Analyse fonctionnelle - Option "Fondamentale"

Feuille de TD 2 : Opérateurs bornés

Exercice 1

Soit $H = L^2(X, \mathbb{C})$ et soit $K \in L^2(X \times X, \mathbb{C})$. Soit T_K l'opérateur défini sur H par

$$\forall u \in H, \ \forall x \in X, \ T_K u(x) = \int_X K(x, y) u(y) dy.$$

- 1. Montrer que T_K est bien défini.
- **2.** Montrer que $||T_K||_{\mathcal{L}(H)} \leq ||K||_{L^2(X \times X, \mathbb{C})}$.
- **3.** Calculer l'adjoint de T_K .

Exercice 2

Soit H un espace de Hilbert. Montrer que si $T \in \mathcal{L}(H)$ est auto-adjoint, alors r(T) = ||T|| où r(T) est le rayon spectral de T.

Exercice 3

Soit H un espace de Hilbert et soit U un opérateur unitaire sur H.

- **1.** Montrer que $H = \text{Ker}(U I) \oplus \overline{\text{Im}(U I)}$.
- **2.** Soit P le projecteur orthogonal d'image Ker(U-U)
- I). Soit, pour tout $n \geq 1$,

$$S_n = \frac{I + U + \ldots + U^n}{n+1}.$$

Montrer que, pour tout $u \in H$, $S_n u \to Pu$ lorsque n tend vers l'infini.

Exercice 4 - Trace d'un opérateur positif

Soient H un espace de Hilbert et $(e_n)_{n\in\mathbb{N}}$ une base hilbertienne de H.

Soit T un opérateur positif sur H, *i.e.* T est borné, auto-adjoint et pour tout $u \in H$, $(Tu|u) \in \mathbb{R}_+$.

On admettra qu'il existe un unique opérateur positif S tel que $S^2 = T$. On le note $T^{\frac{1}{2}}$.

On pose

$$\operatorname{tr} T = \sum_{n=1}^{\infty} (Te_n | e_n) \in [0, +\infty].$$

Le réel tr T est appelé trace de l'opérateur T.

- 1. Montrer que la trace est indépendante du choix de la base hilbertienne de H.
- **2.** Montrer que, pour tous opérateurs positifs T et S, tr $(T+S)=\operatorname{tr} T+\operatorname{tr} S$ et que, pour tout $\lambda\geq 0$, tr $(\lambda T)=\lambda\operatorname{tr} T$.

- **3.** Montrer que si T et S sont deux opérateurs positifs tels que $0 \le T S$, alors tr $S \le \operatorname{tr} T$.
- **4.** Montrer que, pour tout opérateur unitaire U, tr $(UTU^{-1}) = \text{tr } (U^{-1}TU) = \text{tr } T$.

Exercice 5

Soit $\varphi \in L^{\infty}(\mathbb{R}, \mathbb{C})$. Montrer que $\sigma(M_{\varphi}) = \text{Im ess } \varphi$ où M_{φ} est l'opérateur de multiplication par φ sur $L^{2}(\mathbb{R})$ et

Im ess $\varphi = \{\lambda \in \mathbb{C}, \forall \varepsilon > 0, \operatorname{Leb}(\varphi^{-1})(D(\lambda, \varepsilon)) > 0\}.$

En déduire que si $\varphi : [a,b] \to \mathbb{R}$ est une fonction continue, alors $\sigma(M_{\varphi}) = \varphi([a,b])$.

Exercice 6

Soit E l'espace $\ell^{\infty}(\mathbb{Z})$ des suites bornées $u=(u_n)_{n\in\mathbb{Z}}$ de nombres complexes, muni de la norme:

$$||u||_{\infty} = \sup_{n \in \mathbb{Z}} |u_n|.$$

Soit T l'opérateur sur E défini par :

$$\forall u \in E, \ \forall n \in \mathbb{Z}, \ (Tu)_n = u_{n+1}.$$

- 1. Calculer la norme de T.
- **2.** Montrer que tout nombre complexe de module 1 est valeur propre de T.
- **3.** Soit $\lambda \in \mathbb{C}$ tel que $|\lambda| < 1$. Soit $u \in E$. On note $(T \lambda)u = f$. Pour tout entier $p \ge 1$, exprimer u_n en fonction de f_{n-1}, \ldots, f_{n-p} et de u_{n-p} . Que devient cette expression lorsque p tend vers $+\infty$? En déduire que λ n'appartient pas au spectre de T.
- 4. En utilisant les résultats des questions précédentes, déterminer le spectre de T.

On considère le sous-espace fermé F de E constitué des suites u telles que $u_n=0$ pour tout n>0. Alors, $T(F) \subset F$ et on désigne par T_F l'opérateur induit par T sur F.

- 5. Soit $\lambda \in \mathbb{C}$ tel que $|\lambda| < 1$ et $\lambda \neq 0$. En utilisant l'expression de $(T \lambda)^{-1}$ trouvée à la question 3, montrer que λ appartient au spectre de T_F .
- **6.** En utilisant les résultats des questions 1 et 5, déterminer le spectre de T_F . Comparer avec le résultat obtenu à la question 4.

Exercice 7

On désigne par E l'espace de Banach des fonctions continues sur [0, 1], à valeurs complexes, muni de la norme infinie $|| ||_{\infty}$.

