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Exercises sheet 1 : Theorems of Functional Analysis

1. Baire’s theorem

Exercise 1

Find a sequence (On)n∈N of dense open sets of R
such that

⋂
n∈NOn is not not an open set.

Exercise 2

Let f : R+ → R a continuous function such that
for every a > 0, lim

n→+∞
f(na) = 0. Let ε > 0. Ap-

plying Baire’s theorem to the closed sets Fp = {a ≥
0 , ∀n ≥ p, |f(na)| ≤ ε}, show that f tends to 0 at
+∞.

Exercise 3

Let f an entire function, i.e. an holomorphic func-
tion on the whole complex plan C. Show that if for
each z ∈ C there exists n ∈ N such that f (n)(z) = 0,
then f is a polynomial function.
Hint : use the closed sets

Fn = {z ∈ C, f (n)(z) = 0}.

Exercise 4

Let (Vn)n∈N a family of open dense sets of R.
1. Recall why V = ∩n∈NVn is dense in R.
2. Show that if (xn)n∈N is a sequence of real num-
bers, then, for every n ∈ N, Wn = Vn \ {x0, . . . , xn}
is an open dense set of R.
3. Deduce that V cannot be finite or countable.

Exercise 5

Let (E, d) a complete metric space and let (fn)n∈N a
sequence of continuous functions from E to R which
converges pointwise to a function f .
1. For m ∈ N et n ∈ N∗, let

Am,n = {x ∈ E, |fm(x)−fl(x)| ≤ 1
n , ∀l ∈ N, l ≥ m}.

Show that Am,n is closed in E.
2. Let n ∈ N∗ fixed. Show that E = ∪m∈NAm,n.

3. Let Om,n = Int(Am,n). Show that On =
∪m∈NOm,n is an open dense set of E.
4. We will now show that f is continuous on every
point of the set G = ∩n∈N∗On. Let a ∈ G and ε > 0.
a. Show that there exist n ∈ N∗ and m ∈ N such
that, for every x ∈ Om,n, |fm(x)− f(x)| ≤ ε.
b. For this integer m, show that there exists a
neighborhood V of a such that for every x ∈ V ,
|fm(x)− fm(a)| ≤ ε.
c. Deduce from previous questions that f is contin-
uous at point a.
5. Show that the set of continuity points of f is a
residual set of E.
6. Is the characteristic function of Q, 1Q, the point-
wise limit on R of a sequence of continuous func-
tions?

2. Banach-Steinhaus and the open map the-
orems

Exercice 6

Let

ℓ2(N∗) =

{
(xi)i∈N∗

∣∣∣ +∞∑
i=1

|xi|2 < +∞

}

endowed with the norm || · ||ℓ2 defined by

∀x ∈ ℓ2(N∗), ||x||ℓ2 =

(
+∞∑
i=1

|xi|2
) 1

2

.

Let

E = {x ∈ ℓ2(N∗) | xi = 0 except for a finite number of i }.

For n ∈ N∗, consider the linear map Tn : E →
ℓ2(N∗) defined by :

∀x ∈ E, ∀i ∈ N∗, (Tn(x))i =

{
0 if i ̸= n

nxn if i = n

Finally, let A = {Tn | n ∈ N∗} and for every x ∈ E,
Ax = {Tn(x) | Tn ∈ A}.
1. Show that for every x ∈ E, Ax is bounded in
ℓ2(N∗).
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2. Let L(E, ℓ2(N∗)) the space of bounded linear
maps from E to ℓ2(N∗) endowed with the norm |||·|||
defined by :

∀T ∈ L(E, ℓ2(N∗)), |||T ||| = sup
x∈E, ||x||ℓ2=1

||T (x)||ℓ2 .

Show that A is not bounded in L(E, ℓ2(N∗)).
3. Explain why the Banach-Steinhaus theorem does
not apply here.

Exercise 7

Let ℓ1(N) the space of real-valued sequences (un)n∈N
such that ||u||1 =

∑∞
n=0 |un| < +∞ and ℓ∞(N) the

space of bounded real-valued sequences, endowed
with the norm ||u||∞ = supn∈N |un|.
1. Let A = {u ∈ ℓ∞(N) | un =
0 except for a finite number of n}. Show that A is
dense in (ℓ1(N), || ||1) but not in (ℓ∞(N), || ||∞).
2. Show that there is no sequence of positive real
numbers (an)n∈N such that

(anun) ∈ ℓ1(N) ⇐⇒ (un) ∈ ℓ∞(N).

Exercise 8

Let E = L1(T) the space of locally integrable and
2π-periodic functions on R, endowed with the norm
:

||f ||1 =
1

2π

∫ 2π

0
|f(x)|dx.

