Feuille de TD 6 : Séries de Fourier

Exercice 1

Soit f la fonction 2π -périodique de \mathbb{R} dans \mathbb{R} définie en tout $x \in [-\pi, \pi]$ par : $f(x) = 1 - \frac{x^2}{\pi^2}$.

- 1. Déterminer la série de Fourier de f et montrer qu'elle converge normalement sur $\mathbb R$ vers f.
- 2. En déduire les sommes :

$$\sum_{n=1}^{+\infty} \frac{1}{n^2}, \quad \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2}.$$

3. Calculer pour $x \in \mathbb{R}$,

$$\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{\sin nx}{n^3} \text{ et } \sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)^3}.$$

4. Calculer
$$\sum_{n=1}^{+\infty} \frac{1}{n^4}$$
.

Exercice 2

Soit g la fonction 2π -périodique de \mathbb{R} dans \mathbb{R} définie en tout $x \in [-\pi, \pi[$ par $g(x) = e^{\alpha x}$, où α est un nombre réel non nul.

- 1. Déterminer la série de Fourier de g.
- 2. En déduire l'expression de $S(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{\alpha^2 + n^2}$ pour α non nul.
- 3. Peut-on, à l'aide de cette expression, retrouver $\sum_{n=0}^{+\infty} \frac{1}{n^2}$?

Exercice 3

Soit $f: \mathbb{R} \to \mathbb{C}$ une application 2π -périodique de classe C^1 telle que $\int_0^{2\pi} f(t) dt = 0$. Montrer que

$$\int_{0}^{2\pi} |f(t)|^{2} dt \le \int_{0}^{2\pi} |f'(t)|^{2} dt$$

et caractériser l'égalité.

Exercice 4

On considère une barre métallique de longueur L qu'on représente par le segment [0,L]. La température à l'instant t au point d'abscisse x est noté u(x,t). On pose $Q=]0,L[\times]0,+\infty[$. La fonction u est supposée continue sur \overline{Q} et de classe C^{∞} sur Q. Elle vérifie en outre les conditions suivantes

$$\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0 \text{ si } (x, t) \in Q, \tag{1}$$

$$u(x,0) = h(x) \text{ si } x \in [0,L]$$
 (2)

où h est une fonction de classe C^1 sur [0, L] avec h(0) = h(L) = 0,

$$u(0,t) = u(L,t) = 0 \text{ si } t \in [0,+\infty[.$$
 (3)

- 1. Montrer que si la fonction u s'écrit sous la forme u(x,t) = f(x)g(t) (où f et g ne s'annulent pas sur Q) et si u est solution de (1), alors les fonctions f et g vérifient chacune une équation différentielle simple.
- 2. Résoudre ces équations différentielles en tenant compte de (3). En déduire qu'une fonction qui s'écrit

$$u(x,t) = \sum_{n>1} a_n \sin\left(\frac{n\pi}{L}\right) e^{-\frac{n^2\pi^2}{L^2}t}$$

vérifie (1) et (3).

- **3.** Soit \tilde{h} la fonction déduite de h par imparité et 2L-périodicité. Développer \tilde{h} en série de Fourier. Quelle valeurs donner aux coefficients a_n pour que (2) soit vérifiée?
- **4.** Justifier l'existence d'une fonction u vérifiant les conditions (1), (2) et (3).