
Université Sorbonne Paris Nord - Institut Galilée Academic year 2023-2024
Master 1

Bounded and compact operators.

Spectral theorem.

H. Boumaza

November 8, 2023



page ii



Bibliography

[1] J. B. Conway, A Course in Functional Analysis, Second Edition, Graduate Texts in Mathe-
matics, Springer-Verlag, 2007.
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Chapter 1

Bounded linear operators on a Hilbert
space

(H, (·|·)) denotes a Hilbert space on R or on C. By convention, when (·|·) is a Hermitian
product, it will be semilinear on the right.

1.1 Bounded operators

We begin by defining the space of bounded operators between normed vector spaces and then
define several topologies on this space.

Definition 1.1.1. If (E, ∥ ∥E) and (F, ∥ ∥F) are normed vector spaces, a bounded operator from E to F
is a continuous linear mapping T : E → F, i.e, such that

∃C > 0, ∀u ∈ E, ∥Tu∥F ≤ C ∥u∥E .

Notation. We denote by L(E, F) the set of bounded operators from E to F. When E = F, we
write L(E) = L(E, E).

L(E, F) is a vector space on which we introduce the norm,

∥T∥L(E,F) = sup
u∈E\{0}

∥Tu∥F
∥u∥E

= sup
∥u∥E=1

∥Tu∥F .

The topology induced by this norm on L(E, F) is called the uniform operator topology. If (F, ∥ ∥F)
is a Banach space, then (L(E, F), ∥ ∥L(E,F)) is also a Banach space. Furthermore, the norm
∥ ∥L(E,E) is an algebra norm on (L(E),+, ., ◦) and, more generally, if (E, ∥ ∥E), (F, ∥ ∥F), and
(G, ∥ ∥G) are normed vector spaces and T1 ∈ L(E, F) and T2 ∈ L(F, G), then T2 ◦ T1 ∈ L(E, G)
and

∥T2 ◦ T1∥L(E,G) ≤ ∥T2∥L(F,G) ∥T1∥L(E,F) .

Notation. Throughout, we denote T2T1 as the composition T2 ◦ T1 of two operators T1 ∈
L(E, F) and T2 ∈ L(F, G).

We now introduce a weaker topology on L(E, F), the strong operator topology. It is the smallest
topology making the maps evu : L(E, F) → F, evu(T) = Tu continuous. For this topology, a
sequence of bounded operators (Tn)n∈N converges to a bounded operator T if and only if, for
every u ∈ E, ∥Tnu − Tu∥F −−−−→

n→+∞
0. We write Tn → T in this case.

The following examples illustrate the differences between these two topologies on L(ℓ2(N)).
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Chapter 1. Bounded linear operators on a Hilbert space

Example 1.1.2. Let Tn : ℓ2(N) → ℓ2(N), Tn(x0, x1, . . .) = ( 1
n x0, 1

n x1, . . .). Then (Tn)n∈N uniformly
converges to 0, the zero operator.

Example 1.1.3. Let Sn : ℓ2(N) → ℓ2(N), Sn(x0, x1, . . .) = (0, . . . , 0, xn, xn+1, . . .). Then (Sn)n∈N

strongly converges to 0 but not uniformly.
Indeed, for any x ∈ ℓ2(N),

||Snx||ℓ2 =
+∞

∑
k=n

|xk|2 −−−−→
n→+∞

0.

Then, for any x ∈ ℓ2(N), ||Snx||ℓ2 ≤ ||x||ℓ2 hence ||Sn||L(ℓ2(N)) ≤ 1. Furthermore, for all n ∈ N,
||Snen||ℓ2 = 1 where en is the sequence being 0 for all k ̸= n and 1 at the n-th term. Therefore, for all n,
||Sn||L(ℓ2(N)) = 1, and (Sn) does not uniformly converge to 0.

Throughout, we will often consider bounded operators between Hilbert spaces. In this Hilbert
framework, we provide a characterization of the operator norm.

Proposition 1.1.4. Let H1 and H2 be two Hilbert spaces. Let T : H1 → H2 be a bounded operator.
Then,

∥T∥L(H1,H2)
= sup{|(Tu|v)H2 | | ∥u∥H1

≤ 1 and ∥v∥H2
≤ 1}.

Proof : Let S be the right-hand side of the equality. By the Cauchy-Schwarz inequality,

|(Tu|v)| ≤ ∥Tu∥H2
∥v∥H2

≤ ∥T∥L(H1,H2)
∥u∥H1

∥v∥H2
≤ ∥T∥L(H1,H2)

when ∥u∥H1 ≤ 1 and ∥v∥H2 ≤ 1. Hence, S ≤ ∥T∥L(H1,H2). Conversely, let M be a positive
real number; suppose S ≤ M. Then, for any u ∈ H1, ∥Tu∥H2 ≤ M∥u∥H1 . Indeed, if
u = 0 or Tu = 0, the inequality holds. Otherwise, u′ = u/∥u∥H1 and v′ = Tu/∥Tu∥H2

have norm 1, and as S ≤ M, |(Tu′|v′)| ≤ M. Now, |(Tu′|v′)| = ∥Tu∥H2 /∥u∥H1 , hence
∥Tu∥H2 ≤ M∥u∥H1 . By the definition of ∥T∥L(H1,H2), we get ∥T∥L(H1,H2) ≤ S.

2

1.2 Adjoint of a Bounded Operator

We will now define the adjoint of a bounded operator, which generalizes to any dimension the
transpose of a real matrix or the conjugate transpose of a complex matrix.

Proposition 1.2.1. Let H be a Hilbert space and T ∈ L(H). There exists a unique operator T∗ ∈ L(H)
such that

∀u ∈ H, ∀v ∈ H, (Tu|v) = (u|T∗v). (1.1)

Proof : Let v ∈ H. Then, ℓv : u 7→ (Tu|v) is a continuous linear form on H. By the Riesz
representation theorem for continuous linear forms, there exists a unique vector w ∈ H
such that, for all u ∈ H, ℓv(u) = (u|w). Let T∗ : H → H, T∗v = w.

T∗ is linear. Indeed, for v1, v2 ∈ H and λ1, λ2 ∈ C, let v = λ1v1 + λ2v2 and w1 = T∗(v1),
w2 = T∗(v2), T∗(v) = w. Then,

∀u ∈ H, (u|w) = (Tu|v) = (Tu|λ1v1 + λ2v2)

= λ1(Tu|v1) + λ2(Tu|v2)

= λ1(u|w1) + λ2(u|w2)

= (u|λ1w1 + λ2w2).

page 2 Bounded and compact operators. Spectral theorem.



1.2 Adjoint of a Bounded Operator

So, w − λ1w1 − λ2w2 ∈ H⊥ = {0} and w = λ1w1 + λ2w2, proving linearity of T∗.

T∗ is bounded. Indeed, for u, v ∈ H, ∥u∥H ≤ 1 and ∥v∥H ≤ 1, then

|(u|T∗v)| = |(Tu|v)| ≤ ∥Tu∥H ∥v∥H ≤ ∥T∥L(H) .

Thus, taking u = T∗v
∥T∗v∥H , for all v ∈ H, ∥v∥H ≤ 1 and T∗v ̸= 0, ∥T∗v∥H ≤ ∥T∥L(H). If

v ∈ H is such that T∗v = 0, the inequality is still valid. This gives ∥T∗∥L(H) ≤ ∥T∥L(H)

and T∗ is bounded.

Finally, for uniqueness, if T∗
1 and T∗

2 satisfy (1.1), then for all u, v ∈ H, (u|(T∗
1 − T∗

2 )v) = 0,
thus T∗

1 − T∗
2 = 0.

2

Definition 1.2.2 (Adjoint). The bounded operator T∗ ∈ L(H) is called the adjoint of the operator T.

Example 1.2.3. For any Hilbert space H, Id∗
H = IdH.

We state the first properties verified by the adjoint of a bounded operator.

Proposition 1.2.4 (Algebraic Properties of the Adjoint). Let T, T1, T2 ∈ L(H) and λ ∈ C. Then,

1. (T1 + T2)∗ = T∗
1 + T∗

2 ;

2. (λT)∗ = λT∗;

3. (T1T2)∗ = T∗
2 T∗

1 ;

4. (T∗)∗ = T;

5. if T has a bounded inverse T−1, T∗ also has a bounded inverse, and (T∗)−1 = (T−1)∗.

Proof : The first two points come from the right semilinearity of the inner product. For the third
point, for all u, v ∈ H, write (T1T2u|v) = (T2u|T∗

1 v) = (u|T∗
2 T∗

1 v). The fourth point is ob-
tained by noticing that in (1.1), vectors u and v play the same role, and (Tu|v) = (u|T∗v)
for all u, v ∈ H if and only if (T∗u|v) = (u|Tv) for all u, v ∈ H by taking conjugates.
Finally, for the last point, from TT−1 = I = T−1T, we deduce by taking the adjoint that
T∗(T−1)∗ = I∗ = I = I∗ = (T−1)∗T∗.

2

Proposition 1.2.5 (Metric Properties of the Adjoint). Let T ∈ L(H). Then,

1. ∥T∗∥L(H) = ∥T∥L(H);

2. ∥T∗T∥L(H) = ∥T∥2
L(H).

Proof : From the proof of proposition 1.2.1, ∥T∗∥L(H) ≤ ∥T∥L(H). Then, applying this inequality
to the bounded operator T∗ and using the fact that (T∗)∗ = T, we obtain ∥T∥L(H) ≤
∥T∗∥L(H), proving the first point. For the second point, we initially have ∥T∗T∥L(H) ≤
∥T∗∥L(H)∥T∥L(H) = ∥T∥2

L(H). Conversely, if u ∈ H, ∥u∥H = 1,

∥Tu∥2
H = (Tu|Tu) = (T∗Tu|u) ≤ ∥T∗T∥L(H) ,

hence ∥T∥2
L(H) ≤ ∥T∗T∥L(H).

