Feuille de TD 1 : Théorèmes de l'analyse fonctionnelle

1. Théorème de Baire

Exercice 1

Trouver une suite $(\mathcal{O}_n)_{n\in\mathbb{N}}$ d'ouverts denses de \mathbb{R} telle que $\bigcap_{n\in\mathbb{N}} \mathcal{O}_n$ ne soit pas ouvert.

Exercice 2

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue telle que pour tout a>0, $\lim_{n\to+\infty} f(na)=0$. Soit $\varepsilon>0$. En appliquant le théorème de Baire aux fermés $F_p=\{a\geq 0\;,\; \forall n\geq p,\; |f(na)|\leq \varepsilon\}$, montrer que f admet une limite nulle en $+\infty$.

Exercice 3

Soit f une fonction entière, c'est-à-dire holomorphe sur \mathbb{C} . Montrer que si en chaque point $z \in \mathbb{C}$, il existe $n \in \mathbb{N}$ tel que $f^{(n)}(z) = 0$, alors f est un polynôme.

Indication: on pourra utiliser les fermés

$$F_n = \{ z \in \mathbb{C}, \ f^{(n)}(z) = 0 \}.$$

Exercice 4

Soit $(V_n)_{n\in\mathbb{N}}$ une famille d'ouverts denses de \mathbb{R} .

- 1. Rappeler pour quoi $V = \cap_{n \in \mathbb{N}} V_n$ est dense dans \mathbb{R}
- **2.** Montrer que si $(x_n)_{n\in\mathbb{N}}$ est une suite réelle, alors, pour tout $n\in\mathbb{N}$, $W_n=V_n\setminus\{x_0,\ldots,x_n\}$ est un ouvert dense dans \mathbb{R} .
- **3.** En déduire que V ne peut être fini ou dénombrable.

Exercice 5

Soit (E,d) un espace métrique complet et soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues de E dans \mathbb{R} , qui converge simplement vers une fonction f.

1. Pour $m \in \mathbb{N}$ et $n \in \mathbb{N}^*$, on pose

$$A_{m,n} = \{x \in E, |f_m(x) - f_l(x)| \le \frac{1}{n}, \forall l \in \mathbb{N}, l \ge m\}.$$

Montrer que $A_{m,n}$ est un fermé de E.

- **2.** Soit $n \in \mathbb{N}^*$ fixé. Montrer que $E = \bigcup_{m \in \mathbb{N}} A_{m,n}$.
- **3.** On pose $O_{m,n} = \operatorname{Int}(A_{m,n})$. Montrer que $O_n = \bigcup_{m \in \mathbb{N}} O_{m,n}$ est un ouvert dense de E.
- **4.** Nous allons montrer que f est continue en tout point de $G = \bigcap_{n \in \mathbb{N}^*} O_n$. Soit $a \in G$ et soit $\varepsilon > 0$.
- **a.** Montrer qu'il existe $n \in \mathbb{N}^*$ et $m \in \mathbb{N}$ tels que, pour tout $x \in O_{m,n}$, $|f_m(x) f(x)| \le \varepsilon$.
- **b.** Pour cet entier m, montrer qu'il existe un voisinage V de a tel que pour tout $x \in V$, $|f_m(x) f_m(a)| \le \varepsilon$.
- **c.** Déduire des questions précedentes que f est continue au point a.
- 5. Montrer que l'ensemble des points de continuité de f est un résiduel de E.
- **6.** La fonction caractéristique de \mathbb{Q} , $\mathbf{1}_{\mathbb{Q}}$, est-elle la limite simple sur \mathbb{R} d'une suite de fonctions continues?

2. Théorèmes de Banach-Steinhaus et de l'application ouverte

Exercice 6

On note

$$\ell^{2}(\mathbb{N}^{*}) = \left\{ (x_{i})_{i \in \mathbb{N}^{*}} \mid \sum_{i=1}^{+\infty} |x_{i}|^{2} < +\infty \right\}$$

que l'on munit de la norme $||\cdot||_{\ell^2}$ définie par

$$\forall x \in \ell^2(\mathbb{N}^*), \ ||x||_{\ell^2} = \left(\sum_{i=1}^{+\infty} |x_i|^2\right)^{\frac{1}{2}}.$$

