Exercises sheet 1 : Theorems of Functional Analysis

1. Baire's theorem

Exercise 1

Find a sequence $(\mathcal{O}_n)_{n\in\mathbb{N}}$ of dense open sets of \mathbb{R} such that $\bigcap_{n \in \mathbb{N}} \mathcal{O}_n$ is not not an open set.

Exercise 2

Let $f : \mathbb{R}_+ \to \mathbb{R}$ a continuous function such that for every a > 0, $\lim_{n \to +\infty} f(na) = 0$. Let $\varepsilon > 0$. Applying Baire's theorem to the closed sets $F_p = \{a \ge a \}$ 0, $\forall n \geq p$, $|f(na)| \leq \varepsilon$ }, show that f tends to 0 at $+\infty$.

Exercise 3

Let f an entire function, *i.e.* an holomorphic function on the whole complex plan \mathbb{C} . Show that if for each $z \in \mathbb{C}$ there exists $n \in \mathbb{N}$ such that $f^{(n)}(z) = 0$, then f is a polynomial function.

Hint : use the closed sets

$$F_n = \{ z \in \mathbb{C}, f^{(n)}(z) = 0 \}.$$

Exercise 4

Let $(V_n)_{n \in \mathbb{N}}$ a family of open dense sets of \mathbb{R} .

1. Recall why $V = \bigcap_{n \in \mathbb{N}} V_n$ is dense in \mathbb{R} .

2. Show that if $(x_n)_{n \in \mathbb{N}}$ is a sequence of real numbers, then, for every $n \in \mathbb{N}$, $W_n = V_n \setminus \{x_0, \ldots, x_n\}$ is an open dense set of \mathbb{R} .

3. Deduce that V cannot be finite or countable.

Exercise 5

Let (E, d) a complete metric space and let $(f_n)_{n \in \mathbb{N}}$ a sequence of continuous functions from E to \mathbb{R} which converges pointwise to a function f. **1.** For $m \in \mathbb{N}$ et $n \in \mathbb{N}^*$, let

$$A_{m,n} = \{ x \in E, \ |f_m(x) - f_l(x)| \le \frac{1}{n}, \ \forall l \in \mathbb{N}, \ l \ge m \}.$$

Show that $A_{m,n}$ is closed in E. **2.** Let $n \in \mathbb{N}^*$ fixed. Show that $E = \bigcup_{m \in \mathbb{N}} A_{m,n}$.

3. Let $O_{m,n} = \text{Int}(A_{m,n})$. Show that $O_n =$ $\cup_{m\in\mathbb{N}}O_{m,n}$ is an open dense set of E.

4. We will now show that f is continuous on every point of the set $G = \bigcap_{n \in \mathbb{N}^*} O_n$. Let $a \in G$ and $\varepsilon > 0$. **a.** Show that there exist $n \in \mathbb{N}^*$ and $m \in \mathbb{N}$ such that, for every $x \in O_{m,n}$, $|f_m(x) - f(x)| \le \varepsilon$.

b. For this integer m, show that there exists a neighborhood V of a such that for every $x \in V$, $|f_m(x) - f_m(a)| \le \varepsilon.$

c. Deduce from previous questions that f is continuous at point a.

5. Show that the set of continuity points of f is a residual set of E.

6. Is the characteristic function of \mathbb{Q} , $\mathbf{1}_{\mathbb{Q}}$, the pointwise limit on \mathbb{R} of a sequence of continuous functions?

2. Banach-Steinhaus and the open map theorems

Exercice 6

Let

$$\ell^{2}(\mathbb{N}^{*}) = \left\{ (x_{i})_{i \in \mathbb{N}^{*}} \mid \sum_{i=1}^{+\infty} |x_{i}|^{2} < +\infty \right\}$$

endowed with the norm $|| \cdot ||_{\ell^2}$ defined by

$$\forall x \in \ell^2(\mathbb{N}^*), \ ||x||_{\ell^2} = \left(\sum_{i=1}^{+\infty} |x_i|^2\right)^{\frac{1}{2}}.$$

Let

 $E = \{ x \in \ell^2(\mathbb{N}^*) \mid x_i = 0 \text{ except for a finite number of } i \}.$

For $n \in \mathbb{N}^*$, consider the linear map $T_n : E \to$ $\ell^2(\mathbb{N}^*)$ defined by :

$$\forall x \in E, \ \forall i \in \mathbb{N}^*, \ (T_n(x))_i = \begin{cases} 0 & \text{if } i \neq n \\ nx_n & \text{if } i = n \end{cases}$$