Bounded and compact operators. Spectral theorem. page 3



Chapter 1. Bounded linear operators on a Hilbert space

2

Proposition 1.2.6 (Geometric Properties of the Adjoint). Let T ∈ L(H). Then,

1. Ker T∗ = (ImT)⊥ and (Ker T∗)⊥ = ImT;

2. if F ⊂ H is a subspace stable under T, then F⊥ is stable under T∗.

Proof : u belongs to (ImT)⊥ if and only if, for all v ∈ H, (u|Tv) = 0, which is equivalent to
saying that, for all v ∈ H, (T∗u|v) = 0. This is equivalent to T∗u = 0, or equivalently
u ∈ Ker T∗. The second property arises from properties of orthogonal spaces in Hilbert
spaces.

For the second point, let v ∈ F⊥ and u ∈ F. Then Tu ∈ F, so (T∗v|u) = (v|Tu) = 0.
Therefore, T∗v ∈ F⊥.

2

Definition 1.2.7. An operator T ∈ L(H) is called self-adjoint when T = T∗.

Self-adjoint operators are a generalization of symmetric matrices to infinite dimensions.
They play a major role in functional analysis and mathematical physics. A structural theorem
for these operators asserts that every self-adjoint operator is diagonalizable, in a sense to be
specified in infinite dimensions. A primary example of a self-adjoint operator is that of an
orthogonal projector.

Definition 1.2.8. An operator P ∈ L(H) is called a projector when P2 = P. Moreover, if P∗ = P, P
is called an orthogonal projector.

It is noted that the image of a projector is a closed subspace on which P acts as the identity.
Furthermore, if P is orthogonal, P acts as the null operator on (ImT)⊥. Then, the projection the-
orem for closed subspaces in Hilbert spaces assures that there is a bijection between orthogonal
projectors in a Hilbert space H and closed subspaces of H.

Example 1.2.9. (Multiplication Operator). Let (X, µ) be a σ-finite measure space and let H =
L2(µ). If φ ∈ L∞(µ), we define the multiplication operator by φ, Mφ : L2(µ) → L2(µ) such that, for
all u ∈ H, Mφu = φu.

Then, Mφ is in L(L2(µ)) and ∥Mφ∥ = ∥φ∥∞. Here, ∥φ∥∞ denotes the essential supremum,
∥φ∥∞ = inf{c > 0 | µ({x ∈ X | |φ(x)| > c}) = 0}. Therefore, by changing the representative within
the class of φ, we can assume that φ is a bounded function.

Moreover, since ∥φu∥2 ≤ ∥φ∥∞∥u∥2, Mφ is a bounded operator and ∥Mφ∥ ≤ ∥φ∥∞. For any ε >
0, as µ is σ-finite, there exists a measurable set A with 0 < µ(A) < +∞ such that |φ(x)| ≥ ∥φ∥∞ − ε

for all x ∈ A. Taking u = µ(A)−
1
2 1A, then u ∈ L2(µ) and ∥u∥2 = 1. Thus, ∥Mφ∥2 ≥ ∥φu∥2

2 =
µ(A)−1

∫
A |φ|2dµ ≥ (∥φ∥∞ − ε)2. As ε tends to 0, it holds that ∥Mφ∥ ≥ ∥φ∥∞.

It is observed that, for any φ ∈ L∞(µ), M∗
φ = Mφ, where φ(x) = φ(x) for all x in X. In particular,

if φ takes real values, M∗
φ = Mφ and Mφ is self-adjoint.

For bounded self-adjoint operators, proposition 1.1.4 can be refined.

Proposition 1.2.10. Let T ∈ L(H) be a self-adjoint operator. Then, for all u ∈ H, (Tu|u) ∈ R, and

∥T∥L(H) = sup{|(Tu|u)| | ∥u∥H = 1}.

page 4 Bounded and compact operators. Spectral theorem.



1.2 Adjoint of a Bounded Operator

Proof : Let S be the right-hand side of the equality. According to Proposition 1.1.4, S ≤ ∥T∥L(H).
To prove the other inequality, let’s begin by showing that, for all u ∈ H, (Tu|u) ∈ R. In-
deed, as T = T∗, (Tu|u) = (u|Tu) = (Tu|u) and (Tu|u) ∈ R. Then, using the polarization
identity, we have

∀u, v ∈ H, Re (Tu|v) = 1
4
((T(u + v)|u + v)− (T(u − v)|u − v)) .

Now, for all u ∈ H, |(Tu|u)| ≤ S∥u∥2. Therefore, for all u, v ∈ H,

|Re (Tu|v)| ≤ S
4

(
∥u + v∥2 + ∥u − v∥2

)
.

Then, by the parallelogram identity, for all u, v ∈ H, |Re (Tu|v)| ≤ S
2

(
∥u∥2 + ∥v∥2).

Hence, if we assume ∥u∥ ≤ 1 and ∥v∥ ≤ 1, we obtain |Re (Tu|v)| ≤ S. By replacing
v with e−iθv, where eiθ(Tu|v) = |(Tu|v)|, we then get that, for all u, v ∈ H, |(Tu|v)| =
(Tu|e−iθv) = |Re (Tu|e−iθv)| ≤ S. Therefore, by Proposition 1.1.4, ∥T∥L(H) ≤ S, which
concludes the proof.

2

We conclude this section with a result that paves the way for the formalism of unbounded
operators.

Theorem 1.2.11 (Hellinger-Toeplitz). Let T : H → H be an operator such that, for all u, v ∈ H,
(u|Tv) = (Tu|v). Then T ∈ L(H).

Proof : By the closed graph theorem, it suffices to demonstrate that Γ(T), the graph of T, is
closed. Let (un)n∈N be a sequence of elements of H converging to u ∈ H, such that
(Tun)n∈N converges to v ∈ H. We only need to show that v = Tu. For any w ∈ H,

(w|v) = lim
n→∞

(w|Tun) = lim
n→∞

(Tw|un) = (Tw|u) = (w|Tu),

thus v = Tu.

2

This result asserts that there cannot be an unbounded operator defined on the entire space
H that is self-adjoint (or symmetric in general). This poses a problem in quantum mechanics
where one wishes to define operators like energy (involving a derivative) that are unbounded
while being symmetric in the sense of (u|Tv) = (Tu|v).

Bounded and compact operators. Spectral theorem. page 5
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Chapter 2

Spectrum of bounded operators

An eigenvalue λ of a matrix A is a scalar such that there exists a non-zero vector x such that
Ax = λx. This translates to the non-injectivity of the matrix A − λI. However, in finite di-
mensions, a linear map between two spaces of the same dimension is injective if and only if
it is bijective. Thus, eigenvalues of a matrix can also be characterized as scalars λ for which
A − λI is not invertible. We aim to retain this characterization to define the notion of spectrum
for a bounded operator on a Banach space. An issue arises in infinite dimensions : there exist
linear maps that are injective but not surjective, for example, the map that associates a bounded
sequence (xn)n∈N with the bounded sequence (0, x0, . . .). There are also linear maps that are
surjective but not injective, for example, the map that associates a bounded sequence (xn)n∈N

with the bounded sequence (x1, . . .). This leads us to distinguish between the spectrum of an
operator and the set of its eigenvalues. Some scalars in the spectrum are not eigenvalues.

2.1 Spectrum

We begin by providing the definition of the spectrum of a bounded operator. Throughout,
(E, ∥ ∥E) denotes a complex Banach space. When there is no ambiguity in notation, for T ∈
L(E), we denote ∥T∥ := ∥T∥L(E).

Notation. For T ∈ L(E) and λ ∈ C, we denote T − λ := T − λIdE where IdE is the identity
linear map of L(E).

Definition 2.1.1. Let T ∈ L(E). The spectrum of T is the subset of C defined by

σ(T) = {λ ∈ C | T − λ is not invertible in L(E)}.

The elements of σ(T) are called spectral values.

It is notable that, according to the isomorphism theorem, T is invertible in L(E) if and only if T
is bijective. Indeed, if T is bounded and bijective, its inverse map is automatically continuous.
We derive the following characterization of the spectrum of a bounded operator.

Proposition 2.1.2. Let T ∈ L(E). Then σ(T) = {λ ∈ C | T − λ is not bijective}.

Definition 2.1.3. The set of eigenvalues of T ∈ L(E) is the set of λ ∈ C such that T −λ is not injective.
The set of eigenvalues of T is called the point spectrum of T and is denoted by σp(T). A non-zero vector
u ∈ E such that Tu = λu is called an eigenvector of T associated with the eigenvalue λ. Finally, the
multiplicity of the eigenvalue λ is the (finite or infinite) dimension of Ker (T − λ).

7



Chapter 2. Spectrum of bounded operators

We have σp(T) ⊂ σ(T). Every eigenvalue is a spectral value, but these two sets are generally
not equal, as illustrated by the first example in the introduction.
Before proving the initial properties of the spectrum of a bounded operator, we demonstrate
the following lemma, known as the Neumann series lemma.

Lemma 2.1.4 (Neumann Series Lemma). Let S ∈ L(E) such that ∥S∥ < 1. Then IdE − S is

invertible in L(E) and (IdE − S)−1 =
+∞

∑
n=0

Sn. Thus, the group of invertible elements of L(E), denoted

GL(E), is an open set in L(E).

Proof : As ∥S∥ < 1 and for any n ∈ N, ∥Sn∥ ≤ ∥S∥n, the series ∑ ∥Sn∥ converges in R. There-
fore, as (L(E), || ||L(E)) is a complete space, the series ∑ Sn converges in L(E). Let

U =
+∞

∑
n=0

Sn = lim
N→+∞

N

∑
n=0

Sn.

Then, for any N ≥ 1,

(IdE − S)

(
N

∑
n=0

Sn

)
=

(
N

∑
n=0

Sn

)
(IdE − S) = IdE − SN+1

and IdE − SN+1 converges in L(E) to IdE. Thus (IdE − S)U = U(IdE − S) = IdE.

