, \tau_h \circ T = T \circ \tau_h$.
- 3. On prend encore $H = L^2(]0, 2\pi[;\mathbb{C})$ et $e_n(x) = \frac{1}{\sqrt{2\pi}}e^{inx}$. On veut montrer réciproquement que si $\phi: H \to H$ est une application linéaire continue qui commute avec les translations, alors ϕ est un multiplicateur de Fourier, associé à une certaine suite bornée de nombres complexes (λ_n) . Soit donc $\phi: H \to H$ une application linéaire continue qui vérifie

$$\forall h \in \mathbb{R}, \quad \tau_h \circ \phi = \phi \circ \tau_h.$$

- a. Pour tout $n \in \mathbb{Z}$, on pose $g_n = \phi(e_n)$. Montrer que g_n est 2π -périodique.
- b. Montrer que $(g_n, e_p) = 0$ pour tout $p \neq n$ [NB: cette question est plus difficile].
- c. En posant $\lambda_n = (g_n, e_n)$ conclure à l'aide de la question 1.