$$\frac{E_{\text{XOACISE 2}}}{\text{let E>0. First, for every $p \in \mathbb{N},}$

$$F_p = \bigcap \{a\}0, \quad |f(na)| \leq \mathbb{N} \text{ is a closed sat as on intorsection of closed sets, by continuity of f.}$$

Moreover, $\mathbb{N}_t^* \subset \bigcup \mathbb{F}_p$.

$$\frac{1}{p \geq 0}$$

$$Indeed, \quad if \quad a \in \mathbb{R}_t^*, \quad \exists p \in \mathbb{N}, \quad \forall n \geq p, \quad |f(na)| \leq \mathbb{E}$$

by hypothesis. It means exactly that for every

$$a \in \mathbb{R}_t^*, \quad \text{there exists p \in \mathbb{N}, } \quad a \in \mathbb{F}_p, \quad i.e \quad a \in \mathbb{U}_p^*.$$

In particular, $\leq \mathbb{R}_t^* \subset \bigcup \mathbb{F}_p, \quad \bigcup \mathbb{F}_p \text{ is of } \mathbb{P}_p^{20}$$$

(2)

mon-empty interior. By Boire's theorem at least
one of the
$$F_{p}$$
's is of non-empty interior.
Indeed, any combable unine of closed sets of empty
interiors is of empty interior.
Hence: $\exists po \ge 0$, $Int(F_{p}) \neq \beta$ and:
 $\exists a \ge 0$, $\exists S \ge 0$, $Ja - S, a + S \le CF_{p} \subset iR_{+}$.
By definition of F_{po} : $t \ge 6] a - S, a + S \le (F_{p} \subset iR_{+})$.
 $If(m \ge 1) \le \varepsilon$.
Let perior such that $:t = n \ge p_{1}$, $a < e_{m+1} \ge S$, and
let $N_{0} = max(P_{0}, P_{1})$.
Then $\bigcup_{m \ge N_{0}} m(a - S)$, $n(a + S) \le 1 = N_{0}(a - S), +\infty \le$

Exoncise 3

(٢)

For metry, let $F_n = \{z \in G, f^{(n)}(z) = 0\}$. Then F_n is closed in C. By hypothesis $\pm z \in G$, $\exists m_z \in \Pi$, $\int (m_z)(z) = 0$. Hence: $UF_m = C$ since if 2EC, $\exists m_z \in R$, $z \in F_{m_z}$. i.e C C U Fm -In ponticular, UFn is of mon-empty interior and at leave tone of the Fr's, say From is of mon-empty interior. Then: $\exists z_{o} \in F_{m_{o}}$, $\exists n_{o} > 0$, $D(z_{o}, n_{o}) \subset F_{m_{o}}$ and: $\forall z \in D(z_0, 3), f^{(n_0)}(z) = 0.$ By analytic continuation, $f^{(n_0)} = 0$. Hence fis a polynomial function.

Exercise 5
1. One whites for each
$$m \in \Pi V$$
 and $n \in \Pi V^{r}$,
 $A_{m,n} = \bigcap_{l \ge nn} \{x \in E \mid |f_{n}(a) - f_{l}(a)| \le \frac{1}{n} \}$
and each set $\{x \in E \mid |f_{n}(a) - f_{l}(a)| \le \frac{1}{n} \}$ is a closed set by
continuity of f_{m} and f_{l} .
Hence $A_{n,n}$ is a closed set as intervection of closed sets.
2. Let $n \in \Pi V^{*}$ fixed. Since $(f_{an})_{m \in \Pi V}$ converges pointwise to f_{r} ,
for each $x \in E$, $(f_{m}(b_{l}))_{m \in \Pi V}$ is a Cauchy sequence of real numbers.
The portradon, since $\frac{1}{n} > 0$, there exists $Im_{x} \in \Pi V$, $\mathcal{H} \ge m_{x}$,
 $1 \int a_{x} (A_{l} - \frac{1}{2}p(A_{l})| \le \frac{1}{n}$ i.e. $x \in A_{m_{x}, n}$.

(7)

We did just prove that ECUA, ond since for each
mGN, Am, n CE, UA, CE.
Homo U, Am, n = E.
3. For each n EN's fixed, On is an open set as a union of
open sets, the Om, n.
We aim at showing that On is hense in E. Let U be an open
non-empty set of E. Let
$$\widetilde{A}_{m,n} = A_{m,n} \cap U$$
. for each n, m.
Thum $(\widetilde{A}_{m,m})_{m \in \mathbb{N}}$ is a countable formily of closed sets
Bit is a countable formily of closed sets

JU whose union is Sha many Amin = E. Wence, by Boine's theorem, at least one of the Amin, has non-empty intension. Let my GIV be such that Int (Amin,) + P. for the induced topology on U.