Now, let T0 be invertible in L(E). Then, for S ∈ L(E), T0 + S = T0(IdE + T−1
0 S), hence

T0 + S is invertible if and only if IdE + T−1
0 S is. This is the case for S such that ∥T−1

0 S∥ < 1,
thus B(T0, ∥T−1

0 ∥−1) is contained in GL(E). This set is a neighborhood of each of its
points, hence it is open.

2

Proposition 2.1.5. Let T ∈ L(E). Then σ(T) is a compact subset of C.

Proof : The set σ(T)c is the inverse image of the open set GL(E) under the continuous map
C → L(E), λ 7→ T − λ. Therefore, it is an open set in C and σ(T) is thus closed in
C. Furthermore, let λ ∈ C such that |λ| > ∥T∥. Then T − λ = −λ

(
IdE − 1

λ T
)

and
∥ 1

λ T∥ < 1. Therefore IdE − 1
λ T ∈ GL(E) and T − λ is also invertible. Hence λ /∈ σ(T).

Therefore σ(T) ⊂ D(0, ∥T∥) and σ(T) is bounded. Therefore, the spectrum of T is a
closed bounded subset of C, and hence a compact set in C.

2

2.2 Resolvent

We now introduce a key application in the study of the spectrum of an operator, the resolvent.

Notation. The set σ(T)c is called the resolvent set of T and is denoted by ρ(T). It is an un-
bounded open set in C.

Definition 2.2.1. Let T ∈ L(E) and z ∈ C. The application R(T) : ρ(T) → L(E) defined by
R(T)(z) = (T − z)−1 is called the resolvent of the operator T. For z ∈ ρ(T), the linear map Rz(T) :=
R(T)(z) is called the resolvent of T at the point z.

page 8 Bounded and compact operators. Spectral theorem.



2.2 Resolvent

Proposition 2.2.2. Let T ∈ L(E). The resolvent of T, z 7→ Rz(T), is holomorphic over the open set
ρ(T). Furthermore, lim|z|→+∞ ∥Rz(T)∥L(E) = 0.

Proof : Let z0 ∈ ρ(T). Then for any z ∈ ρ(T), (T − z)−1 = (T − z0 − (z − z0))−1 = (T −
z0)−1(IdE − (z − z0)(T − z0)−1)−1. Now, ∥(z − z0)(T − z0)−1∥ = |z − z0|∥(T − z0)−1∥
and ∥(T − z0)−1∥ > 0. Thus, if we suppose that z ∈ ρ(T) is such that |z − z0| < ∥(T −
z0)−1∥−1, then

(T − z)−1 = (T − z0)
−1

+∞

∑
n=0

(z − z0)
n(T − z0)

−n =
+∞

∑
n=0

(z − z0)
n(T − z0)

−(n+1).

So z 7→ Rz(T) is holomorphic at the point z0. Thus, it is holomorphic over ρ(T).

Let z ∈ C. Assume |z| > ∥T∥. Then z ∈ ρ(T) and

(T − z)−1 =

(
−z
(

IdE − 1
z

T
))−1

= −1
z

+∞

∑
n=0

1
zn Tn,

giving ∥∥∥(T − z)−1
∥∥∥ ≤ 1

|z|
+∞

∑
n=0

1
|z|n ∥T∥n ≤ 1

|z| − ∥T∥ −−−−→
|z|→+∞

0,

proving the second statement of the proposition.

2

Corollary 2.2.3. If E ̸= {0} and T ∈ L(E), σ(T) ̸= ∅.

Proof : If σ(T) = ∅, then ρ(T) = C and R(T) : C → L(E) is holomorphic and, by Proposition
2.2.2, lim|z|→+∞ ∥Rz(T)∥L(E) = 0. Thus, R(T) is an entire and bounded function over C,
and by Liouville’s theorem, it is constant over C. Since its limit at infinity is zero, this
constant can only be 0. Hence, for any z ∈ C, (T − z)−1 = 0. But the zero map is bijective
only when E = {0}. Therefore, if E ̸= {0}, σ(T) ̸= ∅.

2

The proof of the non-emptiness of the spectrum relies on a result from complex analysis, Li-
ouville’s theorem. This is also the case for the proof of the non-emptiness of the spectrum
in finite dimension, which is a consequence of d’Alembert-Gauss’ theorem, another proof of
which relies on Liouville’s theorem.

Proposition 2.2.4 (Resolvent Identity). Let T ∈ L(E), z and z′ in ρ(T). Then, Rz(T)− Rz′(T) =
(z − z′)Rz(T)Rz′(T) and Rz(T) and Rz′(T) commute.

Proof : For all z, z′ ∈ ρ(T), we have

Rz(T)− Rz′(T) = (T − z)−1 − (T − z′)−1

= (T − z)−1(T − z′)(T − z′)−1 − (T − z)−1(T − z)(T − z′)−1

= (T − z)−1(T − z′ − T + z)(T − z′)−1

= (T − z)−1(z − z′)(T − z′)−1 = (z − z′)Rz(T)Rz′(T),

yielding the resolvent identity. Interchanging z and z′ then shows that Rz(T) and Rz′(T)
commute.

2
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Chapter 2. Spectrum of bounded operators

2.3 Spectral Radius

As for T ∈ L(E), σ(T) is a compact set included in D(0, ∥T∥), the supremum in the following
definition is well defined.

Definition 2.3.1 (Spectral Radius). Let T ∈ L(E). The spectral radius of T is the positive real number
r(T) = supλ∈σ(T) |λ|.

Proposition 2.3.2 (Spectral Radius Formula). Let T ∈ L(E). Then

r(T) = lim
n→+∞

∥Tn∥
1
n .

Proof : Firstly, since σ(T) ⊂ D(0, ∥T∥), r(T) ≤ ∥T∥. Let n ≥ 1. Let’s prove that σ(Tn) =
{λn | λ ∈ σ(T)}. For this, we use the relation Tn − λn = (T − λ)(Tn−1 + . . . + λn−1). Let
Qn = Tn−1 + . . . + λn−1. Qn commutes with T − λ. Suppose λn /∈ σ(Tn). Then there
exists Sn ∈ L(E) such that (Tn − λn)Sn = Sn(Tn − λn) = IdE. Therefore, (T − λ)QnSn =
SnQn(T − λ) = IdE. So T − λ = IdE and λ /∈ σ(T). Thus, by contraposition, if λ ∈ σ(T),
λn ∈ σ(Tn) and {λn | λ ∈ σ(T)} ⊂ σ(Tn).

Conversely, let µ ∈ σ(Tn). Then Tn − µ = (T − λ1) . . . (T − λn) where λ1, . . . , λn are the
n-th roots of µ. If, for every i ∈ {1, . . . , N}, T − λi is invertible, then Tn − µ is also, thus
µ /∈ σ(Tn). Hence, there exists i ∈ {1, . . . , N} such that λi ∈ σ(T). Therefore, for every
µ ∈ σ(Tn), there exists λ ∈ σ(T) such that µ = λn. Thus σ(Tn) ⊂ {λn | λ ∈ σ(T)}.

Therefore, for every n ≥ 1, r(T)n = r(Tn) ≤ ∥Tn∥, hence r(T) ≤ ∥Tn∥ 1
n . So

r(T) ≤ lim inf
n→+∞

∥Tn∥
1
n .

For ξ ∈ C, 0 < |ξ| < 1
r(T) , let F(ξ) = Rξ−1(T). Then, F is holomorphic on the open set

{ξ | 0 < |ξ| < 1
r(T)} by Proposition 2.2.2. Moreover, on this set, from the calculations made

in the proof of Proposition 2.2.2, F(ξ) = −∑+∞
n=0 ξn+1Tn. So F extends to a holomorphic

function on D(0, r(T)−1). By the Cauchy inequalities,

∀r <
1

r(T)
, ∥Tn∥ =

∥∥∥− F(n+1)(0)
(n + 1)!

∥∥∥ ≤ 1
rn+1 max

|ξ|≤r
∥F(ξ)∥ .

Thus, for every n ≥ 1, ∥Tn∥ 1
n ≤ M(r)

1
n r−1− 1

n where M(r) = max|ξ|≤r ∥F(ξ)∥, so

∀r <
1

r(T)
, lim sup

n→+∞
∥Tn∥

1
n ≤ 1

r
,

therefore
lim sup

n→+∞
∥Tn∥

1
n ≤ r(T) ≤ lim inf

n→+∞
∥Tn∥

1
n .

Thus, the sequence (∥Tn∥ 1
n )n≥1 converges, and its limit is r(T).

2

We conclude this section with two results linking the spectrum of a bounded operator to its
adjoint in the case where E is a Hilbert space.
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Proposition 2.3.3. Let H be a Hilbert space and T ∈ L(H). Then σ(T∗) = σ(T) = {λ : λ ∈ σ(T)}.
Moreover, for any z ∈ ρ(T), Rz̄(T∗) = Rz(T)∗.

Proof : Indeed, according to point 5 of Proposition 1.2.4, T − λ is invertible if and only if (T −
λ)∗ is. Now (T − λ)∗ = T∗ − λ. Therefore,

λ ∈ σ(T) ⇔ T−λ non-invertible ⇔ (T−λ)∗ non-invertible ⇔ T∗−λ non-invertible ⇔ λ ∈ σ(T∗),

which confirms the first assertion. Also, if z ∈ ρ(T),

Rz̄(T∗) = (T∗ − z̄)−1 = ((T − z)∗)−1 = ((T − z)−1)∗ = Rz(T)∗,

as per point 5 of Proposition 1.2.4.

2

The second result concerns self-adjoint operators.

Proposition 2.3.4. Let H be a Hilbert space and T ∈ L(H) be self-adjoint. Then,

1. σ(T) ⊂ R ;

2. Eigenvectors associated with distinct eigenvalues of T are orthogonal.

Proof : Let λ and µ be two real numbers. Then, by direct calculation, for any u ∈ H,

∥(T − (λ + iµ))u∥2 = ∥(T − λ)u∥2 + µ2∥u∥2.

