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Functional Analysis - Duality and Operator theory

Exercises sheet 1 : Duality - Weak convergence

Exercise 1

Let (H, ⟨·, ·⟩) be a Hilbert space.

1. Let (xn)n∈N be a sequence of elements of H and
let x ∈ H. Show that xn ⇀ x if and only if

∀y ∈ H, ⟨xn, y⟩ −−−−−→
n→+∞

⟨x, y⟩.

2. Let (xn)n∈N be an orthonormal family in H.
Show that xn ⇀ 0.

Exercise 2

Let (H, ⟨·, ·⟩) be a Hilbert space. Let (xn)n∈N be a
sequence of elements of H and let x ∈ H.

Assume that xn ⇀ x and ||xn|| −−−−−→
n→+∞

||x||. Show

that xn → x.

Exercise 3

Let (H, ⟨·|·⟩) be a complex Hilbert space. Denote
by || · || the norm on H associated with the inner
product.

1. Let (xn)n∈N be a normalized sequence in H, i.e.,
for every n ∈ N, ||xn|| = 1. Justify that one can ex-
tract from (xn)n∈N a weakly convergent subsequence
in H.

2. Let (xn)n∈N be a normalized sequence in H that
converges weakly to x ∈ H. Show that:

lim
n→+∞

||xn − x||2 = 1− ||x||2.

3. Let T ∈ L(H) be a bounded operator on H
such that no normalized vector x ∈ H satisfies
||T ||L(H) = ||Tx|| (that is, the norm of T is not
attained).

a. Show that there exists a normalized sequence
(xn)n∈N, weakly convergent, such that:

lim
n→+∞

||Txn|| = ||T ||L(H).

b. Show that this normalized sequence converges
weakly to the zero vector of H.

Exercise 4
Consider the Banach space (C([0, 1]), || ||∞). Let
E = C([0, 1]). Define u ∈ E′ by

∀f ∈ E, u(f) =

∫ 1

0
f(x)dx

and for all n ≥ 1, define un ∈ E′ by

∀f ∈ E, un(f) =
1

n

n∑
k=1

f( kn).

1. Compute ||u||E′ and for all n ≥ 1, ||un||E′ .
2. Show that

∀f ∈ E, un(f) −−−−−→
n→+∞

u(f),

but that, for every n ∈ N, ||un − u||E′ = 2.

Exercise 5
Let E = C([0, 1],R) be the space of continuous real-
valued functions on [0, 1], endowed with the sup
norm: ∀f ∈ E, ||f ||∞ = supx∈[0,1] |f(x)|.

Recall Riesz’s theorem, which states that the topo-
logical dual of E can be identified with the set of
Radon measures µ on [0, 1] (that is, measures on
the Borel σ-algebra of [0, 1] that take finite values
on compact sets). More precisely, we set:

∀f ∈ E, µ(f) =

∫ 1

0
fdµ.

Let (fn)n≥1 be the sequence of functions defined by:

∀x ∈ [0, 1], fn(x) =

{
1− nx if x ∈ [0, 1

n ]
0 if x ∈ [ 1n , 1]

1. Show that for every Radon measure µ on [0, 1],
(µ(fn))n≥1 is a Cauchy sequence.
2. Show that (fn)n≥1 is not weakly convergent in
E.
Hint: one may consider the continuous linear func-
tionals of Dirac type: for every t ∈ [0, 1],

δt :
E → R
f 7→ f(t)

.

We say that E is not weakly sequentially complete.
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Exercise 6 - Geometric Hahn-Banach Theo-
rem
Let E be a real vector space and C ⊂ E a convex
subset with nonempty interior in E. We denote by
Int(C) the interior of C.
The goal of this exercise is to show that:

if x ̸∈ Int(C), there exists a nonzero lin-
ear form ℓ : E → R and a real number
α such that ℓ(x) = α and ℓ(y) < α for
every y ∈ Int(C).

Note that the linear form and the real number α
depend on x.
We then say that the hyperplane ℓ(y) = α separates
the point x and the convex set C.
For every convex set K whose interior contains 0
(think of K as a translate of C), we define the gauge
of the convex set K as the mapping

JK :
E → R+

x 7→ inf{a > 0, |, xa ∈ K}
1. Show that JK is a sublinear functional on E.
2. Show that, for every y ∈ E, y ∈ Int(K) if and
only if JK(y) < 1.
3. Conclude using the Hahn-Banach theorem.

Exercise 7
Let Ω ⊂ Rd be an open set. We will show that the
space L1(Ω) is not reflexive. We assume here that
the topological dual of L1(Ω) is L∞(Ω) in the sense
that:

∀u ∈ (L1(Ω))′, ∃!g ∈ L∞(Ω), ∀f ∈ L1(Ω), u(f) =

∫
Ω

fg.

For simplicity, assume that 0 ∈ Ω. For all n ≥ 1,
define

fn =
1

vol(B(0, 1
n))

1
B(0,

1
n )
.

1. Show that, for all n ≥ 1, ||fn||L1 = 1.

2. Show that if L1(Ω) were reflexive, there would
exist a subsequence (fnk

)k≥0 of (fn) and a function
f ∈ L1(Ω) such that, for every function g ∈ L∞(Ω),

∫
Ω
fnk

g −−−−→
k→+∞

∫
Ω
fg.

3. Show that if g ∈ C0
c (Ω \ {0}), then there exists

an open ball centered at 0 on which g = 0.

4. Deduce that

∀g ∈ C0
c (Ω \ {0}),

∫
Ω
fg = 0.

5. Show that f = 0 almost everywhere on Ω.

6. Deduce a contradiction with Question 2 and con-
clude.

Exercise 8 - A Runge Theorem

Let D be a bounded simply connected open subset
of C. Let K be a simply connected compact subset
included in D and set R = max |ξ|, ξ ∈ K.

1. Let z ∈ D, |z| > R. Show that ξ 7→ (z − ξ)−1

is the uniform limit of polynomial functions in ξ on
K.

2. Deduce that for every z ∈ D \K, ξ 7→ (z − ξ)−1

is the uniform limit of polynomial functions in ξ on
K.

3. Using Cauchy’s integral formula, prove that ev-
ery analytic function f on D, ξ 7→ f(ξ), is the uni-
form limit on every compact subset of D of polyno-
mial functions in ξ.

2