On note T_0 l'opérateur défini sur E par :

$$\forall u \in E, \ \forall x \in [0,1], \ T_0 u(x) = x u(x).$$

Soit $f \in E$. On définit l'opérateur L par :

$$\forall u \in E, \ Lu = \int_0^1 f(x)u(x)dx.$$

Enfin si $g \in E$ on considère l'opérateur T défini par:

$$\forall u \in E, Tu = T_0u + (Lu)g.$$

1. Soit $\lambda \in [0,1]$. Montrez que si $g(\lambda) = 0$, alors $T - \lambda$ n'est pas surjectif. Dans le cas où $g(\lambda) \neq 0$, montrez que la fonction $h: x \mapsto \sqrt{|x-\lambda|}$ n'est pas dans l'image de $T - \lambda$.

En déduire que le spectre $\sigma(T)$ de T contient [0,1].

- Démontrez que $\sigma(T) \setminus [0,1]$ est constitué de valeurs propres dont les sous-espaces propres sont de dimension 1. Caractérisez ces valeurs propres comme l'ensemble des solutions d'une équation $F(\lambda) = 0$ où F est une fonction holomorphe sur $\mathbb{C}\setminus[0,1]$ que l'on exprimera à l'aide de f et de g. En déduire que $\mathbb{C} \setminus [0,1]$ est discret.
- **3.** On suppose que pour tout $x \in [0,1], f(x) = 1$ et $g(x) = \alpha$, α étant un réel non nul. Déterminez $\sigma(T)$.

Exercice 8

Soit A un opérateur auto-adjoint dans un espace de Hilbert \mathcal{H} . On note $\sigma(A)$ son spectre.

1. On suppose $A \ge 0$ au sens où :

$$\forall \phi \in \mathcal{H}, (\phi, A\phi) \geq 0$$

a. Soit x < 0. Etablir que :

$$\forall \phi \in \mathcal{H}, \ ||(A-x)\phi||^2 \ge x^2 ||\phi||^2$$

En déduire que $A - x : \mathcal{H} \to \mathcal{H}$ est injective.

- **b.** Montrer que son image est dense. Pour cela on calculera l'orthogonal de Im A.
- c. En déduire que l'application A-x est surjective donc bijective.

On note $R_A(x) = (A - x)^{-1}$: $\mathcal{H} \to \mathcal{H}$ son application inverse.

- **d.** Majorer $||R_A(x)||$.
- **e.** Etablir l'implication $A > 0 \Rightarrow \sigma(A) \subset [0, +\infty)$.
- Montrer l'implication réciproque à l'aide du théorème spectral.

Exercice 9

Version discrète du lemme de Schnoll.

Soit $\ell^2(\mathbb{N})$ l'espace de Hilbert des suites $\phi = (\phi_n)_{n > 0}$ de nombres complexes de carré sommable. On considère dans $\ell^2(\mathbb{N})$ l'opérateur de multiplication V par une suite réelle $v = (v_n)_{n \ge 0}$ et l'opérateur de Schrödinger $H = H_0 + V$ défini par :

$$(H\phi)_n = \begin{cases} -\phi_{n+1} - \phi_{n-1} + v_n \phi_n & \text{si } n \ge 1\\ -\phi_1 + v_0 \phi_0 & \text{si } n = 0 \end{cases}$$

Soit $G(z) = (H-z)^{-1}$ la résolvante de H en $z \in \mathbb{C} \setminus \mathbb{R}$ et soit, pour $m, n \in \mathbb{N}$:

$$G_{m,n} = (\delta_m | G(z)\delta_n)$$

où $\delta_m = (\delta_{m,k})_{k\geq 0}$ avec $\delta_{m,k} = 1$ si k = m et $\delta_{m,k} = 0$ si $k \neq m$. Dans toute la suite on suppose que la suite v est bornée.

- 1. Montrer que H est auto-adjoint borné.
- 2. Etablir l'estimation suivante de la norme de la résolvante :

$$||G(z)|| \le \frac{1}{|\operatorname{Im} z|} \tag{1}$$

3. Pour $\lambda \in \mathbb{R}$ on note $\psi(\lambda) = (\psi_n(\lambda))$ la solution de $H\psi = \lambda \psi$, $\psi_0 = 1$. On note $E(\lambda)$ la famille spectrale associée à H. On note $d\rho(\lambda)$ la mesure spectrale de H définie par :

$$\forall m, n \in \mathbb{N}, \ (\delta_m | E(\lambda) \delta_n) = \psi_m(\lambda) \psi_n(\lambda) d\rho(\lambda)$$

Exprimer alors $G_{m,n}(z)$ sous la forme d'une intégrale du type $\int_{\mathbb{R}} f(\lambda) d\rho(\lambda)$.

4. Etablir que :

Im
$$G_{n,n}(i) = \int_{\mathbb{R}} \frac{\psi_n^2(\lambda)}{\lambda^2 + 1} d\rho(\lambda) \le 1$$
 (2)

5. Soit $\varepsilon > 0$ et soit :

$$\theta(\lambda) = \sum_{n=0}^{+\infty} \frac{\psi_n^2(\lambda)}{(\lambda^2 + 1)(1 + n^{\frac{1}{2} + \varepsilon})^2}$$

Etablir que : $\theta(\lambda) < +\infty$ pour ρ -presque tout λ .

Indication : Estimer $\int_{\mathbb{R}} \theta(\lambda) d\rho(\lambda)$ grâce à (2). **6.** Conclure : Etant donné $\varepsilon > 0$, il existe pour

 ρ -presque tout $\lambda \in \mathbb{R}$ une constante $C_{\lambda,\varepsilon}$ telle que pour tout $n \geq 0$:

$$|\psi_n(\lambda)| \le C_{\lambda,\varepsilon} (1+n)^{\frac{1}{2}+\varepsilon}$$

Ainsi chaque fonction propre généralisée $\psi(\lambda)$ est polynomialement bornée en n pour ρ -presque tout $\lambda \in \mathbb{R}$.