Therefore, for any u ∈ H, ∥T − (λ + iµ))u∥2 ≥ µ2∥u∥2. If µ ̸= 0, T − (λ + iµ) is injective.
Let’s assume by contradiction that T − (λ + iµ) is non-bijective, hence non-surjective, or
in other words, Im (T − (λ + iµ)) ̸= H. Then,

Ker(T∗ − (λ − iµ)) = Ker((T − (λ + iµ))∗) = (Im(T − (λ + iµ)))⊥ ̸= {0}

and λ − iµ ∈ σp(T∗). However, σp(T) = σp(T) because T = T∗.

Moreover, we also have ∥T − (λ − iµ))u∥2 ≥ µ2∥u∥2, and λ − iµ /∈ σp(T) if µ ̸= 0. This
leads to a contradiction. Hence, T − (λ + iµ) is bijective whenever µ ̸= 0, and if µ ̸= 0,
λ + iµ ∈ ρ(T), proving the first point.

To prove the second point, let’s consider λ1 and λ2 as two distinct eigenvalues of T. Let
u1 be an eigenvector associated with λ1 and u2 an eigenvector associated with λ2. We
have

λ1(u1|u2) = (λ1u1|u2) = (Tu1|u2) = (u1|Tu2) = (u1|λ2u2) = λ2(u1|u2) = λ2(u1|u2),

and, since λ1 ̸= λ2, we must have (u1|u2) = 0.

2
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Chapter 2. Spectrum of bounded operators

2.4 The Discrete Laplacian in dimension one

We introduce the discrete Laplacian in dimension one. It is the operator ∆ defined on the
Hilbert space ℓ2(Z) as

∀u ∈ ℓ2(Z), ∀n ∈ Z, (∆u)n = −(un−1 + un+1).

The operator ∆ is the discrete analogue of the second derivative.

Firstly, ∆ is bounded. Indeed, if ∥u∥ℓ2(Z) ≤ 1, then ∥∆u∥ℓ2(Z) ≤ 2∥u∥ℓ2(Z) ≤ 2, so ∥∆∥ ≤ 2.
Moreover, ∆ is self-adjoint. Let u, v ∈ ℓ2(Z). Then

(∆u|v) = ∑
n∈Z

(∆u)nvn = − ∑
n∈Z

un−1vn − ∑
n∈Z

un+1vn = − ∑
n∈Z

unvn+1 − ∑
n∈Z

unvn−1

= ∑
n∈Z

un(−vn−1 − vn+1) = ∑
n∈Z

un(∆v)n = (u|∆v).

Therefore, ∆ is a bounded self-adjoint operator.

Now, let’s compute the spectrum of ∆. For this, we introduce the Fourier operator F : ℓ2(Z) →
L2([0, 2π]) defined for any u = (un)n∈N ∈ ℓ2(Z) and any x ∈ [0, 2π] as (Fu)(x) = ∑n∈Z uneinx.
We then define S = F ◦ ∆ ◦ F−1. Let’s calculate S. Consider f ∈ L2([0, 2π]). Suppose that, for
all x ∈ [0, 2π], f (x) = ∑n∈Z f̂ (n)einx. For all n ∈ Z, (F−1 f )n = f̂ (n). Then, for all x ∈ [0, 2π],

(S f )(x) = − ∑
n∈Z

( f̂ (n − 1) + f̂ (n + 1))einx = − ∑
n∈Z

f̂ (n)ei(n+1)x − ∑
n∈Z

f̂ (n)ei(n−1)x

= −(eix + e−ix) ∑
n∈Z

f̂ (n)einx = (−2 cos(x)) f (x).

Therefore, for x ∈ [0, 2π], if we let φ(x) = −2 cos(x), S = Mφ where Mφ is the multiplication
operator by φ. As F is a unitary transformation, we have σ(∆) = σ(Mφ) and σp(∆) = σp(Mφ).
Hence, σ(Mφ) = φ([0, 2π]) = [−2, 2]. Thus,

σ(∆) = [−2, 2].

Additionally, since φ is not constant on any subinterval of [0, 2π], Mφ has no eigenvalues.
Indeed, if u ∈ L2([0, 2π]), the equation φ(x)u(x) = λu(x) for all x ∈ [0, 2π] leads to u = 0.
Therefore,

σp(∆) = ∅.

Remark 2.4.1. The use of the Fourier transform F in this example is very common for calculating
operator spectra, especially for differential operators. This is because, as F is unitary, conjugation by
F preserve the spectrum and the point spectrum. Moreover, F has the particularity of transforming a
(here, discrete) derivative into a multiplication. Therefore, conjugating the studied operator by F helps
in computing its spectrum by reducing it to the spectrum calculation of a multiplication operator.
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Chapter 3

Compact operators

The objective of this chapter is to establish a framework in which many properties of linear ap-
plications in finite dimensions can be found. For this purpose, we introduce compact operators,
forming a family of operators whose properties are very close to those of linear applications in
finite dimensions. In particular, solving linear equations in infinite dimensions, represented by
a compact operator, will be analogous to solving linear equations in finite dimensions. This is
the subject of Fredholm’s alternative for compact operators, which we will demonstrate in this
chapter.

3.1 Compact Operators

In this section, we will return to the more general context of operators between Banach spaces.
Then, we will focus on operators between Hilbert spaces.

Definition 3.1.1. Let E and F be two Banach spaces, and T : E → F be an operator. Let BE denote the
unit ball of E. We say that T is compact if T(BE) is a compact subset of F.

Notation. Let B∞(E, F) denote the set of compact operators from E to F.

It is observed that B∞(E, F) ⊂ L(E, F). Indeed, if T ∈ B∞(E, F), as T(BE) is relatively compact
(meaning it has compact closure), it is a bounded subset of F. Thus, T is a bounded operator.

Recall that, by the Riesz theorem, a normed vector space is of finite dimension if and only if
its unit ball is compact. The topological property of compactness is thus directly related to the
algebraic property of finite dimension. This explains why assuming that the image of the unit
ball in the departure space by T has compact closure will give T properties close to a linear
application in finite dimensions.

Example 3.1.2. If E = F and is of infinite dimension, the identity Id : E → E is not compact. Indeed,
by the Riesz theorem, BE is not compact. However, Id is continuous. Therefore, not all bounded operators
are compact.

Example 3.1.3. Let X be a compact metric space, and let E = F = C(X, R) be the space of continuous
functions on X with real values. Let µ be a finite positive measure on (X,B(X)), and K ∈ C(X ×X, R).
For u ∈ E, define

Tu(x) =
∫

X
K(x, y)u(y)dµ(y).
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Chapter 3. Compact operators

Such an operator is an example of an integral kernel operator. Let’s demonstrate that the operator T thus
defined is a compact operator. Let u ∈ BE. For x, x′ ∈ X,

|Tu(x)− Tu(x′)| ≤
∫

X
|(K(x, y)− K(x′, y))u(y)|dµ(y)

≤ ∥u∥∞ µ(X)max
y∈X

|K(x, y)− K(x′, y)|.

Now, K is uniformly continuous on the compact set X × X since it is continuous. For any ϵ > 0, there
exists δ > 0 such that, for all x, x′ ∈ X,

(d(x, x′) ≤ δ) ⇒ (∀u ∈ BE, |Tu(x)− Tu(x′)| ≤ µ(X)ϵ).

Therefore, T(BE) is an equicontinuous subset of C(X). Additionally, ∥Tu∥∞ ≤ ∥K∥∞µ(X)∥u∥∞,
hence T(BE) is pointwise bounded. By the Ascoli theorem, T(BE) is relatively compact in C(X), thus T
is compact.

Definition 3.1.4. An operator T ∈ L(E, F) is said to be of finite rank if Im T has finite dimension.

Example 3.1.5. An operator T ∈ L(E, F) of finite rank is compact. Indeed, by the continuity of T,
T(BE) is bounded in Im T. Thus, T(BE) is a closed bounded subset of Im T, which is of finite dimension;
hence, it is compact in F.

We will see that this latter example is essential in the context of operators between Hilbert
spaces. We will show that any compact operator between Hilbert spaces is, for the operator
norm topology, the limit of a sequence of operators of finite rank. Before limiting ourselves to
Hilbert spaces, we present two more properties of compact operators applicable to operators
between Banach spaces.

Proposition 3.1.6. Let (Tn)n∈N be a sequence of compact operators from E to F converging to T in
L(E, F). Then T is compact. Hence, B∞(E, F) is closed in L(E, F).

Proof : Firstly, as in a complete space, compacts are precompact sets, T is compact if and only
if T(BE) is a precompact subset of F. Therefore, let ε > 0 and n ∈ N such that ∥T −
Tn∥L(E,F) ≤ ε

2 . As Tn(BE) is precompact, there exist vectors vj ∈ E such that

Tn(BE) ⊂
p⋃

j=1

B(vj,
ε

2
).

Now, for u ∈ BE, ∥Tu − Tnu∥F ≤ ε
2 . Moreover, there exists j0 such that Tnu ∈ B(vj0 , ε

2 ),
implying Tu ∈ B(vj0 , ε), hence T(BE) ⊂ ∪p

j=1B(vj, ε). Therefore, T(BE) is precompact.

2

Proposition 3.1.7. Let E, F, and G be three Banach spaces, T ∈ L(E, F), and S ∈ L(F, G). If T or S
is compact, then ST is compact. In particular, B∞(E) is an ideal of L(E).

Proof : Suppose T is compact. Then ST(BE) = S(T(BE)), T(BE) is relatively compact, and S
is continuous. Therefore, ST(BE) is relatively compact. If S is assumed compact, and
T(BE) is bounded, there exists a real number R such that T(BE) ⊂ RBF. So ST(BE) ⊂
RS(BF). Now, S(BF) is relatively compact, hence ST(BE) is closed in the compact set
S(BF); therefore, it is a compact set.

2
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3.1 Compact Operators

Now, leaving the general framework of operators between Banach spaces, we focus on
operators between Hilbert spaces. We can prove that any compact operator from a separable
Hilbert space is the limit of operators of finite rank. Let’s start by proving a useful property of
compact operators.