Let F = c0(Z) the space of families (xn)n∈Z of com-
plex numbers which tends to 0 at infinity, endowed
with the norm ||x||∞ = supn∈Z |xn|.
We aim at proving that the following application is
not onto :

T :
E → F

f 7→ (cn(f))n∈Z, cn(f) =
1
2π

∫ 2π
0 f(x)e−inxdx

1. Recall briefly why T is well-defined, linear and
continuous. It is assumed to be injective.

2. Show that if T is surjective, there exists δ > 0
such that, for all f ∈ L1(T),

||f ||L1 ≤ δ sup
n∈Z

|cn(f)|

3. For every g ∈ L∞(R), 2π-periodic, we choose a
sequence (αn)n∈Z of complex numbers of modulus 1
such that, for all n ∈ Z, ᾱcn(g) = |cn(f)|. Applying
question 2 to

fN =
∑

|n|≤N

αne
inx,

show that, if T is surjective, for all N ≥ 0,∑
|n|≤N

|cn(g)| ≤ δ||g||∞

4. Conclude.

Exercise 9

Let E denote the Banach space of continuous func-
tions on the interval [0, 1], with complex values, en-
dowed with the norm || ||∞. Let α be such that
0 < α < 1 and let Eα be the subspace of E consist-
ing of functions f such that there exists a constant
A > 0 for which :

∀x ∈ [0, 1], ∀y ∈ [0, 1], |f(x)− f(y)| ≤ A|x− y|α

Define the following norm on Eα:

||f ||α = ||f ||∞ + sup
0≤x ̸=y≤1

|f(x)− f(y)|
|x− y|α

Then (Eα, || ||α) is a Banach space. Let F be a
closed subspace of (E, || ||∞). We assume that F is
contained in Eα and we aim at showing that F is
finite-dimensional.

1. Show that F is closed in (Eα, || ||α).

2. Show that there is a constant C > 0 such that,
for any element f of F , ||f ||α ≤ C||f ||∞.

3. Conclude by studying the unit ball of (F, || ||∞).

Exercise 10

Let (E, || ||) a normed vector space over K and
(xn)n∈N a sequence of elements of E. It is said that
(xn)n∈N converges weakly to x ∈ E when for every
u ∈ E′ = Lc(E,K), lim

n→+∞
u(xn) = u(x). We denote

it by xn ⇀ x.

1. Show that if (xn)n∈N converges strongly to x ∈ E,
then (xn)n∈N converges weakly to x.

2. Show that the weak limit of a weakly convergent
sequence is unique.

3. Show that if xn ⇀ x then (xn)n∈N is strongly
bounded.

4. Show that if xn ⇀ x then

||x|| ≤ lim inf ||xn||.
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3. Ascoli’s theorem

Exercise 10

Let E = C([0, 1],R) the space of continuous real-
valued functions on [0, 1] endowed with the norm
||u||∞ = supx∈[0,1] |u(x)|.
1. Show that the unit ball of (E, || ||∞) is not com-
pact.
2. For k ∈ R+ and M > 0, let

Fk,M = {u ∈ E | |u(0)| ≤ M and u k−Lipschitzian}.

a. Show that for every x ∈ [0, 1], {u(x) | u ∈ Fk,M}
is bounded.
b. Show that Fk,M is equicontinuous.
c. Deduce that Fk,M is compact.

Exercise 11

1. Let f, g be continuous functions from [0, 1] into
R and (fn)n∈N a sequence of class C1 functions from
[0, 1] into R. Show that if (fn) converges uniformly
to f and (f ′

n) converges uniformly to g, then f is of
class C1 and f ′ = g. (Hint: use an integral).

2. Let E = C([0, 1],R) endowed with the norm
∥ · ∥∞. Let F be a closed vector subspace of E. It is
assumed that all the elements of F are of class C1.

a. Let the application T : F → E be defined by
T (f) = f ′. Using question 1 and the closed graph
theorem, show that T is continuous.

b. Deduce that the unit ball of F is compact.

c. Deduce that F is finite-dimensional.

Exercise 12

Let ℓ∞(N) be the vector space of bounded sequences.

It is endowed with the norm ||u||∞ = supn∈N |un|
for u = (un)n∈N ∈ ℓ∞(N). Then (ℓ∞(N), || ||∞) is a
Banach space.

1. Show that the unit ball of (ℓ∞(N), || ||∞) is not
compact.

2. Let F = {u ∈ ℓ∞(N) | ∀n ∈ N, |un| ≤ 1
n}, en-

dowed with the norm || ||∞ induced by the one on
ℓ∞(N).
a. LetK = { 1

n}n∈N∪{0}. Show thatK is a compact
of R.
b. Let G = {f : K → R | ∀x ∈ K, |f(x)| ≤ x},
endowed with the norm || ||K defined by, for every
f ∈ G, ||f ||K = supx∈K |f(x)|.
Show that G is closed in C(K,R), the space of con-
tinuous functions from K into R, for the norm || ||K .

c. Consider the application

T :

F → G

u 7→

f :
K → R
1
n 7→ un
0 7→ 0


Show that T is a homeomorphism of (F, || ||∞) into
(G, || ||K).

d. Deduce that F is compact if and only if G is
compact.

3.a Show that, for all x ∈ K, {f(x) | f ∈ G} is
bounded.

b. Show that G is equicontinuous.

c. Deduce that G is compact and that F is compact.
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