Finally, let $A = \{T_n \mid n \in \mathbb{N}^*\}$ and for every $x \in E$, $A_x = \{T_n(x) \mid T_n \in A\}.$

1. Show that for every $x \in E$, A_x is bounded in $\ell^2(\mathbb{N}^*).$

2. Let $\mathcal{L}(E, \ell^2(\mathbb{N}^*))$ the space of bounded linear maps from E to $\ell^2(\mathbb{N}^*)$ endowed with the norm $||| \cdot |||$ defined by :

$$\forall T \in \mathcal{L}(E, \ell^2(\mathbb{N}^*)), \ |||T||| = \sup_{x \in E, \ ||x||_{\ell^2} = 1} ||T(x)||_{\ell^2}.$$

Show that A is not bounded in $\mathcal{L}(E, \ell^2(\mathbb{N}^*))$. **3.** Explain why the Banach-Steinhaus theorem does not apply here.

Exercise 7

Let $\ell^1(\mathbb{N})$ the space of real-valued sequences $(u_n)_{n\in\mathbb{N}}$ such that $||u||_1 = \sum_{n=0}^{\infty} |u_n| < +\infty$ and $\ell^{\infty}(\mathbb{N})$ the space of bounded real-valued sequences, endowed with the norm $||u||_{\infty} = \sup_{n\in\mathbb{N}} |u_n|$.

1. Let $A = \{u \in \ell^{\infty}(\mathbb{N}) \mid u_n = 0 \text{ except for a finite number of } n\}$. Show that A is dense in $(\ell^1(\mathbb{N}), || ||_1)$ but not in $(\ell^{\infty}(\mathbb{N}), || ||_{\infty})$.

2. Show that there is no sequence of positive real numbers $(a_n)_{n \in \mathbb{N}}$ such that

$$(a_n u_n) \in \ell^1(\mathbb{N}) \iff (u_n) \in \ell^\infty(\mathbb{N}).$$

Exercise 8

Let $E = L^1(\mathbb{T})$ the space of locally integrable and 2π -periodic functions on \mathbb{R} , endowed with the norm :

$$||f||_1 = \frac{1}{2\pi} \int_0^{2\pi} |f(x)| dx.$$

Let $F = c_0(\mathbb{Z})$ the space of families $(x_n)_{n \in \mathbb{Z}}$ of complex numbers which tends to 0 at infinity, endowed with the norm $||x||_{\infty} = \sup_{n \in \mathbb{Z}} |x_n|$.

We aim at proving that the following application is not onto :

$$T: \begin{array}{ccc} E & \to & F \\ f & \mapsto & (c_n(f))_{n \in \mathbb{Z}}, \ c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx \end{array}$$

1. Recall briefly why T is well-defined, linear and continuous. It is assumed to be injective.

2. Show that if T is surjective, there exists $\delta > 0$ such that, for all $f \in L^1(\mathbb{T})$,

$$||f||_{L^1} \le \delta \sup_{n \in \mathbb{Z}} |c_n(f)|$$

3. For every $g \in L^{\infty}(\mathbb{R})$, 2π -periodic, we choose a sequence $(\alpha_n)_{n\in\mathbb{Z}}$ of complex numbers of modulus 1 such that, for all $n \in \mathbb{Z}$, $\bar{\alpha}c_n(g) = |c_n(f)|$. Applying question 2 to

$$f_N = \sum_{|n| \le N} \alpha_n e^{inx},$$

show that, if T is surjective, for all $N \ge 0$,

$$\sum_{|n| \le N} |c_n(g)| \le \delta ||g||_{\infty}$$

4. Conclude.

Exercise 9

Let E denote the Banach space of continuous functions on the interval [0, 1], with complex values, endowed with the norm $|| \, ||_{\infty}$. Let α be such that $0 < \alpha < 1$ and let E_{α} be the subspace of E consisting of functions f such that there exists a constant A > 0 for which :

$$\forall x \in [0,1], \ \forall y \in [0,1], \ |f(x) - f(y)| \le A|x - y|^{\alpha}$$

Define the following norm on E_{α} :

$$||f||_{\alpha} = ||f||_{\infty} + \sup_{0 \le x \ne y \le 1} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}}$$

Then $(E_{\alpha}, || ||_{\alpha})$ is a Banach space. Let F be a closed subspace of $(E, || ||_{\infty})$. We assume that F is contained in E_{α} and we aim at showing that F is finite-dimensional.

