Analyse fonctionnelle - Option "Fondamentale"

Feuille de TD 1 : Dualité - Convergence faible

Exercice 1

Soit $(H, \langle \cdot, \cdot \rangle)$ un espace de Hilbert.

1. Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de H et soit $x\in H$. Montrer que $x_n\rightharpoonup x$ si et seulement si

$$\forall y \in H, \ \langle x_n, y \rangle \xrightarrow[n \to +\infty]{} \langle x, y \rangle.$$

2. Soit $(x_n)_{n\in\mathbb{N}}$ une famille orthonormée de H. Montrer que $x_n \to 0$.

Exercice 2

On munit $L^2([0,1])$ du produit scalaire canonique et on note E = C([0,1]) le sous-espace de $L^2([0,1])$ constitué des fonctions continues sur [0,1]. Pour tout $n \in \mathbb{N}$, on pose

$$e_n : \begin{bmatrix} [0,1] & \to & \mathbb{C} \\ x & \mapsto & e^{\mathrm{i}nx} \end{bmatrix}.$$

- **1.** Montrer que la suite $(e_n)_{n\in\mathbb{N}}$ converge faiblement vers 0 sur E.
- **2.** Montrer que $(e_n)_{n\in\mathbb{N}}$ converge faiblement vers 0 sur $L^2([0,1])$.
- **3.** Montrer que cette suite de fonction ne converge pas simplement vers 0 sur [0,1] et a fortiori pas fortement non plus.

Exercice 3

Soit $(H, \langle \cdot, \cdot \rangle)$ un espace de Hilbert. Soit $(x_n)_{n \in \mathbb{N}}$ une suite d'éléments de H et soit $x \in H$.

On suppose que $x_n \to x$ et $||x_n|| \xrightarrow[n \to +\infty]{} ||x||$. Montrer que l'on a alors $x_n \to x$.

Exercice 4

On considère l'espace de Banach $(C([0,1]), || ||_{\infty})$. On note E = C([0,1]). Soit $u \in E'$ définie par

$$\forall f \in E, \ u(f) = \int_0^1 f(x) dx$$

et pour tout $n \ge 1$, définissons $u_n \in E'$ par

$$\forall f \in E, \ u_n(f) = \frac{1}{n} \sum_{k=1}^n f(\frac{k}{n}).$$

- 1. Calculer $||u||_{E'}$ et pour tout $n \geq 1$, $||u_n||_{E'}$.
- 2. Montrer que

$$\forall f \in E, \ u_n(f) \xrightarrow[n \to +\infty]{} u(f),$$

mais que, pour tout $n \in \mathbb{N}$, $||u_n - u||_{E'} = 2$.

Exercice 5 - Un théorème de Runge

Soit D un ouvert borné et simplement connexe dans \mathbb{C} . Soit K un compact simplement connexe inclus dans D et soit $R = \max |\xi|, \xi \in K$.

- **1.** Soit $z \in D$, |z| > R. Montrer que $\xi \mapsto (z \xi)^{-1}$ est limite uniforme de fonctions polynômiales en ξ sur K.
- **2.** En déduire que pour tout $z \in D \setminus K$, $\xi \mapsto (z \xi)^{-1}$ est limite uniforme de fonctions polynômiales en ξ sur K.
- **3.** A l'aide de la formule intégrale de Cauchy, prouver que toute fonction analytique f sur D, $\xi \mapsto f(\xi)$, est limite uniforme sur tout compact de D de fonctions polynômiales en ξ .

Exercice 6 - Hahn-Banach géométrique

Soit E un \mathbb{R} -espace vectoriel et $C \subset E$ un sousensemble convexe d'intérieur non vide de E. Nous noterons Int(C) l'intérieur de C.

Le but de l'exercice est de montrer que :

si $x \notin Int(C)$, il existe une forme linéaire non nulle $\ell : E \to \mathbb{R}$ et un réel α tels que $\ell(x) = \alpha$ et $\ell(y) < \alpha$ pour tout $y \in Int(C)$.

Remarquons que la forme linéaire comme le réel α dépendent de x.

On dit alors que l'hyperplan $\ell(y) = \alpha$ sépare le point x et le convexe C.

Pour tout convexe K dont 0 est un point intérieur (penser à K comme à un translaté de C), on appelle jauge du convexe K l'application

$$J_K: \begin{array}{ccc} E & \to & \mathbb{R}_+ \\ x & \mapsto & \inf\{a > 0 \mid \frac{x}{a} \in K\} \end{array}$$

- 1. Montrer que J_K est une fonctionnelle sous-linéaire sur E.
- **2.** Montrer que, pour tout $y \in E$, $y \in Int(K)$ si et seulement si $J_K(y) < 1$.
- **3.** Conclure par une application du théorème de Hahn-Banach.

Exercice 7

Soit $\Omega \subset \mathbb{R}^d$ un ouvert. Nous allons montrer que l'espace $L^1(\Omega)$ n'est pas réflexif. On admet ici que le dual topologique de $L^1(\Omega)$ est $L^{\infty}(\Omega)$ au sens où:

$$\forall u \in (L^1(\Omega))', \exists ! g \in L^\infty(\Omega), \forall f \in L^1(\Omega), u(f) = \int fg.$$

On suppose pour simplifier que $0 \in \Omega$. On définit, pour tout $n \ge 1$,

$$f_n = \frac{1}{\text{vol}(B(0, \frac{1}{n}))} \mathbb{1}_{B(0, \frac{1}{n})}.$$

- 1. Montrer que, pour tout $n \ge 1$, $||f_n||_{L^1} = 1$.
- **2.** Montrer que si $L^1(\Omega)$ était réflexif, il existerait une suite extraite $(f_{n_k})_{k\geq 0}$ de (f_n) et une fonction $f \in L^1(\Omega)$ telles que, pour toute fonction $g \in L^{\infty}(\Omega)$,

$$\int_{\Omega} f_{n_k} g \xrightarrow[k \to +\infty]{} \int_{\Omega} f g.$$

- **3.** Montrer que si $g \in C_c(\Omega \setminus \{0\})$, alors il existe une boule ouverte centrée en 0 telle que g = 0 sur cette boule.
- 4. En déduire que

$$\forall g \in C_c(\Omega \setminus \{0\}), \ \int_{\Omega} fg = 0.$$

- **5.** Montrer que f = 0 presque partout sur Ω .
- ${f 6.}$ En déduire une contradiction avec la question 2 et conclure.