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Exercise 1

Let H = L?(X,C) and let K € L?*(X x X,C). Let
Tk be the operator defined on H by

Vu e H, Vo € X, Tgu(x) = / K(z,y)u(y)dy.
X

1. Show that Tk is well defined.
2. Show that | Tk || 2y < 1K z2(x xx,0)-
3. Compute the adjoint of Tk.

Exercise 2

Let H be a Hilbert space. Show that if T € L(H)
is self-adjoint, then r(T') = ||T'|| where r(T') is the
spectral radius of T'.

Exercise 3

Let H be a Hilbert space and let U be a unitary
operator on H.

1. Show that H = Ker(U —I) ® Im (U —I).

2. Let P be the orthogonal projector on Ker (U—1).
Let, for every n > 1,

I+U+...+U"

S,
" n+1

Show that, for every v € H, S,u — Pu when n
tends to infinity.

Exercise 4 - Trace of a positive operator

Let H a Hilbert space and (e,)nen a Hilbert basis
of H.

Let T a positive operator on H, i.e. T is bounded,
self-adjoint and for every u € H, (Tu|u) € R,.

We admit the existence of a unique positive operator
S such that S? = T. We denote it by Ts.

We set

tr T = Z(Ten]en) € [0, 4-o0].
n=1

The real number tr T is called the trace of the op-
erator T
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1. Show that the trace is independent of the choice
of the Hilbert basis of H.

2. Show that, for every positives operators T and
S, tr (T'+S) = tr T+tr S and that, for every A > 0,
tr (AT)=AtrT.

3. Show that, if T and S are two positive operators
such that T'— S is also positive, then tr S < tr 7T'.
4. Show that, for every unitary operator U,
tr (UTUY) =tr (UT'TU) =tr T

Exercise 5

Let ¢ € L*(R,C). Show that o(M,) = Im ess ¢
where M, is the multiplication operator by ¢ on
L?(R) and

Im ess ¢ = {\ € C, Ve > 0, Leb(¢ 1) (D(\,¢)) > 0}

is the essential range of . Deduce that if ¢ : [a, b] —
R is a continuous function, then o(M,) = ¢([a,b]).

Exercise 6

Denote by E the space £>°(Z) of the complex-valued
bounded sequences u = (up)nez, endowed with the
norm :

[ulloo = sup [up|.
neL
Let T by defined on F by :
Yue E, VYn€Z, (Tu)y, = Unt1.

1. Compute the norm of 7'

2. Show that every complex number of modulus 1
is an eigenvalue of T

3. Let A € C such that [A\| < 1. Let u € E. We set
(T — XN)u = f. For every p > 1, give the expression
of u, in terms of f,_1,..., fu—p and u,_,. What
happens when p tends to +00 7 Deduce that A does
not belong to the spectrum of T'.

4. Using the previous questions, determine o (7).

Consider the closed subspace F' of E whose elements
are the sequences u such that u,, = 0 for every n > 0.
Then, T'(F') C F and we set T the restriction of T’
on F.

5. Let A € C be such that |A\| <1 and A # 0. Using
the expression of (T'— \)~! computed at question 3,
show that A belongs to o(TF).



6. Using questions 1 and 5, determine (7). Com-
pare to the result obtained at question 4.

Exercise 7

Let E be the Banach space of complex-valued con-
tinuous functions on [0, 1], endowed with || ||sc-
Let Ty be the operator defined on E by :

Vu € E, Yz € [0,1], Tou(z) = zu(z).

Let f € E. We define L by :

1
Yu e E, Lu :/ f(@)u(z)dx.
0

Finally, if g € E we define T by :

Vu € E, Tu= Tyu+ (Lu)g.

1. Let A € [0,1]. Show that if g(A\) = 0, then 7' — A
is not onto. If g(\) # 0, show that the function
h : x +— 4/|xr— | is not in the range of T' — \.
Deduce that [0,1] C o(T).

2. Show that o(7')\ [0, 1] contains only simple eigen-
values. Characterize these eigenvalues as solutions
of an equation F'(A\) = 0 where F' is an holomorphic
function on C\ [0,1]. Give the expression of F' in
terms of f and g. Deduce that C\ [0, 1] is a discrete
set.

3. Assume that for every x € [0,1], f(z) = 1 and
g(x) = «, a being a nonzero real number. Deter-
mine o(T).

Exercise 8

Let A be a bounded self-adjoint operator on an
Hilbert space H.
1. Assume that A > 0 in the sense :

Vo € H,(¢p,Ap) >0
a. Let £ < 0. Show that :
Vo € H, ||(A—2)g|* > 2]

Deduce that A —z : H — H is injective.

b. Show that the range of A is dense in H. Hint :
compute the orthogonal of Im A.

c. Deduce that A — z is onto, hence one-to-one.
Let Ra(z) = (A—z)"! « H—H.

d. Give an upper bound for ||R4(z)||.

e. Show that A > 0= o(A) C [0, +00).

2. Using spectral theorem, show the reciprocal.

Exercice 9

Discrete version of Schnol’s lemma.

Let #2(N) be the Hilbert space of complex-valued
square-summable sequences ¢ = (¢, ),>0. Consider
on ¢(N) the multiplication operator V by a real-
valued sequence v = (v,)p>0 and the Schrodinger
operator H = Hy + V defined by :

ifn>1

(H¢)n:{ —Ppi1 — Pn—1 +UnOp G

—¢1 + Voo

Let G(z) = (H — 2)~! be the resolvant of H at
z € C\ R and let, for m,n € N :

Gmn = (0m|G(2)dn)

where 6,, = (0 k)k>0 With 0y, = 1 if kK = m and
Omp = 0if k # m. Assume that v is a bounded
sequence.

1. Show that H is a bounded self-adjoint operator.
2. Show that :
1
R < — 1
¥z € C\R, G < 1)

3. For A € R, let ¢y(A) = (¢ (A)) be the solution of
Hvy = \p with 19 = 1. Let E()) the spectral family
associated to H. Set dp()\) the spectral measure of
H defined by :

Write Gy, n(z) with an integral of the type

/R F)d(N).
4. Show that :

RN A0
Im G, (1) = v

dp(A) <1 (2)

5. Let ¢ > 0 and:

00 2

= (A2 4 1)(1 4 n2te)?

Show that 8(\) < +oo for p-a.e. A.
Hint : Estimate | 0(N)dp(X\) using (2).

R
6. Conclude: for any ¢ > 0, there exists for p-a.e.
A € R a constant Uy . such that for every n > 0 :

[n(\)] < Cae(1+n)2+e

Hence, any generalized eigenfunction () is poly-
nomially bounded in n for p-a.e. A € R.



