2022-2023

Feuille de TD 3 : Espaces L^p

Exercice 1 Soit $f \in L^p(\mathbb{R})$ avec 1 .

- 1. Montrer que l'on peut définir, pour tout $x \ge 0$, $F(x) = \int_0^x f(t) dt$.
- 2. Justifier que $F(x) =_{+\infty} \mathcal{O}(x^{(p-1)/p})$.
- 3. Soit $\varepsilon > 0$. Démontrer qu'il existe a > 0 tel que

$$\left(\int_{a}^{+\infty} |f(t)|^{p} dt\right)^{\frac{1}{p}} \leq \varepsilon.$$

4. En déduire que $F(x) =_{+\infty} o(x^{(p-1)/p})$.

Exercice 2 Pour $1 \le p < +\infty$, soit $\tau_a : L^p(\mathbb{R}) \to L^p(\mathbb{R})$ définie, pour tout $f \in L^p(\mathbb{R})$ et tout $x \in \mathbb{R}$, par $\tau_a(f)(x) = f(x-a)$.

Démontrer que, pour tout $f \in L^p(\mathbb{R})$,

$$\lim_{a \to 0} ||\tau_a(f) - f||_p = 0.$$

Indication: on pourra commencer par le cas où f est une fonction continue à support compact.

Exercice 3 Soit $f \in L^1(\mathbb{R})$. On considère l'application

$$Tf: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \int_0^1 f(x-y) \mathrm{d}y \end{array}.$$

- 1. Montrer que, si f est continue à support compact, Tf est continue.
- 2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues à support compact qui converge vers f dans $L^1(\mathbb{R})$. Montrer que $(Tf_n)_{n\in\mathbb{N}}$ converge vers Tf uniformément sur \mathbb{R} . En déduire que Tf est continue sur \mathbb{R} .
- 3. En déduire que le produit de convolution sur $L^1(\mathbb{R})$ n'admet pas d'élément unité.

Exercice 4 Soient $f, g:]-1, 1[\to \mathbb{R}$ données par $f = \mathbf{1}_{]-1,0[}$ et $g = \mathbf{1}_{]0,1[}$

- 1. Soit $p \in [1, \infty[$. Calculer $||f||_p$, $||g||_p$, $||f + g||_p$ et $||f g||_p$.
- 2. En déduire que si $p \neq 2$, alors $L^p(]-1,1[)$ n'est pas un espace de Hilbert.

Exercice 5 Soit $\Omega \subset \mathbb{R}^d$ de mesure finie.

1. Montrer que pour tout $f \in L^{\infty}(\Omega)$,

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

Indication: on pourra montrer que la limsup est inférieure à $||f||_{\infty}$ et que pour tout $\varepsilon > 0$, la liminf est supérieure à $||f||_{\infty} - \varepsilon$.

2. Soit

$$f \in \bigcap_{1 \le p < \infty} L^p(\Omega).$$

On suppose qu'il existe C > 0 tel que pour tout $p \in [1, +\infty[, ||f||_p \le C]$. Montrer que $f \in L^{\infty}(\Omega)$.

3. Trouver $f \in \bigcap_{1 \le p < \infty} L^p(\Omega)$ tel que $f \notin L^\infty(\Omega)$.

Exercice 6 Soit Ω un ouvert de \mathbb{R}^d , $u:\Omega\to\mathbb{R}$ une fonction mesurable. On suppose que pour tout $v\in X=L^1(\Omega)$, on a $uv\in L^1(\Omega)$.

- 1. Soit $\phi: X \to X$ définie par $\phi(v) = uv$. Montrer que le graphe de ϕ est fermé dans $X \times X$.
- 2. En déduire que $u \in L^{\infty}(\Omega)$. (Indication : on appliquera le théorème du graphe fermé, puis on raisonnera par l'absurde.)

Exercice 7 Soit (X, \mathcal{A}, μ) un espace mesuré tel que $\mu(X) < +\infty$. Soit F un sous-espace vectoriel de $L^{\infty}(X, \mu)$, fermé dans $L^{p}(X, \mu)$ pour un $p \in [1, +\infty[$. On se propose de montrer que F est de dimension finie.

- 1. (a) Montrer que F est fermé dans $L^{\infty}(X,\mu)$.
 - (b) Montrer qu'il existe un réel C > 0 tel que, pour toute $f \in F$,

$$||f||_{L^{\infty}} \le C||f||_{L^p}.$$

2. On suppose que $p \leq 2$. Montrer qu'il existe un réel $B_1 > 0$ tel que, pour toute $f \in F$,

$$||f||_{L^p} \leq B_1 ||f||_{L^2}.$$

- 3. On suppose que p > 2.
 - (a) Montrer que, pour toute $f \in F$,

$$||f||_{L^p} \le ||f||_{L^2}^{\frac{2}{p}} ||f||_{L^{\infty}}^{\frac{p-2}{p}}.$$

(b) En déduire qu'il existe un réel $B_2 > 0$ tel que, pour toute $f \in F$,

$$||f||_{L^p} \le B_2 ||f||_{L^2}.$$

4. Déduire des questions précédentes que, pour tout $p \in [1, +\infty[$, il existe un réel B > 0 tel que, pour toute $f \in F$,

$$||f||_{L^{\infty}} \leq B||f||_{L^2}.$$

- 5. On munit F du produit scalaire de $L^2(X,\mu)$. Soit $N \geq 1$ un entier et soit (e_1,\ldots,e_N) un système orthonormé dans F.
 - (a) Montrer que, pour μ -presque tout $x \in X$, pour tous $c_1, \ldots, c_N \in \mathbb{C}$,

$$\left| \sum_{j=1}^{N} c_j e_j(x) \right| \le \left| \left| \sum_{j=1}^{N} c_j e_j \right| \right|_{\infty}.$$

Indication : on pourra utiliser la densité de $(\mathbb{Q} + i\mathbb{Q})^N$ dans \mathbb{C}^N .

(b) En déduire que, pour μ -presque tout $x \in X$, pour tous $c_1, \ldots, c_N \in \mathbb{C}$,

$$\left| \sum_{j=1}^{N} c_{j} e_{j}(x) \right| \leq B \left(\sum_{j=1}^{N} |c_{j}|^{2} \right)^{\frac{1}{2}}.$$

(c) Montrer que, pour μ -presque tout $x \in X$,

$$\sum_{j=1}^{N} |e_j(x)|^2 \le B^2.$$

- (d) En déduire que $N \leq B^2 \mu(X)$.
- 6. Montrer que F est de dimension finie et que $\dim(F) \leq B^2\mu(X)$.