Since U is an open set of E,
$$Int_{U}(\hat{A}_{m_{0},n})$$
 is also an open set
of E and since $Int_{U}(\hat{A}_{m_{0},n}) \subset \hat{A}_{n_{0},n}$, $Int_{U}(\hat{A}_{m_{0},n}) \subset Int(\hat{A}_{m_{0},n})$
Since $Int_{U}(\hat{A}_{m_{0},m}) \subset U$ one has $: Int_{U}(\hat{A}_{m_{0},n}) \subset Int(\hat{A}_{m_{0},n}) \cap U$
Hence $\emptyset \neq Int_{U}(\hat{A}_{m_{0},n}) \subset (\bigcup Int(\hat{A}_{m_{0},n}) \cap U = O_{n} \cap U$
which is non-empty.
Idence O_{n} is dense in E.

4. Let
$$G_{n=n} \cap Q_{n}$$
, $a \in G$ and $E > 0$.
a. Let $n \in \mathbb{N}^{n}$, $\frac{1}{m} \in \mathbb{Z}$. Since $a \in G$, $a \in O_{n}$ and there exists in $\in \mathbb{N}^{n}$,
 $a \in O_{n,m}$. Since $O_{m,n} \cap A_{m,m}$, for each $x \in O_{m,n}$, if $l \geq m$,
 $l \leq m \leq 1 - \frac{1}{2} \ell(n) \leq \frac{1}{m} \leq \mathbb{E}$
Letting $l = \frac{1}{2} (n \leq 1 - \frac{1}{2} (n) - \frac{1}{2} (n) - \frac{1}{2} (n) \leq \frac{1}{2}$.

Exancîse 6.

1. Let $x \in E$. One has: $T_{m} \in A$, $\||T_{m} (u)|\|_{p^{2}}^{2} = \sum_{i=1}^{1} |(T_{m} (u))_{i}|^{2} = m^{2} |x_{m}|^{2}$ This implies that: #T_EA, IIT_ hillpz= mlx_1 But $x \in E$ and the x_n are all equal to 0 except for a finite number of them. Hence: $\exists n_0 \ge 1$, $\forall n \ge n_0$, $n|x_n|=0$ and the sequence $(m|x_n|)$ is bounded, say by c > 0. Then: $\forall T_m \in A$, $\||T_m f_N\|\|_{p^2} \leq C$ and A_{χ} is bounded by C in $\ell^2(T_N)$. 2. Let $n \ge 1$. One has : $\forall x \in E$ such that $||x||_{p^2} = 1$, $||T_n(x)||_{p^2} = m|x_n| \le n ||x||_{p^2} \le m$

Indeed for each n > 1, $\ln |^2 < \sum_{j=1}^{n} \ln |z_j|^2$ have $|x_j| \leq ||x_j|_{\ell^2}$. Honce: INT, IN SM But, if for each $n \ge 1$, e_m is the element of $\ell^2(\Pi \sqrt{n})$ such that for each $i \ne m$, (e_m) ; =0 and $(e_m)_m = 1$, then $||e_n||_{p_2} = 1$ and $||T_n||_{p_1} = n$. Hence $|||T_n||| \ge n$ and finally, Hn>1, In Try III = n and A is not bounded. 3. If E was a Bonach spore, since each Az is bounded, Using Bonach-Steinhaus theorem, A charled also be bounded. Honce E is not a Banach space. Actually, it can be proven directly by constructing a Condry Sequence in F which does not converge in E.

 $\left(\begin{array}{c} 1 \\ 2 \end{array}\right)$

$$13$$
For $n \ge 1$, let:

$$1 \ge 1$$
, $(f_n)_1 = \begin{cases} 1 & \text{if } i \le n \\ 0 & \text{if } i \ge n \end{cases}$
Then $f_n \in E$ but:

$$1 \ge 1 \ge 1$$
, $\|f_p - f_q\|_{p^2}^2 = \sum_{i=1}^{p} \frac{1}{i^2} - \sum_{i=1}^{p} \frac{1}{i^2} = \sum_{i=q+1}^{p} \frac{1}{i^2}$. Since $(\sum \frac{1}{i})$
 $1 \ge 1$, by the conchraction is $1 \ge 0$, $1 \ge 0$, $1 \ge 1$, 1

Exencise 7 1. let $u = (1)_{n \in \mathbb{N}}$. Then $n \in \ell^{\infty}(\mathbb{N})$ but: treA, Ilu-villes>,1 since on infinite number of toms of N on equal to 0. Hence A is not dense in $(1^{\infty}(N), || ||_{\infty})$ • Let $u \in l(n)$. For every $N \in n$, let $N_N = (u_0, \dots, u_N, 0, \dots) \in A$. One floo: +20 Hence Λ is dense in $(\ell^{1}(\Pi), \| \|_{1})$.

