Analyse fonctionnelle - Option "Fondamentale"

Feuille de TD 3 : Opérateurs compacts

Exercice 1

Soit $K: [a,b] \times [a,b] \to \mathbb{C}$ une fonction continue. On considère l'opérateur $T: C([a,b],\mathbb{C}) \to C([a,b],\mathbb{C})$ défini par : $\forall u \in C([a,b],\mathbb{C})$,

$$\forall x \in [a, b], \ Tu(x) = \int_a^x K(x, y)u(y) dy.$$

- 1. Montrer que T est compact.
- **2.** Montrer que $\sigma(T) = \{0\}$.

Exercice 2

Vérifier que l'opérateur de multiplication T, défini sur $L^2([0,2],\mathbb{C})$ par

$$\forall u \in L^{2}([0,2], \mathbb{C}), \forall x \in [0,2], (T(u))(x) = xu(x),$$

n'est pas compact, mais qu'il est borné et auto-adjoint.

Exercice 3

Soit H un espace de Hilbert. Soient $(\lambda_n)_{n\in\mathbb{N}}$ une suite de nombres complexes non nuls tendant vers 0 et, pour tout $n\in\mathbb{N}$, P_n un projecteur orthogonal de rang fini avec $P_mP_n=0$ si $m\neq n$.

- 1. Montrer que $\sum \lambda_n P_n$ converge pour la norme d'opérateur vers un opérateur $T \in \mathcal{B}_{\infty}(H)$.
- **2.** Si de plus les λ_n sont réels, montrer que T est auto-adjoint.

Exercice 4

Soient $(E, ||\ ||)$ une espace de Banach, $x_0 \in E$ et f une forme linéaire sur E telle que $f(x_0) \neq 0$. Soit $T \in \mathcal{L}(E)$ défini par :

$$\forall x \in E, Tx = f(x)x_0.$$

- 1. Montrer que T est un projecteur si et seulement si $f(x_0) = 1$.
- **2.** Déterminer $\sigma(T)$.
- **3.** Expliciter la résolvante de T.

Exercice 5 - Opérateurs de Hilbert-Schmidt

Soit H un espace de Hilbert. Un opérateur T sur H est dit de Hilbert-Schmidt lorsqu'il existe $M \geq 0$ tel que, pour toute famille orthonormée $(e_n)_{n \in \mathbb{N}}$ de H, on a

$$\forall N \ge 0, \ \sum_{n=0}^{N} ||Te_n||^2 \le M.$$

On note $||T||_{HS}$ le plus petit M vérifiant cette inégalité. Soit $\mathcal{B}_2(H)$ l'ensemble des opérateurs de Hilbert-Schmidt.

- 1. Montrer que $T \in \mathcal{B}_2(H)$ si et seulement si $\operatorname{tr}(T^*T) < \infty$.
- **2.** Soient $T \in \mathcal{B}_2(H)$, $\varepsilon > 0$ et $\{e_0, \ldots, e_N\}$ une famille orthonormée de H tel que

$$\sum_{n=0}^{N} ||Te_n||^2 \ge ||T||_{HS} - \varepsilon^2.$$

Si P_N désigne le projecteur orthogonal sur $V = \text{Vect}(e_0, \dots, e_N)$, montrer que $||T - TP_N||_{\mathcal{L}(H)} \leq \varepsilon$.

- **3.** En déduire que T est compact.
- 4. Si $H=L^2(X,\mathbb{C})$, soit $K\in L^2(X\times X,\mathbb{C})$. Montrer que l'opérateur T_K défini sur H par

$$\forall u \in H, \ \forall x \in X, \ T_K u(x) = \int_X K(x, y) u(y) dy$$

est de Hilbert-Schmidt.

Remarque: On peut montrer que réciproquement, si $T: H \to H$ est dans $\mathcal{B}_2(H)$, il existe $K \in L^2(X \times X, \mathbb{C})$ tel que $T = T_K$.

