2025 -2026 Option Operation Theory

Exercises sheet 3 - Corrections

Exencise 1:

Lot B be the unit ball of C(Ga/bJ,G). We wont to apply Accol's theorem

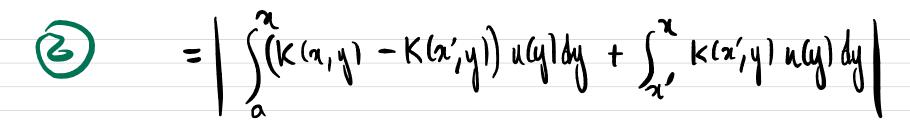
- Since Tis bounded lits norm is bounded by (11 K110,), one has: 42 E [a, b], + u 6B, | Tuch) | {(2-a) | | K | | | | | | | (b-a) | | K | | | |

Sina llules & 1 sma a & B. Homa, for every x & [a,b], the family { Tu(n)} is bounded

• Let
$$\pi, \pi' \in [a,b]$$
 and $u \in B$. One has:

$$|Tu(x) - Tu(x')| = \begin{cases} x (\pi,y)u(y)dy - \int_{a}^{x} K(\pi,y)u(y)dy \\ \frac{\pi}{a} \end{cases}$$

=
$$\int (K(a,y) - K(a',y))u(y)dy + \int K(a',y)u(y)dy - \int K(a',y)u(y)dy$$



Sina K is continuous on the compoct set $[a,b]^2$, it is uniformly continuous on it. Let E > 0. There exists f > 0 such that f = [a,b], f = [a,b], f = [a,b] sup f = [a,b]. If we marked assume that f = [a,b] such that f = [a,b]

+u6B, |Tu(a)-Tu(a')| { & (b-a) + & || k||_0 Honce, TuJuEB is equicantimours.

· Applying Asoll's theorem, TCB) is relatively compact: Tis a compact operation.

Since T is a compact operation and C([a,b], ()) is of infinite dimension, by Schoulen's theorem, OEOCT) and or of 150 150 150 composed of isolated eigenvalue. en appeinted eigenfunction: Tu=lu Then: $4z \in [a,b]$, $u(a) = 1 + Tu(a) = 1 + \int_{a}^{a} k(x,y)u(y)dy$ Homa: +26 [a,b], | u(n) | < 1 () | K(n,y) | lu(y) | by < 0 + | | Kllo () lu(y) | by By Gronwall's lamma: $\frac{\|K\|_{\infty}}{H} (t-a)$ $+ x \in \Gamma a_1 b_1, |u(a)| \leq 0 e = 0$ and u=0 in $C(\Gamma a_1 b_1, C)$, hence a contradiction. Therefore, $\sigma(T) \mid \{0\} = \emptyset$ and $\sigma(T) = \{0\}$.

Exercise 2:

- . T is the multiplication operation by the real-valued and bounded function $Q: 0,21 \rightarrow 12$ honce it is self-adjoint and bounded with: $||T||_{\mathcal{L}(2^2(50,21))} = ||Q||_{\mathcal{L}} = 2$.
 - · Assume that Tis compact. Then, by the Enedbulan alternative, either (I-T) = exists and is bounded on Tu=u admits a mon-zero solution u.

Hence: $4 \times 6 [0,2][5]$, u[n]=0 and since Leb(5]3)=0, u=0 in $L^{2}[0,2]$.

Home Tx=u does not assmit any mon-zono solution in 12150,23) and (I-T) exists and is bounded. But: Yu, we 12(10,2)), (I-T) w= u = v= (I-T)u => +x6T0,23, x1x1= uh1-xuh1 =(1-x)uh1 1.e. tre [92] \ \ 13, \ \ \(\pi\) = \frac{1}{1-2} \ \(\pi\) and (I-T) or (1) = 1 ~ (1) But (I-T) defined this way is not bounded. Indeed, In ~= = 10,2], ||v||2 = 1 but || = 1 (th = +0) Herefore it is not compact.

Exencise 3.

1. Let m, n 6 m, m < m.

By Pythongone: + n & H, || \(\sum_{j=m}^{m} | \frac{1}{j} | \frac{1}{j} | \sum_{j=m}^{m} | \frac{1}{j} | \frac{1}

2. Assume that moreover the more real numbers. The Information are therefore self-adjoint operators and T is self-adjoint as a strong limit of self-adjoint apprehens: indeed, sma 1618 for every n con, $(I_n P_m)^* = I_m P_m^* = I_m P_m$ and: 11 (An Pm) x - Tx | x(H) = | (Am Pm - T) 0 | = | An Pm - T | 1 mm 0 Home: (In In) To and (Infin) - In Proton

By uniqueness of the limit: T=T*.

Exencise 4 1. Since fino \$10, Tropo and T#O. Moreover:

 $\forall x \in E, T = f(T_x) = f(f(x) = f(f(x)) = f(x) = f$

Hence: $T^2 = Tx = \int (T_0) = 1$ Clean. I we evaluate of $x = x_0$ and use that $T_0 \neq Q_E$,

2. T is Pineon and of finite rank 1 honce it is a compact operation.

By Schauden's theorem: -(CT)=503.U from-zero oigenvalue)

Let 1 a non-zero eigenvalue of T. Then:

To = loco fhino=ln => x \in Vect(no)=Im T Homo, if l is a non-zero eigenvalue of T, its associated eigenspace is measuraly vect (76).

