2023-2024

Exercises sheet $3: L^p$ spaces

Exercise 1 Let $f \in L^p(\mathbb{R})$ with 1 .

- 1. Show that we can define, for any $x \ge 0$, $F(x) = \int_0^x f(t) dt.$
- 2. Justify that $F(x) =_{+\infty} \mathcal{O}(x^{(p-1)/p})$.
- 3. Let $\varepsilon > 0$. Show that there exists a > 0 such that

$$\left(\int_{a}^{+\infty} |f(t)|^{p} \mathrm{d}t\right)^{\frac{1}{p}} \leq \varepsilon$$

4. Deduce that $F(x) =_{+\infty} o(x^{(p-1)/p})$.

Exercise 2 For $1 \leq p < +\infty$, let $\tau_a : L^p(\mathbb{R}) \to L^p(\mathbb{R})$ be defined, for all $f \in L^p(\mathbb{R})$ and all $x \in \mathbb{R}$, by $\tau_a(f)(x) = f(x-a)$. Show that, for any $f \in L^p(\mathbb{R})$,

$$\lim_{a \to 0} ||\tau_a(f) - f||_p = 0.$$

Hint: Start with the case where f is a continuous function with compact support.

Exercise 3 Let $f \in L^1(\mathbb{R})$. Consider the application

$$Tf : \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \int_0^1 f(x-y) \mathrm{d}y \end{array}$$

- 1. Show that, if f is continuous with compact support, Tf is continuous.
- 2. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of continuous functions with compact support that converges to f in $L^1(\mathbb{R})$. Show that $(Tf_n)_{n \in \mathbb{N}}$ converges to Tf uniformly on \mathbb{R} . Deduce that Tf is continuous on \mathbb{R} .
- 3. Deduce that the convolution product on $L^1(\mathbb{R})$ admits no unitary element.

Exercise 4 Let $f, g :] - 1, 1[\rightarrow \mathbb{R}$ given by $f = \mathbf{1}_{]-1,0[}$ and $g = \mathbf{1}_{]0,1[}$

- 1. Let $p \in [1, \infty[$. Compute $||f||_p$, $||g||_p$, $||f + g||_p$ and $||f - g||_p$.
- 2. Deduce that if $p \neq 2$, then $L^p(] 1, 1[)$ is not a Hilbert space.

Exercise 5 Let $\Omega \subset \mathbb{R}^d$ be of finite measure.

1. Show that for all $f \in L^{\infty}(\Omega)$,

$$\lim_{p \to +\infty} ||f||_p = ||f||_{\infty}.$$

Hint: we can show that the limsup is inferior to $||f||_{\infty}$ and that for any $\varepsilon > 0$, the limit is inferior to $||f||_{\infty} - \varepsilon$.

2. Let

$$f \in \bigcap_{1 \le p < \infty} L^p(\Omega).$$

It is assumed that there exists C > 0 such that for all $p \in [1, +\infty[, ||f||_p \leq C$. Show that $f \in L^{\infty}(\Omega)$.

3. Find $f \in \bigcap_{1 \le p < \infty} L^p(\Omega)$ such that $f \notin L^{\infty}(\Omega)$.

Exercise 6 Let Ω be an open set of \mathbb{R}^d , $u: \Omega \to \mathbb{R}$ a measurable function. It is assumed that for all $v \in X = L^1(\Omega)$, we have $uv \in L^1(\Omega)$.

- 1. Let $\phi: X \to X$ be defined by $\phi(v) = uv$. Show that the graph of ϕ is closed in $X \times X$.
- 2. Deduce that $u \in L^{\infty}(\Omega)$. (Hint: apply the closed graph theorem, then proceed by the absurd).