 Soit

 $E = \{x \in \ell^2(\mathbb{N}^*) \mid x_i = 0 \text{ sauf pour un nombre fini de } i \}.$

Pour $n \in \mathbb{N}^*$, on considère l'application linéaire $T_n : E \to \ell^2(\mathbb{N}^*)$ définie par :

$$\forall x \in E, \ \forall i \in \mathbb{N}^*, \ (T_n(x))_i = \begin{cases} 0 & \text{si} \quad i \neq n \\ nx_n & \text{si} \quad i = n \end{cases}$$

Soient enfin $A = \{T_n \mid n \in \mathbb{N}^*\}$ et pour tout $x \in E$, $A_x = \{T_n(x) \mid T_n \in A\}$.

1. Montrer que pour chaque $x \in E$, A_x est bornée dans $\ell^2(\mathbb{N}^*)$.

2. Soit $\mathcal{L}(E, \ell^2(\mathbb{N}^*))$ l'espace des applications linéaires continues de E dans $\ell^2(\mathbb{N}^*)$ munit de la norme $|||\cdot|||$ définie par :

$$\forall T \in \mathcal{L}(E, \ell^2(\mathbb{N}^*)), \ |||T||| = \sup_{x \in E, \ ||x||_{\ell^2} = 1} ||T(x)||_{\ell^2}.$$

Montrer que A n'est pas bornée dans $\mathcal{L}(E, \ell^2(\mathbb{N}^*))$.

3. Expliquer pourquoi le théorème de Banach-Steinhaus ne s'applique pas ici.

Exercice 7

Soient $\ell^1(\mathbb{N})$ l'espace des suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que $||u||_1 = \sum_{n=0}^{\infty} |u_n| < +\infty$ et $\ell^{\infty}(\mathbb{N})$ l'espace des suites réelles bornées, muni de la norme $||u||_{\infty} = \sup_{n\in\mathbb{N}} |u_n|$.

- **1.** Soit $A = \{u \in \ell^{\infty}(\mathbb{N}) \mid u_n = 0 \text{ sauf pour un nombre fini de } n\}$. Montrer que A est dense dans $(\ell^{1}(\mathbb{N}), || ||_{1})$ mais pas dans $(\ell^{\infty}(\mathbb{N}), || ||_{\infty})$.
- 2. Montrer qu'il n'existe pas de suite de réels strictement positifs $(a_n)_{n\in\mathbb{N}}$ telle que

$$(a_n u_n) \in \ell^1(\mathbb{N}) \iff (u_n) \in \ell^\infty(\mathbb{N}).$$

Exercice 8

Soit $E=L^1(\mathbb{T})$ l'espace des fonctions 2π -périodiques localement intégrables sur \mathbb{R} , muni de la norme :

$$||f||_1 = \frac{1}{2\pi} \int_0^{2\pi} |f(x)| dx$$

Soit $F = c_0(\mathbb{Z})$ l'espace des familles $(x_n)_{n \in \mathbb{Z}}$ de nombres complexes qui tendent vers 0 à l'infini, muni de la norme $||x||_{\infty} = \sup_{n \in \mathbb{Z}} |x_n|$.

On se propose de montrer que l'application suivante n'est pas surjective :

$$T: \begin{array}{ccc} E & \to & F \\ f & \mapsto & (c_n(f))_{n \in \mathbb{Z}}, \ c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx \end{array}$$

- 1. Rappeler pour quoi T est bien définie, linéaire, continue et injective.
- **2.** Montrer que si T est surjective, il existe $\delta > 0$ tel que, pour tout $f \in L^1(\mathbb{T})$,

$$||f||_{L^1} \le \delta \sup_{n \in \mathbb{Z}} |c_n(f)|$$

3. Pour tout $g \in L^{\infty}(\mathbb{R})$, 2π -périodique, on choisit une suite $(\alpha_n)_{n \in \mathbb{Z}}$ de nombres complexes de module