Exercice 6 - Théorème de Mercer

Soit K une fonction continue sur $[0,1] \times [0,1]$ à valeurs complexes. On désigne par T_K l'élément de $\mathcal{L}(L^2([0,1],dx))$ défini par : $\forall f \in L^2([0,1])$,

$$\forall x \in [0,1], \ T_K f(x) = \int_0^1 K(x,y) f(y) dy$$

On suppose que l'opérateur T_K est autoadjoint et positif i.e $(T_K f|f) \ge 0$ pour tout $f \in L^2([0,1])$.

1. Montrer que pour tout intervalle I contenu dans [0,1], on a

$$\int_{I} \int_{I} K(x,y) dx dy \in \mathbb{R}_{+}.$$

En déduire que, pour tout $x \in [0,1]$, $K(x,x) \in \mathbb{R}_+$. **2.** Soit (λ_n) la suite des valeurs propres non nulles de T_K répétées selon leur multiplicité et soit (φ_n) une base hilbertienne de l'orthogonal de $\ker(T_K)$ vérifiant pour tout n:

$$T_K \varphi_n = \lambda_n \varphi_n$$

On a donc pour tout $f \in L^2([0,1])$ l'identité

$$T_K f = \sum_n \lambda_n(f|\varphi_n)\varphi_n$$

la convergence de la série ayant lieu dans $L^2([0,1])$.

- a. Vérifier que chaque φ_n est continue.
- **b.** En appliquant la question 1 à un noyau K_N convenable, montrer que pour tout N et tout $x \in [0, 1]$,

$$K(x,x) \ge \sum_{n \le N} \lambda_n |\varphi_n(x)|^2$$

- **3. a.** Montrer que la série de terme général λ_n converge.
- **b.** Montrer que la série de terme général $\lambda_n(f|\varphi_n)\varphi_n$ converge uniformément pour $x \in [0,1]$. Quelle est sa somme?
- **c.** Montrer que pour tout $x \in [0,1]$, la série de terme général $\lambda_n \varphi_n(x) \overline{\varphi_n(y)}$ converge uniformément en $y \in [0,1]$. Quelle est sa somme ?
- **d.** Exprimer la somme des λ_n en fonction de K.

Exercice 7

On considère l'espace de Hilbert $H=L^2([0,1],\mathbb{C})$ muni du produit scalaire

$$\forall f, g \in H, \ (f|g) = \int_0^1 f(x)\overline{g(x)} dx$$

et de la norme associée notée $||\cdot||_2$. On désigne par T l'opérateur de H dans H défini par :

$$\forall f \in H, \ \forall x \in [0, 1], \ (Tf)(x) = \int_0^1 K(x, t) f(t) dt$$

où le noyau K est défini par :

$$K(x,t) = \begin{cases} x(1-t) & \text{si} \quad 0 \le x \le t \le 1\\ t(1-x) & \text{si} \quad 0 \le t \le x \le 1 \end{cases}$$

- 1. Démontrer que T est un opérateur borné.
- **2.** Démontrer que T est auto-adjoint.
- **3.** Montrer que l'image de T, Im(T), est incluse dans l'ensemble des fonctions continues sur [0,1].
- 4. Démontrer que T est un opérateur compact.
- **5.** Soit $\lambda \in \mathbb{C} \setminus \{0\}$ un complexe non nul. Montrer que l'équation en $f \in H$, $Tf = \lambda f$ est équivalente à

$$\begin{cases} f'' + \frac{1}{\lambda}f = 0\\ f(0) = f(1) = 0. \end{cases}$$

6. Montrer que l'ensemble des valeurs propres non nulles de T est :

$$\{(n\pi)^{-2} ; n \in \mathbb{N}^*\}.$$

- 7. En déduire le spectre de T.
- **8.a.** Montrer que la norme de T est égale à son rayon spectral.
- **b.** En déduire la norme de T.

Rappel : un opérateur A sur un espace de Hilbert $(H, (\cdot | \cdot))$ est dit positif lorsqu'il est auto-adjoint et

$$\forall u \in H, \ (Au|u) \ge 0.$$

- **9.a.** Soit P un projecteur orthogonal dans H. Montrer que P est positif.
- **b.** Montrer que T est un opérateur positif.
- 10. En utilisant le théorème de Mercer, montrer que

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$