1. Show that F is closed in $(E_{\alpha}, || ||_{\alpha})$.

2. Show that there is a constant C > 0 such that, for any element f of F, $||f||_{\alpha} \leq C||f||_{\infty}$.

3. Conclude by studying the unit ball of $(F, || ||_{\infty})$.

Exercise 10

Let (E, || ||) a normed vector space over \mathbb{K} and $(x_n)_{n \in \mathbb{N}}$ a sequence of elements of E. It is said that $(x_n)_{n \in \mathbb{N}}$ converges weakly to $x \in E$ when for every $u \in E' = \mathcal{L}_c(E, \mathbb{K}), \lim_{n \to +\infty} u(x_n) = u(x)$. We denote it by $x_n \to x$.

1. Show that if $(x_n)_{n \in \mathbb{N}}$ converges strongly to $x \in E$, then $(x_n)_{n \in \mathbb{N}}$ converges weakly to x.

2. Show that the weak limit of a weakly convergent sequence is unique.

3. Show that if $x_n \rightharpoonup x$ then $(x_n)_{n \in \mathbb{N}}$ is strongly bounded.

4. Show that if $x_n \rightharpoonup x$ then

$$|x|| \le \liminf ||x_n||.$$

3. Ascoli's theorem

Exercise 10

Let $E = C([0,1],\mathbb{R})$ the space of continuous realvalued functions on [0,1] endowed with the norm $||u||_{\infty} = \sup_{x \in [0,1]} |u(x)|.$

1. Show that the unit ball of $(E, || ||_{\infty})$ is not compact.

2. For $k \in \mathbb{R}_+$ and M > 0, let

 $F_{k,M} = \{ u \in E \mid |u(0)| \le M \text{ and } u \ k-\text{Lipschitzian} \}.$

a. Show that for every $x \in [0, 1]$, $\{u(x) \mid u \in F_{k,M}\}$ is bounded.

b. Show that $F_{k,M}$ is equicontinuous.

c. Deduce that $F_{k,M}$ is compact.

Exercise 11

1. Let f, g be continuous functions from [0, 1] into \mathbb{R} and $(f_n)_{n \in \mathbb{N}}$ a sequence of class C^1 functions from [0, 1] into \mathbb{R} . Show that if (f_n) converges uniformly to f and (f'_n) converges uniformly to g, then f is of class C^1 and f' = g. (Hint: use an integral).

2. Let $E = C([0,1],\mathbb{R})$ endowed with the norm $\|\cdot\|_{\infty}$. Let F be a closed vector subspace of E. It is assumed that all the elements of F are of class C^1 .

a. Let the application $T: F \to E$ be defined by T(f) = f'. Using question 1 and the closed graph theorem, show that T is continuous.

b. Deduce that the unit ball of F is compact.

c. Deduce that F is finite-dimensional.

Exercise 12

Let $\ell^{\infty}(\mathbb{N})$ be the vector space of bounded sequences. It is endowed with the norm $||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$ for $u = (u_n)_{n \in \mathbb{N}} \in \ell^{\infty}(\mathbb{N})$. Then $(\ell^{\infty}(\mathbb{N}), || ||_{\infty})$ is a Banach space.

1. Show that the unit ball of $(\ell^{\infty}(\mathbb{N}), || ||_{\infty})$ is not compact.

2. Let $F = \{u \in \ell^{\infty}(\mathbb{N}) \mid \forall n \in \mathbb{N}, |u_n| \leq \frac{1}{n}\}$, endowed with the norm $|| ||_{\infty}$ induced by the one on $\ell^{\infty}(\mathbb{N})$.

a. Let $K = \{\frac{1}{n}\}_{n \in \mathbb{N}} \cup \{0\}$. Show that K is a compact of \mathbb{R} .

b. Let $G = \{f : K \to \mathbb{R} \mid \forall x \in K, |f(x)| \le x\}$, endowed with the norm $|| ||_K$ defined by, for every $f \in G, ||f||_K = \sup_{x \in K} |f(x)|.$

Show that G is closed in $C(K, \mathbb{R})$, the space of continuous functions from K into \mathbb{R} , for the norm $|| ||_K$. c. Consider the application

$$F \rightarrow G$$

$$T : \begin{array}{ccc} & F \rightarrow & G \\ & & K \rightarrow & \mathbb{R} \\ & & u \rightarrow & \left(f : & \frac{1}{n} \rightarrow & u_n \\ & & 0 \rightarrow & 0 \end{array}\right)$$

Show that T is a homeomorphism of $(F, || ||_{\infty})$ into $(G, || ||_K)$.

d. Deduce that F is compact if and only if G is compact.

3.a Show that, for all $x \in K$, $\{f(x) \mid f \in G\}$ is bounded.

b. Show that G is equicontinuous.

c. Deduce that G is compact and that F is compact.