Proposition 3.1.8. Let H be a Hilbert space, and T ∈ B∞(H). If (un)n∈N is a weakly convergent
sequence in H, then (Tun)n∈N is a convergent sequence in H for the norm topology on H.

Proof : Suppose (un)n∈N is a weakly convergent sequence in H towards u. Recall that this
means that for every w ∈ H, (un|w) → (u|w). By the Banach-Steinhaus theorem, the
sequence (∥un∥)n∈N is bounded. Let vn = Tun and v = Tu. For any w ∈ H, (vn −
v|w) = (un − u|T∗w), therefore (vn)n∈N also converges weakly in H to v = Tu. Assume
by contradiction that (vn)n∈N does not norm-converge to v. Then, there exists η > 0
and a subsequence (vnk)k∈N such that for all k ∈ N, ∥vnk − v∥ ≥ η. However, since
(unk)k∈N is bounded in the norm of H and T is compact, a subsequence (unkl

)l∈N can be
extracted from (unk)k∈N such that (Tunkl

)l∈N converges to a limit ṽ in the norm of H. This
subsequence (vnkl

)l∈N also weakly converges to ṽ and by uniqueness of the weak limit,
ṽ = v. This contradicts the fact that for all l ∈ N, ∥vnkl

− v∥ ≥ η. Therefore, (Tun)n∈N

converges in norm to v.

2

From Proposition 3.1.6, it follows that any limit of operators of finite rank is a compact
operator. Now, we prove that in separable Hilbert spaces, the converse is also true.

Proposition 3.1.9. Let H be a separable Hilbert space. Every compact operator on H is, for the uniform
topology of operators, the limit of a sequence of finite-rank operators.

Proof : Let (uj)j≥1 be an orthonormal basis in H. Let T be a compact operator on H. For n ≥ 1,

λn = sup{∥Tv∥ | ∥v∥ = 1 and v ∈ span(u1, . . . , un)
⊥}.

The sequence (λn)n∈N is a decreasing sequence of non-negative reals, hence it converges
to λ ≥ 0. Let’s show this limit is zero. Choose a sequence (vn)n∈N of elements in
span(u1, . . . , un)⊥ such that ∥vn∥ = 1 and ∥Tvn∥ ≥ λ

2 . As the family (uj)j≥1 is total,
(vn) converges weakly to 0 in H. By Proposition 3.1.8, the sequence (Tvn)n∈N converges
in norm to 0. Therefore, λ = 0. By the projection theorem in Hilbert spaces,

λn = sup
∥u∥=1

∥∥∥Tu −
n

∑
j=1

(u|uj)Tuj

∥∥∥.

Hence, as (λn)n∈N tends to 0, ∥∥∥T −
n

∑
j=1

(.|uj)Tuj

∥∥∥
L(H)

→ 0.

2

Hence, an operator on a Hilbert space is compact if and only if it is the limit of operators of
finite rank. Before using this characterization of compact operators to study linear equations,
we conclude with a property sometimes useful for proving an operator’s compactness.
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Proposition 3.1.10. Let T ∈ L(H). Then T is compact if and only if T∗ is compact.

Proof : Suppose T is compact. Using the notations from the proof of Proposition 3.1.9 and
denoting Pn as the projector onto the subspace span(u1, . . . , un), we can write PnT =

∑n
j=1(.|uj)Tuj. As proved in Proposition 3.1.9, ∥PnT − T∥L(H) → 0 as n tends to infinity.

Consequently, as (PnT − T)∗ = T∗(Pn − I)∗ = T∗(Pn − I), we obtain that

∥PnT − T∥L(H) = ∥(PnT − T)∗∥L(H) = ∥T∗Pn − T∗∥L(H) → 0.

As T∗Pn has finite rank, T∗ is a limit of a sequence of finite-rank operators; hence, it is
compact. Assuming T∗ is compact, then T = (T∗)∗ is also compact, yielding the equiva-
lence.

2

3.2 Fredholm’s Alternative

We have presented several properties of compact operators so far without yet providing a result
highlighting the significance of their introduction. We will now present an essential result for
solving linear equations in infinite dimensions, known as Fredholm’s alternative. This asserts
that if T is a compact operator, then either Tu = u has a nontrivial solution or (I − T)−1 exists.
This is a similar alternative to the case of linear systems in finite dimensions and is equivalent
to the result on endomorphisms in finite dimensions, asserting that their injectivity implies
bijectivity. In practice, it greatly simplifies the demonstration of the existence of solutions to
linear equations. Fredholm’s alternative tells us that if for any v ∈ H, there exists at most one
solution u ∈ H to the linear equation Tu + v = u, then there exists exactly one solution. If
there exists at most one solution, I − T is injective, hence Tu = u has no nontrivial solution.
Thus, (I − T)−1 exists, and for any v ∈ H, the unique solution to Tu + v = u is given by
u = (I − T)−1v. The compactness of the operator and the a priori uniqueness of the solution
imply the existence of the solution.

Fredholm’s alternative is not generally satisfied by all bounded operators. For instance,
the multiplication operator defined on L2([0, 2]) by Tu(x) = xu(x) for all x ∈ [0, 2] does not
satisfy it. Although Tu = u has no nontrivial solution, (I − T)−1 is not a bounded operator on
L2([0, 2]).

Since Fredholm’s alternative holds for operators on a finite-dimensional space, the idea to
prove it for compact operators acting on a Hilbert space is to use the fact that they are limits of
sequences of finite-rank operators. Thus, such a compact operator can be written as T = P + R,
where P is a finite-rank operator, and R is an operator of small norm, a perturbation.

Theorem 3.2.1 (Analytical Fredholm Theorem). Let H be a Hilbert space, and D be a connected
open subset of C. Let f : D → L(H) be an analytic function such that for every z ∈ D, f (z) is a
compact operator. Then only one of the following occurs:

1. (I − f (z))−1 does not exist for any z ∈ D;

2. (I − f (z))−1 exists for all z ∈ D \ S , where S is a discrete subset of D. In this case, (I − f (z))−1

is meromorphic on D, analytic in D \ S , and the residues at the poles are operators of finite rank.
Moreover, if z ∈ S , then the equation f (z)u = u has a nontrivial solution in H.

Proof : Firstly, as D is connected, by analytic continuation, it suffices to prove the theorem in
the neighborhood of any point in D. Let z0 ∈ D. Due to the continuity of f at z0, there
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exists r > 0 such that for z ∈ D with |z − z0| < r, we have ∥ f (z)− f (z0)∥L(H) <
1
2 . As

the operator f (z0) is compact, there exists P, a finite-rank operator, such that ∥ f (z0) −
P∥L(H) <

1
2 . Therefore, for z ∈ D(z0, r), ∥ f (z)− P∥L(H) < 1. We can then use Neumann’s

series lemma to prove the existence of (I − f (z) + P)−1 ∈ L(H) and that z 7→ (I − f (z) +
P)−1 is analytic on D(z0, r).

Now, as P is of finite rank, there exists a linearly independent family (u1, . . . , uN) of N
vectors and vectors v1, . . . , vN such that for any u ∈ H, Pu = ∑N

i=1(u|vi)ui. For z ∈
D(z0, r), we set vi(z) = ((I − f (z) + P)−1)∗vi and define the operator g(z) as

∀w ∈ H, g(z)w = P(I − f (z) + P)−1w =
N

∑
i=1

(w|vi(z))ui.

Observe that for any z ∈ D(z0, r), (I − g(z))(I − f (z) + P) = I − f (z). Therefore, for
z ∈ D(z0, r), I − f (z) is invertible in L(H) if and only if I − g(z) is. Similarly, the equation
f (z)u = u has a nontrivial solution if and only if g(z)w = w has one.

Suppose there exists w ∈ H such that g(z)w = w. We can decompose w as w = ∑N
n=1 αnun,

and the coefficients αn satisfy, due to the freedom of the family (u1, . . . , uN),

∀n ∈ {1, . . . , N}, αn =
N

∑
m=1

(um|vn(z))αm. (3.1)

Conversely, if for a fixed z the system (3.1) has a solution (α1, . . . , αN), then the vector
w = ∑N

n=1 αnun is a solution of g(z)w = w. Hence, we’ve reduced it to studying a finite-
dimensional linear system, and the equation g(z)w = w has a nontrivial solution if and
only if the determinant d(z) = det(I − [(um|vn(z))]m,n) = 0. As (um|vn(z)) is analytic on
D(z0, r), d(z) is also analytic, so the set Sr = {z ∈ D(z0, r) | d(z) = 0} of zeros of d(z)
is either discrete in D(z0, r) or equal to D(z0, r). In the latter case, (I − f (z))−1 does not
exist for any z ∈ D(z0, r), and we fall into case 1 of Fredholm’s alternative.

Now, suppose that Sr ̸= D(z0, r), which corresponds to case 2 of Fredholm’s alternative.
If z ∈ Sr, the equation f (z)u = u has a nontrivial solution in H, proving the last assertion
of the theorem.

Lastly, if z /∈ Sr, then d(z) ̸= 0. Given u ∈ H, we can solve the equation (I − g(z))w = u
by setting w = u + ∑N

n=1 βnun if and only if the βn satisfy the system

∀n ∈ {1, . . . , N}, βn = (u|vn(z)) +
N

∑
n=1

(um|vn(z))βm. (3.2)

Since we assumed d(z) ̸= 0, the system (3.2) has a unique solution. Thus, (I − g(z))−1 ex-
ists in L(H). Furthermore, we can explicitly solve the linear system (3.2) using Cramer’s
formulas, enabling us to express (I − g(z))−1, and consequently (I − f (z))−1, as a mero-
morphic function whose residues at the poles are polynomials in P, and therefore opera-
tors of finite rank. Thus, case 2 of Fredholm’s alternative is proven.

2

Corollary 3.2.2 (Fredholm’s Alternative). Let H be a Hilbert space, and T be a compact operator on
H. Then either (I − T)−1 exists and is bounded, or Tu = u has a nontrivial solution.