1 telle que, pour tout $n \in \mathbb{Z}$, $\bar{\alpha}c_n(g) = |c_n(f)|$. En appliquant la question 2 à

$$f_N = \sum_{|n| \le N} \alpha_n e^{inx},$$

montrer que, si T est surjective, pour tout $N \geq 0$,

$$\sum_{|n| \le N} |c_n(g)| \le \delta ||g||_{\infty}$$

4. Conclure.

Exercice 9

On désigne par E l'espace de Banach des fonctions continues sur l'intervalle [0,1], à valeurs complexes, muni de la norme $||\ ||_{\infty}$. On se donne un réel α tel que $0 < \alpha < 1$ et on note E_{α} le sous-espace de E constitué des fonctions f telles qu'il existe une constante A > 0 pour laquelle :

$$\forall x \in [0, 1], \ \forall y \in [0, 1], \ |f(x) - f(y)| \le A|x - y|^{\alpha}$$

On munit E_{α} de la norme :

$$||f||_{\alpha} = ||f||_{\infty} + \sup_{0 \le x \ne y \le 1} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

Alors $(E_{\alpha}, || ||_{\alpha})$ est un espace de Banach. Soit F un sous-espace fermé de $(E, || ||_{\infty})$. On suppose que F est contenu dans E_{α} et on se propose de montrer que F est de dimension finie.

- 1. Montrer que F est fermé dans $(E_{\alpha}, || \cdot ||_{\alpha})$.
- 2. Montrer qu'il existe une constante C>0 telle que, pour tout élément f de $F, ||f||_{\alpha} \leq C||f||_{\infty}$.
- **3.** Conclure en étudiant la boule unité de $(F, || \cdot ||_{\infty})$.

3. Théorème d'Ascoli

Exercice 10

Soit $E=C([0,1],\mathbb{R})$ l'espace des fonctions continue sur [0,1] à valeurs réelles, muni de la norme $||u||_{\infty}=\sup_{x\in[0,1]}|u(x)|$.

- 1. Montrer que la boule unité de $(E, || ||_{\infty})$ n'est pas compacte.
- **2.** Pour $k \in \mathbb{R}_+$ et M > 0, on pose

 $F_{k,M} = \{ u \in E \mid |u(0)| \le M \text{ et } u \text{ } k\text{-lipschitzienne} \}.$

- **a.** Montrer que, pour tout $x \in [0,1]$, $\{u(x) \mid u \in F_{k,M}\}$ est bornée.
- **b.** Montrer que $F_{k,M}$ est équicontinue.
- **c.** En déduire que $F_{k,M}$ est compacte.

Exercice 11

Soit $\ell^{\infty}(\mathbb{N})$ l'espace vectoriel des suites réelles bornées.

On le munit de la norme $||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$ pour $u = (u_n)_{n \in \mathbb{N}} \in \ell^{\infty}(\mathbb{N})$. Alors $(\ell^{\infty}(\mathbb{N}), || ||_{\infty})$ est un espace de Banach.

1. Montrer que la boule unité de $(\ell^{\infty}(\mathbb{N}), || ||_{\infty})$ n'est pas compacte.

2. Soit $F = \{u \in \ell^{\infty}(\mathbb{N}) \mid \forall n \in \mathbb{N}, |u_n| \leq \frac{1}{n}\}$, que l'on munit de la norme $|| ||_{\infty}$ induite par celle sur $\ell^{\infty}(\mathbb{N})$.

a. Soit $K = \{\frac{1}{n}\}_{n \in \mathbb{N}} \cup \{0\}$. Montrer que K est un compact de \mathbb{R} .

b. Soit $G = \{f : K \to \mathbb{R} \mid \forall x \in K, |f(x)| \le x\}$, que l'on munit de la norme $|| ||_K$ définie par, pour toute $f \in G, ||f||_K = \sup_{x \in K} |f(x)|$.

Montrer que G est fermé dans $C(K,\mathbb{R})$, l'espace des fonctions continues de K dans \mathbb{R} , pour la norme $|| \cdot ||_{K}$.

c. On considère l'application

$$T: \begin{array}{ccc} F & \to & G \\ T: & u & \mapsto & \left(f: \begin{array}{ccc} K & \to & \mathbb{R} \\ f: & \frac{1}{n} & \mapsto & u_n \\ 0 & \mapsto & 0 \end{array}\right)$$

Montrer que T est un homéomorphisme de $(F, || \cdot ||_{\infty})$ dans $(G, || \cdot ||_{K})$.

d. En déduire que F est compacte si et seulement si G est compacte.

3.a Montrer que, pour tout $x \in K$, $\{f(x) \mid f \in G\}$ est bornée.

b. Montrer que G est équicontinue.

c. En déduire que G est compacte et que F est compacte.