45
2.
$$(l^{1}(N), || ||_{4})$$
 and $(l^{\infty}(N), || ||_{b_{0}})$ are both Banach
spaces.
Assume that there exists a sequence $(a_{m})_{max}$ of positive
real numbers such that
 $(a_{m} u_{n})_{meny}$ $\in l^{1}(N) \subset (u_{n}) \in l^{\infty}(N)$.
Then, introduce $T: l^{\infty}(N) \longrightarrow l^{1}(N)$
 $Then, introduce $T: l^{\infty}(N) \longrightarrow l^{1}(N)$
 T is lineon and bijective of explicit inverse:
 $T^{-1} l^{1}(N) \longrightarrow l^{\infty}(N)$
 $(u_{m})_{neny} \longmapsto (a_{m}^{-1} u_{m})_{meny}$
 $Noreover, if one takes $u = (1)_{meny} \in l^{\infty}(N)$ i.e $\sum a_{meny} c^{\infty}(N)$
 $(a_{m} u_{m}) = (a_{m} u_{m})_{meny} \in l^{1}(N)$ i.e $\sum a_{meny} c^{\infty}(N)$
 $(u_{m})_{meny} = (a_{m} u_{m})_{meny} \in l^{1}(N)$ i.e $\sum a_{meny} c^{\infty}(N)$
 $(u_{m})_{meny} = \sum_{m=0}^{n} u_{m} |u_{m}| \leq N u H_{as} \sum_{m=0}^{n} a_{m}$$$

and T is continuous. By the isomorphism theorem of Bonach,
T¹ is also continuous.
Note that since all the
$$a_n$$
 one different from o , $A = TA$.
and A being dance in $(e^{i}(TN), 1114)$ and Theing on
homeomorphism, TA should be dense in $(e^{\infty}(TN), 1111_{0})$.
But it is not!
Hence $(a_m)_{n \in N}$ commot exist and there is no smaller
note of a for the absolutely converging series.

(16)

(17)

2. If the according that T is also entry, then T is an isomorphism and T⁻¹ is also continuous: ∃5>0, tf €L⁴(T), llfll, ≤ S sup [Gn(f)].
3. Let N≥0. For each m 62 one sets: an = \$0 if Gn(g)=0 (Gn(g)) if Gn(g)=0. Then: $t_{11} \in \mathbb{Z}$, $\overline{a_n} \in \{g\}$ = $| \leq_n \leq_g \}|$. Therefor: $\sum_{|m| \leq N} |c_m(q)| = \sum_{|m| \leq N} \overline{c_m} c_m(q) = \sum_{|m| \leq N} \frac{1}{2\pi} \int_{0}^{2\pi} \frac{q_m}{q_m} q_{m}(q) e^{-i\pi q_m} dh$ $= \sum_{|m| \leq N} \frac{1}{2\pi} \left(\int_{a}^{a} g(m) \right) \overline{\alpha_{n}} e^{-mn} \left(\int_{a} \frac{1}{2\pi} \int_{a}^{a} \frac{1}{2\pi} \int_{a}^{a$

Since ED, 2003, by the dominated cv theorem, the
cv of the cenie also takes place in L²(ED, 2013) with
the some limit.
Since
$$g \in L^2(ED, 2013)$$
 (it is bounded on IR and 2017-poniodic
using basevals equality, g hal = $Z \subseteq G(g)e^{inx}$ a.e.
Monce, g being any 2017-poniodic L^{∞} function would be
equal to a continuous function a.e. Of come it is not
true hence T connot be onto.

(20

By the isomorphism theorem of Benoch, in is also continuous ond: 3 < > 3, 4 < < 7, 14 < < 14 < < 143. Let B be the mit ball of $(F, \| \|_{\infty})$. Let $f \in B$: $\| f \|_{\infty} \leq 1$ and $\| f \|_{\alpha} \leq C$. Then: 4250, 4x, y EEO, 17, 1x-y1<574, 4, EB, 19(1)-9(4) \$ 18/ a 12-9 \$ (CE and Bis equicontinuous in C([91], C). Moreoven: treED, 1], tfEB, 1] (a) (M/ a (1. and for each nEDID, SJGDZ is bounded. Applying Ascoli's thornom, Bis relatively compact, hence

(ZZ)

compoct. By Ring's theorem, Fis of finite dimension.

Exercise 10 1. Let (2) non which we strongly to 2 in E and bet $u \in \mathcal{E}'$ Then: $|u(x_n) - u(x_n)| \leq ||u||_{\mathcal{E}}, ||x_n - x||$ $\longrightarrow \mathcal{O}$ $a_n \rightarrow x$. 2. Assume that $x_n \rightarrow x_0$ in E and that $x_n \rightarrow x_0$ in E. Then: $\mathbf{t}_{u \in E'}$, $u(m_1) = \lim_{n \to \infty} u(m_n) = u(x_0)$. Recall the conditions of black - Bornach's theorem: take, 11x11= supplubuil | n EE' and 11u_E, \$ 13 and this supromum is attained.