Proof : We apply Theorem 3.2.1 to the analytic function f (z) = zT at the point z = 1.

2
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3.3 Dirichlet Problem in R3

We conclude this chapter by providing an example of a linear equation that can be addressed
using Fredholm’s alternative. We examine the Dirichlet problem in R3.
Let D be a connected bounded open set in R3, with the boundary ∂D being a C∞ surface in R3.
The Dirichlet problem for the Laplace equation is as follows: given a continuous function f on
∂D, find a function u, which is of class C2 in D and continuous on D, satisfying

∀x ∈ D, ∆u(x) = 0 and ∀x ∈ ∂D, u(x) = f (x).

To solve this problem, we introduce the kernel K(x, y) = (x− y|ny)/|x− y|3 defined on D× ∂D,
where ny is the outward normal to ∂D at the point y ∈ ∂D. The function x 7→ K(x, y) is
harmonic, ∆xK(x, y) = 0 for every x ∈ D and for all y ∈ ∂D. This leads us to seek a solution u
in the form of a superposition,

u(x) =
∫

∂D
K(x, y)φ(y)dS(y),

where φ is a continuous function on ∂D and dS is the surface measure on ∂D. Indeed, for
x ∈ D, the integral is well-defined, and ∆u(x) = 0. Now, let’s see how to extend u to ∂D.
Suppose x0 ∈ ∂D and x → x0, x ∈ D, then we can demonstrate that

u(x) → −φ(x0) +
∫

∂D
K(x0, y)φ(y)dS(y). (3.3)

Furthermore, if x → x0, x ∈ Dc, it can also be shown that

u(x) → φ(x0) +
∫

∂D
K(x0, y)φ(y)dS(y). (3.4)

Thus,
∫

∂D K(x0, y)φ(y)dS(y) exists and is a continuous function of x0 on ∂D. As ∂D is a C∞

surface, for all x, y ∈ ∂D, (x − y|ny) = c|x − y|2 + o(|x − y|2) as x → y.
We want to verify the boundary condition u(x) = f (x) for every x ∈ ∂D. Hence, we need
to demonstrate the existence of a function φ continuous on ∂D such that ∀x ∈ ∂D, f (x) =
−φ(x) +

∫
∂D K(x, y)φ(y)dS(y). For this purpose, we introduce the operator T : C(∂D) →

C(∂D) defined by

∀φ ∈ C(∂D), ∀x ∈ ∂D, Tφ =
∫

∂D
K(x, y)φ(y)dS(y).

Then T is a compact operator. For δ > 0, let Kδ(x, y) = (x − y|ny)/(|x − y|3 + δ). Then Kδ is
continuous and, from example 3.1.3, the associated operator Tδ is compact. Additionally, we
have the estimate

|(Tδu)(x)− (Tu)(x)| ≤ ∥u∥∞

∫
∂D

|Kδ(x, y)− K(x, y)|dS(y). (3.5)

Now, if we fix ε > 0, we can split the integral into two parts:∫
∂D

|Kδ(x, y)− K(x, y)|dS(y) =
∫
|x−y|≥ε

|Kδ(x, y)− K(x, y)|dS(y) +
∫
|x−y|<ε

|Kδ(x, y)− K(x, y)|dS(y).

In the first integral, Kδ(x, y) converges uniformly to K(x, y) as δ tends to 0. The integrability of
K allows us to make the second integral arbitrarily small, uniformly in x, by choosing ε small
enough. Hence, we’ve just demonstrated that Tδu uniformly converges to Tu as δ tends to 0.
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Then, from (3.5), we obtain ∥Tδ − T∥L(C(∂D)) → 0 as δ tends to 0. Therefore, the operator T is
compact as the limit of compact operators.

As T is compact, we can apply Fredholm’s alternative to it. Either there exists ψ ∈ C(∂D), not
identically zero, such that Tψ = ψ, or for every f ∈ C(∂D), the equation − f = (I − T)φ has
a unique solution. Let’s assume we’re in the first alternative. Define, for every x ∈ D ∪ ∂D,
u(x) =

∫
∂D K(x, y)ψ(y)dS(y). Then, for every x ∈ ∂D, u(x) = Tψ(x) = ψ(x). Therefore,

for every x ∈ D ∪ ∂D, u(x) =
∫

∂D K(x, y)u(y)dS(y). However, by the maximum principle
(remember that u is harmonic in D), it follows that u = 0 in D. Moreover, ∂u

∂n is continuous
on ∂D and hence is also equal to 0 on ∂D. By integration by parts, this implies that u is also
identically zero on ∂D. From (3.3) and (3.4), it follows that 2ψ(x) = 0 for every x ∈ ∂D, and ψ
is identically zero. Hence, the first alternative does not hold. Therefore, for every f ∈ C(∂D),
the equation − f = (I − T)φ has a unique solution, establishing the existence and uniqueness
of the solution to the Dirichlet problem for the Laplace equation in R3.
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Chapter 4

Spectrum of compact operators

Compact operators possess properties similar to operators in finite dimensions. This was evi-
dent when resolving linear systems by studying Fredholm’s alternative. We will now explore
the spectral properties of compact operators. In particular, we’ll see that both the spectrum of
compact operators and the diagonalization properties of self-adjoint compact operators are the
limiting cases of corresponding results in finite dimensions. Furthermore, we obtain a classifi-
cation of self-adjoint compact operators up to unitary equivalence.

4.1 Spectrum of Compact Operators

Let’s start by providing a general result on the structure of the spectrum of compact operators.

Theorem 4.1.1 (Riesz-Schauder). Let H be a Hilbert space, and T ∈ B∞(H). Then, σ(T) \ {0} is
a discrete set in C consisting of finite multiplicity eigenvalues of T. Additionally, if H is of infinite
dimension, 0 ∈ σ(T).

Note that when 0 ∈ σ(T), 0 might not be an eigenvalue of T. Moreover, 0 could be an accumu-
lation point of σ(T), as we’ll see shortly.

Proof : Consider, for all z ∈ C, the function f (z) = zT. Then f is a holomorphic map from C to
B∞(H). Let S = {z ̸= 0 | zTu = u has a non-zero solution u}. If z ∈ S , 1

z is an eigenvalue
of T. Since z = 0 /∈ S , by Theorem 3.2.1, S is a discrete set. If 1

z /∈ S , then

(T − z)−1 =
1
z

(
1
z

T − IdE

)−1

exists, again by Theorem 3.2.1. Therefore, σ(T) \ {0} = { 1
z | z ∈ S}, and σ(T) \ {0} is a

discrete set of eigenvalues of T according to the definition of S .

If λ ∈ σp(T), λ ̸= 0, let F = Ker (T − λ). Then, if BF represents the unit ball in F and BH
in H, we have

BF =
1
λ

λBF =
1
λ

T(BF) ⊂
1
λ

T(BH).

Since T is compact, T(BH) is relatively compact, and so is BF. By a Riesz theorem, F is of
finite dimension. Therefore, each non-zero eigenvalue of T has finite multiplicity.

Suppose H is of infinite dimension. If 0 /∈ σ(T), then T is bijective, and T−1 is continuous.
Thus, BH = T−1(T(BH)) is relatively compact as T(BH) is compact due to T’s compact-
ness. Hence, again by the same Riesz theorem, H is of finite dimension. This contradicts
our initial assumption, so 0 ∈ σ(T).
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2

The proof of the Riesz-Schauder theorem relies on the analytical Fredholm alternative. We
confined ourselves to the case of Hilbert spaces since we didn’t prove the analytical Fredholm
alternative (see Theorem 3.2.1) in full generality but only for Hilbert spaces. Nevertheless,
the Riesz-Schauder theorem is still valid for compact operators on any Banach space. The
analytical Fredholm alternative remains true in the framework of Banach spaces, but its proof
is more challenging.

4.2 Diagonalization of Self-adjoint Compact Operators

In this section, we present a generalization for self-adjoint compact operators of the result as-
serting that any real symmetric matrix is diagonalizable in an orthonormal basis. Throughout,
H will be a complex Hilbert space.

Lemma 4.2.1. Let T ∈ L(H). If T is compact and self-adjoint, then either ∥T∥ or −∥T∥ is an eigen-
value of T.

Proof : If T = 0, then 0 is an eigenvalue of T and ∥T∥ = 0. Suppose T ̸= 0. By Proposition
1.2.10, there exists a sequence (un)n∈N of unit vectors such that |(Tun|un)| → ∥T∥ as
n approaches infinity. By extracting a subsequence (due to the compactness of the set
D(0, ∥T∥) because |(Tun|un)| ≤ ∥T∥), we may assume (Tun|un) → λ as n tends to infinity,
where |λ| = ∥T∥. Then,

0 ≤ ∥(T − λ)un∥2
H = ∥Tun∥2

H − 2λ(Tun|un) + λ2 ≤ 2λ2 − 2λ(Tun|un) → 0

as n tends to infinity. Thus, ∥(T − λ)un∥H → 0 as n approaches infinity. Hence, due to
the compactness of T, there exists u ∈ H and a subsequence (unk)k∈N such that ∥Tunk −
u∥H → 0 as k tends to infinity. Considering unk = 1

λ (λ − T)unk +
1
λ Tunk converges to

1
λ u. Thus, 1 = ∥λ−1u∥H = |λ|−1∥u∥H and u ̸= 0. Moreover, Tunk → 1

λ Tu due to the
continuity of T. Therefore, by the uniqueness of the limit, u = λ−1Tu and Tu = λu,
u ̸= 0. Thus, λ ∈ σp(T).

2

Proposition 4.2.2. Let T ∈ L(H) be a self-adjoint compact operator. Then,

H = Ker T ⊕
⊕̂

λ∈σ(T)\{0}Ker (T − λ).

