2019-2020

Analyse fonctionnelle - Option "Fondamentale"

Feuille de TD 2 : Opérateurs bornés - Opérateurs compacts

Exercice 1

Soit H un espace de Hilbert. Montrer que si $(T_n)_{n\in\mathbb{N}}$ est une suite d'éléments de $\mathcal{L}(H)$, alors $T_n \to T$ si et seulement si $T_n^* \to T^*$.

Exercice 2

Soit H un espace de Hilbert. Soit $T \in \mathcal{L}(H)$. Montrer que le graphe de T^* ,

$$\Gamma(T^*) = \{(u, T^*u) \mid u \in H\} = (R(\Gamma(T)))^{\perp}$$

où $R: H \times H \to H \times H$ est définie par R(u, v) = (-v, u).

Exercice 3

Soient $(H_1,(\cdot|\cdot)_{H_1})$ et $(H_2,(\cdot|\cdot)_{H_2})$ deux espaces de Hilbert. On dit que $U:H_1\to H_2$ est un isomorphisme d'espaces de Hilbert lorsque U est linéaire et

$$\forall x, y \in H_1, \ (Ux|Uy)_{H_2} = (x|y)_{H_1}.$$

Montrer que $U: H_1 \to H_2$ est un isomorphisme d'espaces de Hilbert si et seulement si U est inversible et $U^{-1} = U^*$. On dit encore que U est unitaire.

Exercice 4

Soit $H = L^2(X, \mathbb{C})$ et soit $K \in L^2(X \times X, \mathbb{C})$. Soit T_K l'opérateur défini sur H par

$$\forall u \in H, \ \forall x \in X, \ T_K u(x) = \int_X K(x, y) u(y) dy.$$

- 1. Montrer que T_K est bien défini.
- **2.** Montrer que $||T_K||_{\mathcal{L}(H)} \leq ||K||_{L^2(X \times X, \mathbb{C})}$.
- **3.** Calculer l'adjoint de T_K .

Exercice 5

Vérifier que l'opérateur de multiplication T, défini sur $L^2([0,2],\mathbb{C})$ par

$$\forall u \in L^2([0,2], \mathbb{C}), \forall x \in [0,2], (T(u))(x) = xu(x),$$

n'est pas compact, mais qu'il est borné et autoadjoint.

Exercice 6

Soit H un espace de Hilbert et soit U un opérateur unitaire sur H.

- **1.** Montrer que $H = \text{Ker}(U I) \oplus \overline{\text{Im}(U I)}$.
- **2.** Soit P le projecteur orthogonal d'image Ker(U-I). Soit, pour tout $n \geq 1$,

$$S_n = \frac{I + U + \ldots + U^n}{n+1}.$$

Montrer que, pour tout $u \in H$, $S_n u \to Pu$ lorsque n tend vers l'infini.

Exercice 7 - Trace d'un opérateur positif

Soient H un espace de Hilbert et $(e_n)_{n\in\mathbb{N}}$ une base hilbertienne de H.

Soit T un opérateur positif sur H, *i.e.* T est borné, auto-adjoint et pour tout $u \in H$, $(Tu|u) \in \mathbb{R}_+$.

On admettra qu'il existe un unique opérateur positif S tel que $S^2 = T$. On le note $T^{\frac{1}{2}}$. On pose

$$\operatorname{tr} T = \sum_{n=1}^{\infty} (Te_n | e_n) \in [0, +\infty].$$

Le réel trT est appelé trace de l'opérateur T.

- 1. Montrer que la trace est indépendante du choix de la base hilbertienne de H.
- **2.** Montrer que, pour tous opérateurs positifs T et S, tr $(T+S) = \operatorname{tr} T + \operatorname{tr} S$ et que, pour tout $\lambda \geq 0$, tr $(\lambda T) = \lambda$ tr T.
- **3.** Montrer que si T et S sont deux opérateurs positifs tels que $0 \le T S$, alors tr $S \le \operatorname{tr} T$.
- **4.** Montrer que, pour tout opérateur unitaire U, $\operatorname{tr}(UTU^{-1}) = \operatorname{tr}(U^{-1}TU) = \operatorname{tr}T$.

Exercice 8 - Opérateurs de Hilbert-Schmidt

Soit H un espace de Hilbert. Un opérateur T sur H est dit de Hilbert-Schmidt lorsqu'il existe $M \geq 0$ tel que, pour toute famille orthonormée $(e_n)_{n \in \mathbb{N}}$ de H, on a

$$\forall N \ge 0, \ \sum_{n=0}^{N} ||Te_n||^2 \le M.$$

On note $||T||_{HS}$ le plus petit M vérifiant cette inégalité. Soit $\mathcal{B}_2(H)$ l'ensemble des opérateurs de Hilbert-Schmidt.

- 1. Montrer que $T \in \mathcal{B}_2(H)$ si et seulement si $\operatorname{tr}(T^*T) < \infty$.
- **2.** Soient $T \in \mathcal{B}_2(H)$, $\varepsilon > 0$ et $\{e_0, \ldots, e_N\}$ une

famille orthonormée de H tel que

$$\sum_{n=0}^{N} ||Te_n||^2 \ge ||T||_{HS} - \varepsilon^2.$$

Si P_N désigne le projecteur orthogonal sur $V = \text{Vect}(e_0, \dots, e_N)$, montrer que $||T - TP_N||_{\mathcal{L}(H)} \leq \varepsilon$.

- $\bf 3.$ En déduire que T est compact.
- **4.** Si $H = L^2(X, \mathbb{C})$, soit $K \in L^2(X \times X, \mathbb{C})$. Montrer que l'opérateur T_K défini sur H par

$$\forall u \in H, \ \forall x \in X, \ T_K u(x) = \int_X K(x, y) u(y) dy$$

est de Hilbert-Schmidt.

Remarque: On peut montrer que réciproquement, si $T: H \to H$ est dans $\mathcal{B}_2(H)$, il existe $K \in L^2(X \times X, \mathbb{C})$ tel que $T = T_K$.