(2**6**)

Exercise 11

1. By Ricog theorem, since E is of infinite dimension, its mit ball is not compact. 2. a. Let x ETO, 13. Lat n ETE, M. Then: $|u(\omega)| \leq |u(\omega) - u(\omega) + u(\omega)| \leq |u(\omega) - u(\omega)| + |u(\omega)|$ Skn+M Sk+M. Home, Sucas is bounded by 6+11. b. Lot ED and let re ETJ1]. Lotako S-E. Then: + y GES,17, In-y128 one has, Auf Fz, M, lugi) Skla-yl Sk == E (donce, Fz, is equicontinuous on E0,1). Suma Ascoli's theorem, Fz, M is compact. Sime Fz, M is closed, Fz, M is compact.

Exencise 12:

1. For every $f \in [0,1]$ and $n \in \mathbb{N}$, let $F_n(t) = \int_{1}^{t} f_n'(s) ds$. Since (fri) cu millomly tog on [0,1], lim Falt) = $\begin{pmatrix} t \\ lim \\ notes \end{pmatrix}$ $\int_{n}^{t} (s) ds = \int_{0}^{t} g(s) ds$. But: HEID, I, F. (H= f. (H-f(0) honce, uning uniqueness of the limit, $++ \in [0,1], f(+)-f(0) = \int g(s) ds.$ Moreover, since the fri one C° on TO, 1] and cr uniformly to g on TO, 1], gis also C° on TO, 1]. Honce traff (\$ 1575 is c'an Eq.1) and f is c'an Eq.1] with:

4 $t \in L_{2}(1), f'(t) = g(t)$. Honge the worked repult. 2. a. Let (In) a seguence of elements of (E, 1110) which ev to flet and such that $(Tr(f_n))_{n\in\Pi V}$ cv to g in $(F, \| \|_{\partial 0})$. 1.e (f_n) cvv to g on Eq. 1] and (f_n') cvv to g on Eo,1. $B_{y} = 1$, f is c'or [0,1] and f'=g i.e. g=T(f). Hence the graph of T is closed and since (E, 1111,) and (F, II II a) one Banach space las Fis closed in the Banach SPOCE E), Theing Cinean, it is continuous.

(32

Exencise 13

(33)

3 Let
$$(f_n)$$
 a sequence of elements of 6 which convolues
to f for 11 11/4.
In ponticularly) cv pointivise to f on k and since:
In GTW, tree k, $|f_n(n)| \leq 2$,
and letting m tends to infinity: $trek, |f(x)| \leq 2$.
Idence, $f \in G$ and G is a closed set in $(C(K, TR), 11.1/4)$.
 $\leq Fon u, w \in V$,
 $||T(u) - T(w)||_{k} = \sup_{x \in K} |T(u)(x) - T(w)(x)|$
 $= \max(0, \sup_{n \geq 1} |T(u)(\frac{1}{n}|) - T(w)(\frac{1}{n})|$
 $= \sup_{x \geq 1} |U_n - w_n| = ||u - w||_{\infty}$.

Hence T is on isometry from
$$(F, || ||_{\mathcal{D}})$$
 to $(G, || ||_{\mathcal{K}})$.
In particular, T is continuous.
Moreover, T is a bijection of reciprocal map,
 T^{-1} : $G \rightarrow F$ where : $tin GTN$, $u_n = \begin{cases} 0 = j(0) & i \\ j(1 = 0 \end{cases}$
 $f \mapsto u_n$ where : $tin GTN$, $u_n = \begin{cases} 0 = j(0) & i \\ j(1 = 0 \end{cases}$
Then : $tf_{i,q} \in G_{i}$
 $|| T^{-1}(q)||_{\mathcal{D}} = max(0, sup || f(\frac{1}{m}) - g(\frac{1}{m}) ||)$
 $= sup || f(m) - g(m)|$ (since for $f_{i,q} \in G_{i}$
 $\pi \in \mathbb{K}$ $f(0) = 0$ and $g(0 \neq g)$
Horize T^{-1} is also on isometry and therefore it is continuous.

(36)

Let
$$S = \frac{1}{2}(\frac{1}{k} - \frac{1}{k+1}) = \frac{1}{2k(k+1)} > 0$$
. Then for every $y \in k$,
 $tx - y | kS$, $x = y$ and $|f(x_1 - f(y)| = 0 \leq \epsilon$.
Lonce G is equicontinuous at n .
Since $K = \{030\} = \frac{1}{n} \sum_{n>1} f(x_1 - f(y_1)) = 0$.

c. Using Ascoli's theorem, G is compact. But since 6 is closed, G is compact and therefore Fiscompact.