Proof : Recall that for λ ̸= µ in σp(T), Ker (T − λ)⊥Ker (T − µ). Let F = ⊕̂λ∈σ(T)\{0}Ker (T −
λ). Then F is closed and stable under T. If u = ∑λ∈σ(T)\{0} uλ with ∑ ∥uλ∥2

H convergent,
then Tu = ∑λ∈σ(T)\{0} λuλ ∈ F. Additionally, since T is self-adjoint, F⊥ is also stable
under T (see Proposition 1.2.6). Let T0 : F⊥ → F⊥ be the restriction of T to F⊥. Then T0
is self-adjoint and compact. We have r(T0) = ∥T0∥. Moreover, if r(T0) > 0, T0 has a non-
zero eigenvalue λ0 because, according to the Riesz-Schauder theorem, every non-zero
element in σ(T0) is an eigenvalue as T0 is compact. But, since Ker (T0 − λ0) ⊂ Ker (T −
λ0), we would have Ker (T − λ0) ∩ F⊥ ̸= {0}, which is absurd because for every λ ̸= 0,
F⊥⊥Ker (T − λ). Therefore, r(T0) = 0, ∥T0∥ = 0, and T0 is the null operator. Hence, F⊥ ⊂
Ker T. Additionally, Ker T ⊂ (Ker (T − λ))⊥ for every λ ̸= 0 and Ker T ⊂ F⊥. Therefore,
Ker T = F⊥. Since F is closed, H = F ⊕ F⊥, and indeed H = Ker T ⊕ ⊕̂λ∈σ(T)\{0}Ker (T −
λ).
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2

We can now prove the theorem of diagonalization of self-adjoint compact operators, also known
as the spectral theorem for compact operators.

Theorem 4.2.3 (Spectral Theorem for Self-adjoint Compact Operators). Let T ∈ L(H) be a self-
adjoint compact operator. Denote the non-zero eigenvalues of T by {λ1, λ2, . . .} and Pn as the projection
of H onto Ker (T − λn). Then, for n ̸= m, PnPm = PmPn = 0, and Pn is of finite rank. Moreover, if T
has finite rank, the set of eigenvalues of T is finite, and if T does not have finite rank, λn → 0 as n tends
to infinity. Finally,

T =
∞

∑
n=1

λnPn

where the series converges in the operator norm (or is a finite sum in the case where T has finite rank).

Proof : According to Lemma 4.2.1, there exists a real number λ1 ∈ σp(T) such that |λ1| = ∥T∥.
Let F1 = Ker (T − λ1) and P1 be the projection of H onto F1. Define H2 = F⊥

1 . Since T
leaves F1 invariant and is self-adjoint, it also leaves H2 invariant. Let T2 = T|H2 be the
restriction of T to H2. Then T2 is a self-adjoint compact operator. Therefore, by Lemma
4.2.1, a real number λ2 ∈ σp(T2) with |λ2| = ∥T2∥ exists. Let F2 = Ker (T2 − λ2). Thus
F2 = Ker (T − λ2) and since F2 ⊂ F⊥

1 , λ1 ̸= λ2. Consider P2 as the projection of H onto F2
and define H3 = (F1 ⊕ F2)⊥. As ∥T2∥ ≤ ∥T∥, it follows that |λ2| ≤ |λ1|.

By recurrence, we build a sequence of eigenvalues of T such that |λ1| ≥ |λ2| ≥ . . .. If
T has finite rank, this construction stops after a finite number of steps. If T does not
have finite rank, an infinite sequence is constructed. Moreover, for all n ≥ 1, let Fn =
Ker (T − λn), then |λn+1| = ∥T|(F1⊕···⊕Fn)⊥∥. For all n ≥ 1, let Pn be the projection of H
onto Fn. The relation PnPm = PmPn = 0 for n ̸= m is due to the pairwise orthogonality
of the Fn. Finally, by Theorem 4.1.1, the spectrum of T is at most countable, and the
construction here demonstrates that {λ1, . . .} = σ(T) \ {0}.

In the rest of the proof, assume that T does not have finite rank. Let’s prove that the
sequence (λn)n≥1 defined in this way converges to 0. Firstly, since |λ1| ≥ |λ2| ≥ . . .,
the sequence (|λn|)n≥1 is convergent, say to α. Then, for all n ≥ 1, choose un ∈ Fn with
∥un∥H = 1. As T is compact, there exists u ∈ H and a subsequence (unk)k≥1 such that
∥Tunk − u∥H → 0 as k approaches infinity. Now, for n ̸= m, un⊥um and for all k ≥ 1,
Tunk = λnk unk . Hence, for k, l ≥ 1, it follows that ∥Tunk − Tunl∥2

H = λ2
nk
+ λ2

nl
≥ 2α2. But

as (Tunk)k≥1 is a Cauchy sequence, we must have α = 0.

Let k ∈ {1, . . . , n} and u ∈ Fk. Then (T − ∑n
j=1 λjPj)u = Tu − λku = 0. So, F1 ⊕ · · · ⊕ Fn ⊂

Ker (T − ∑n
j=1 λjPj). Now, if u ∈ (F1 ⊕ · · · ⊕ Fn)⊥, then Pju = 0 for all j ∈ {1, . . . , n} and

(T − ∑n
j=1 λjPj)u = Tu. As T also leaves (F1 ⊕ · · · ⊕ Fn)⊥ invariant, we obtain

∥∥∥T −
n

∑
j=1

λjPj

∥∥∥ =
∥∥∥T|(F1⊕···⊕Fn)⊥

∥∥∥ = |λn+1| → 0

as n approaches infinity. Therefore, the series ∑ λnPn converges in operator norm to T.

2

From this theorem, the following corollary can be deduced, which demonstrates the existence
of a Hilbert basis for the compact self-adjoint operator T.

Bounded and compact operators. Spectral theorem. page 23



Chapter 4. Spectrum of compact operators

Corollary 4.2.4. Let T ∈ L(H) be a compact self-adjoint operator. There exists a Hilbert basis (ϕn)n∈N

of H such that, for all n ∈ N, there exists a real number λn such that Tϕn = λnϕn and λn → 0 as n
tends to infinity.

Proof : By Proposition 4.2.2, a Hilbert basis (ϕn)n∈N of H can be constructed by joining the
bases of Ker (T − λ) for λ ∈ σ(T). Hence, by renumbering the eigenvalues of T, for all
n ∈ N, Tϕn = λnϕn where the λn are given by Theorem 4.2.3. Furthermore, by Theorem
4.2.3, λn → 0 as n tends to infinity.

2

4.3 Reduction of Self-Adjoint Compact Operators

The spectral theorem for self-adjoint compact operators states that every self-adjoint compact
operator can be diagonalized in a Hilbert space. Thus, in a sense that we will now define, ev-
ery self-adjoint compact operator is unitarily equivalent to an infinite diagonal matrix. In finite
dimension, two diagonalizable matrices are equivalent if and only if they have the same eigen-
values with the same multiplicities. This result will be generalized for self-adjoint compact
operators.

Definition 4.3.1. Let H and K be two Hilbert spaces. Let S ∈ L(H) and T ∈ L(K). S and T are said to
be unitarily equivalent if there exists a Hilbert space isomorphism U : H → K such that USU−1 = T.

Definition 4.3.2. Let T ∈ B∞(H). The multiplicity function of T is the function mT : C → N ∪
{+∞} defined by mT(λ) = dim Ker (T − λ).

Then, mT(λ) > 0 if and only if λ is an eigenvalue of T. Additionally, if λ ̸= 0, by the Riesz-
Schauder theorem, mT(λ) < +∞.

Proposition 4.3.3. If T and S are two unitarily equivalent compact operators, and U : H → K is an
isomorphism such that USU−1 = T, then Ker (T − λ) = UKer (S − λ) for all λ ∈ C. In particular,
mT = mS.

Proof : Indeed, if v ̸= 0 such that Sv = λv, then TUv = USv = λUv, hence Uv ∈ Ker (T − λ).
Therefore, UKer (S − λ) ⊂ Ker (T − λ). Conversely, if w ∈ Ker (T − λ) and v = U−1w,
then Sv = SU−1w = U−1Tw = λv. Hence Ker (T − λ) ⊂ UKer (S − λ). As U is an
isomorphism of vector spaces, we obtain mT = mS.

2

It follows from this proposition that equality of multiplicity functions is a necessary condition
for two compact operators to be unitarily equivalent. We will now demonstrate that for self-
adjoint compact operators, it is also a sufficient condition.

Theorem 4.3.4. Two self-adjoint compact operators are unitarily equivalent if and only if they have the
same multiplicity function.

Proof : Let S ∈ L(H) and T ∈ L(K) be two compact self-adjoint operators. If S and T are
unitarily equivalent, as we have just shown in Proposition 4.3.3, mT = mS. Now suppose
that mT = mS and construct an isomorphism U : H → K such that UTU−1 = S.

By the spectral theorem for compact operators, we can write T = ∑∞
n=1 λnPn and S =

∑∞
n=1 µnQn where for m ̸= n, λn ̸= λm and µn ̸= µm, and the projectors Pn and Qn have
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finite rank. Let P0 be the projector of H onto Ker T and Q0 the projector of K onto Ker S.
Also, let λ0 = µ0 = 0. As mT = mS, for all n ∈ N, mS(λn) = mT(λn) > 0. Hence,
the λn are also eigenvalues of S. Therefore, for all n ∈ N, there exists a unique µj such
that µj = λn. Define π : N → N by µπ(n) = λn and set π(0) = 0. Additionally, as
mT(µn) = mS(µn) > 0, all the µn are also eigenvalues of T, and for all n ∈ N, there exists
j ∈ N, π(j) = n. Thus, π is a bijection.

For all n ∈ N, dim Im Pn = mT(λn) = mS(µπ(n)) = dim Im Qπ(n) (equality of Hilbert
space dimensions), there exists an isomorphism of Hilbert spaces Un : PnH → Qπ(n)K.
Define U : H → K by setting U = Un on PnH and extending by linearity. Then, U is
indeed an isomorphism since ⊕̂n∈NIm Pn = H. Moreover, if v ∈ PnH, then UTv =
λnUv = µπ(n)Uv = SUv. Thus, we indeed have UTU−1 = S.

2

In general, the multiplicity function is not sufficient to characterize the unitary equivalence of
two arbitrary compact operators. For example, if V is the Volterra operator, mV = 0, yet V and
the zero operator are not unitarily equivalent. No known necessary and sufficient conditions
exist for two compact operators to be unitarily equivalent. In fact, even in finite dimensions,
there are no known necessary and sufficient conditions for two operators to be unitarily equiv-
alent.
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Chapter 5

Spectral theorem

We will generalize the classical result asserting that any real symmetric matrix is diagonalizable
in an orthonormal basis to the framework of bounded operators on a Hilbert space.
A good way to state this theorem for matrices is to write that for any real symmetric matrix
A ∈ Mn(R), there exist real numbers λ1, . . . , λn and orthogonal projectors P1, . . . , Pn such that:

A = λ1P1 + · · ·+ λnPn.

It is this formulation that we will generalize to infinite dimension by transforming the sum into
an integral against measures with projector values.

5.1 Spectral Families

Definition 5.1.1. A spectral family (or identity resolution) on H is a function E : R → L(H) such
that:

1. For all t ∈ R, E(t) is an orthogonal projection, i.e., E(t)2 = E(t) and E(t)∗ = E(t).

2. Monotonicity: ∀s ≤ t, E(s) ≤ E(t), i.e., ∀u ∈ H, (E(s)u|u) ≤ (E(t)u|u).

3. Right-continuous: ∀u ∈ H, E(t + ε)u −−−→
ε→0+

E(t)u.

4. Normalization at infinity: ∀u ∈ H, E(t)u −−−→
t→−∞

0 and E(t)u −−−→
t→+∞

u.

In particular, points 1 and 2 imply that E(t)E(s) = E(s)E(t) for all s, t and if s ≤ t,
E(s)E(t) = E(s).

Also: ∀u ∈ H, ∀t ∈ R, (E(t)u|u) = ||E(t)u||2 ≥ 0 (or with 2 and letting s tend to −∞ for a
fixed t).

Remark 5.1.2. The concept of a spectral family is analogous to the cumulative distribution function of
a random variable in probabilities.

Example 5.1.3. Let M ⊂ Rd be measurable and g : M → R be measurable. We define M(t) = {x ∈
M | g(x) ≤ t}. Then M(t) increases towards M in terms of inclusion. We then define for u ∈ L2(M)
and t ∈ R, E(t)u = χM(t)u. Then, E : t 7→ E(t) is a spectral family.

Example 5.1.4. If T is a self-adjoint operator, with a discrete spectrum and such that for all u ∈ H,
(Tu|u) ≥ C||u||2, then there exists a sequence λi of real numbers increasing towards infinity and an
orthonormal basis {ui}i∈N of H such that

∀u ∈ H, Tu =
+∞

∑
i=0

λi(u|ui)ui.
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This resembles the spectral theorem for self-adjoint compact operators. We then define for all t ∈ R, E(t)
as the orthogonal projector onto Vect{u0, . . . uj|λj ≤ t}. Then t 7→ E(t) is a spectral family.

5.2 Spectral Theorem

Let u, v ∈ H. By the polarization identity, the function Fu,v(λ) = (E(λ)u|v) is a complex linear
combination of four right-continuous, non-decreasing functions at every point:

Fu,v(λ) =
1
4

(
∥E(λ)(u + v)∥2 − ∥E(λ)(u − v)∥2 + i ∥E(λ)(u + iv)∥2 − i ∥E(λ)(u − iv)∥2

)
,

and we note this expression as Fu,v(λ) = α1F1(λ) + · · · + α4F4(λ). According to the Stieljes
integration theory, there exist four Borel measures µ1, . . . , µ4 corresponding to Fi such that for
any function ϕ in L1(R, µ1 + · · ·+ µ4),∫

R
ϕ(λ)dFu,v(λ) = α1

∫
R

ϕ(λ)dµ1 + · · ·+ α4

∫
R

ϕ(λ)dµ4.

The measures µi depend on u and v, and, by the normalization property of spectral families,
each µi is a finite measure. Indeed, we have µ1(R) ≤ ∥u + v∥2, . . . , µ4(R) ≤ ∥u − iv∥2.

Example 5.2.1. Let’s revisit the second example from the previous section. If u ∈ H, then Fu,u(λ) =
(E(λ)u|u). If u = u0, then for λ < λ0, Fu0,u0(λ) = 0 and for λ ≥ λ0, Fu0,u0(λ) = ||u0||2 = 1.
Therefore, dFu0,u0 = δλ0 . If u = au0 + bu1, then dFu,u = |a|2δλ0 + |b|2δλ1 . More generally, if
u = ∑+∞

i=0 aiui with ∑ |ai|2 < +∞, then dFu,u = ∑+∞
i=0 |ai|2δλi .

We can now state the spectral theorem for self-adjoint operators.

Theorem 5.2.2 (Spectral Theorem for Bounded Operators). Let T be a self-adjoint operator. There
exists a unique spectral family E : R → L(H) such that

T =
∫

R
λ dE(λ) =

∫
σ(T)

λ dE(λ)

where, for all u, v ∈ H,

(Tu|v) =
∫

σ(T)
λ dFu,v(λ).

Proof : We outline the main steps of the construction.

We start by defining for z ∈ C, Im z ̸= 0, and u ∈ H, F(z) = (Rz(T)u|u). Then F
is holomorphic in the upper complex half-plane, and we verify that Im F(z) > 0. It is
therefore a Herglotz function that satisfies the inequality

|F(z)| ≤ C
|Im z| .

We can thus associate it with a positive Borel measure of finite mass, with a distribution
function wu such that

F(z) =
∫ +∞

−∞

1
z − λ

dwu(λ).

Through polarization, we then obtain a complex Borel measure dwu,v that similarly rep-
resents (Rz(T)u|v) for all u, v ∈ H. Moreover, by harmonic analysis results,

wu,v(λ) = lim
δ→0

lim
ε→0

∫ λ+δ

−∞
((Rs−iε(T)− Rs+iε)u, v)ds.
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5.3 Functional Calculus

Now, the map (u, v) 7→ wu,v(λ) is a continuous sesquilinear form, so for any λ ∈ R, there
exists a unique operator E(λ) ∈ L(H) such that

wu,v(λ) = (E(λ)u|v).

We then demonstrate that λ 7→ E(λ) is a spectral family that satisfies the desired repre-
sentation formula for T.

2

5.3 Functional Calculus

If ϕ : R → C is a locally bounded Borel map on R and T is a self-adjoint operator, we can define
the operator ϕ(T) as follows:

∀u, v ∈ H, (ϕ(T)u|v) =
∫

σ(T)
ϕ(λ)dFu,v(λ),

where Fu,v comes from the spectral family associated with T via the spectral theorem. This
allows the development of a functional calculus on self-adjoint operators.
Note that if ϕ takes real values, then ϕ(T) is also self-adjoint. Then we have the following
property.

Proposition 5.3.1. Let f and g be two bounded Borel functions and T a self-adjoint operator. For all
u, v ∈ H,

( f (T)u|g(T)v) =
∫

R
f (λ)g(λ)dFu,v(λ),

where Fu,v(λ) = (E(λ)u|v) with E being the spectral family associated with T.

Proof : This is demonstrated by considering f and g as indicator functions of Borel sets, then
by linear combinations of such functions (step functions), and eventually passing to the
limit.

2

An initial application of functional calculus is the following formula for the resolvent of a
self-adjoint operator.

Proposition 5.3.2. Let T be a self-adjoint operator. Let z ∈ C, z /∈ σ(T). Then

Rz(T) = (z − T)−1 =
∫

R

1
z − λ

dE(λ)

where E is the spectral family associated with T. Furthermore,

||(z − T)−1|| ≤ 1
dist(z, σ(T))

.

Proof : The first point follows immediately from the definition of functional calculus. Then, for
u ∈ H,

||(z − T)−1u||2 = ((z − T)−1u|(z − T)−1u)

=
∫

σ(T)
(z − λ)−1(z − λ)−1d(E(λ)u|u)

=
∫

σ(T)
|(z − λ)|−2d(E(λ)u|u)

≤ sup
λ∈σ(T)

|z − λ|−2
∫

R
d(E(λ)u|u) = 1

(dist(z, σ(T)))2 ||u||
2.

Bounded and compact operators. Spectral theorem. page 29



Chapter 5. Spectral theorem

2

The spectral theorem also allows us to define the notion of a spectral projector on a Borel set B
in R using the formula:

EB = 1B(T).

In particular, if B is an interval and if E is the spectral family associated with T, let’s denote

E(a,b) = E(b−)− E(a+) and E[a,b] = E(b+)− E(a−).

Proposition 5.3.3 (Stone’s formula.). Let T be a self-adjoint operator. For all a < b,

s − lim
ε→0

1
2iπ

∫ b

a
(Rs−iε(T)− Rs+iε(T))ds =

1
2

(
E[a,b] + E(a,b)

)
.

Proof : For a complete and detailed proof, see [2], Theorem 2.13, page 37.

2

Using the spectral theorem and the functional calculus it induces, we can define for t ∈ R

and T a self-adjoint operator, the unitary operator U(t) = eitT. Let’s summarize the properties
of this operator.

Proposition 5.3.4. 1. For any t ∈ R, U(t) is unitary, and if s, t ∈ R, U(t + s) = U(t)U(s).

2. If ψ ∈ H then U(t)ψ −−→
t→t0

U(t0)ψ.

3. If ψ ∈ H, then U(t)ψ−ψ
t −−→

t→0
iTψ.

Proof : See Theorem VIII.7 in [6].

2

The unitary operator U(t) allows to solve the Schrödinger equation:{
∂tψ = iTψ

ψ|t=0 = ψ0
with ψ0 ∈ D(T).

Indeed, for any t ≥ 0, ψ(t) = U(t)ψ0.
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