But: $T_{75} = f(r_0) \approx 0$ and the unique possible eigenvalue is $f(r_0)$. because Vect $(r_0) = Ker(T - f(r_0))$. Idence $\sigma(T) = \{0, f(r_0)\}$ if E is of infinite dimension.

3. let 1 € 80,8(20)3. We want to solve in x foron, y EE.

Then $=y \in f(x) - \ln = y$ (*) We apply of to this equality to get: f(x) = f(y)Home: f(u) = f(y) and f(u) = z - 1 = y by (%).

This loot expression is equivalent to: z = 1 (141 z = y) Finally: x= (T-1)-1y with $(T-1)^{-1} = -1^{-1}II + (1/(6)-1)^{-1}T$

9

Exorcise 5

1. Let (enlarm on orthonormal family (which is completed in a Wilhertboois of necossary). Then - tractiv, ITem 12 = (Tem 1 Tem) = (Tem en en). If TEB(H), there exists MSO,

ENSO, ENTENIZ < M Idence: tuzo, ElTrenlen) [M Since for every men, (ToTemlen) 20, the sequence (ZIToTemlen) is increasing and bounded by M honce it converges.

Then: $T_n(T^*T) = \sum_{m=0}^{+\infty} (T^*Te_m|e_m) \leq M \leq +\infty$

(=) If Tr(TXT) <+= then by positivity:

+N>0, \(\frac{7}{2} \tau Te_n | e_n \) < Tr(TXT) := M

(=) +N>0, \(\frac{7}{2} \) |Te_n ||^2 < Tr(TXT)

2. Soignt TE B_(H), \(\text{Soignt} \) \(\text{Soignt} \) and

2. Soiont TEB_(H), ESO and Seo, ..., en 3 an orthonormal family such that:

TITO 112 > 11T12 - 52

Σ 11 Tem 12 - ε?

Let V=Vect leo, -, en). Then H=V+V since Vis finite almenoional hence closed.

Let u = H, ||u|| H= 1.]! (u, uv1) = VXV1, u=u, +uv1

12

and noing Pythagor, || || || = | || || || + || || || = 1 In porticular, lluxly < 1 and lluxly < 1. One has: 0: (T-TPN)u=(T-TPN)uV+(T-TPN)uVI = T(I-P_N)u_V + T(I-P_N)u_V1

But I-P_N is the outhogonal projection on V¹ and smar InP_N=V (I-PN) uy = 0 and (I-PN) uy1 = uy+ Therefore: ntr-TPN) ull H = 11 Tuy11/A Moreover, leo, ..., ev, unit is an orthonormal family hence by definition of 11 11/16:

13)

In ponticular? IIIII's - E = 1 ITAyzH2 ! IIIII

=> 11 Tuy 112 < 82 11 uy 112 < 82

3. We deduce that T is the limit of the finite rank operators TPN, hence it is a composit operator.

4. Let $|e_m|_{m \in \mathbb{N}}$ an exthonormal family of $L^2(x)$ and let $N \geqslant 1$.

Then: $\sum_{m=0}^{\infty} ||T_k e_m||^2 = \sum_{m=0}^{\infty} ||x|| \int_X |k(n,y)| e_m(y) dy|^2 dx$

 $= \sum_{m=0}^{N} |(K(x,\cdot)|e_m)|^2 dx$ $= \sum_{m=0}^{N} |(K(x,\cdot)|e_m)|^2 dx$ $= \sum_{m=0}^{N} |(K(x,\cdot)|e_m)|^2 dx$

But, using Bassel inequality. $\sum_{n=0}^{\infty} |(e_n | \overline{k(a,\cdot)})|^2 \le \sum_{n=0}^{\infty} |(e_n | \overline{k(a,\cdot)})|^2 \le ||k(a,\cdot)||_{L^2(x)}^2$

Hence: $\sum_{n=0}^{N} \|T_{k} e_{n}\|^{2} \le \int_{X} \|k(n, 0)\|_{L^{2}(X)}^{2} dx = \|k\|_{L^{2}(X \times X)}^{2}$ En ponticulier, $T_{k} \in \mathcal{B}_{2}(H)$.

Exercise 6:

1. Let 1_{Σ} be the characteristic function of the interval Σ . Then $1_{\Sigma} \in L^2(CO, 1)$ and applying the definition of the positivity of Tk: $0 \le (T_{k})_{L} | 1_{k}) = \int_{0}^{1} T_{k} y_{L}(x) \overline{y_{L}(x)} dx = \int_{1}^{1} (T_{k})_{L} | m | dm$ = \(\left(\left\) \(\kappa_{,y} \right) \(\kappa_{,y} \right) \(\left\) \(\kappa_{,y} \right) \(\kappa_{,y} \right) \(\kappa_{,y} \right) \\ \(\kappa_{,y} \right) \(\ $= \int_{T} \int_{T} k(x,y) dx dy$

In ponticular for xEJO,1[and n>1 such that In=[x-1,x] CEO,1]

16) 4n>1, $\int_{m} k(u,v) du dv \in \mathbb{R}_{+}$ By Co of K one also hos: tre 6[0,1], Kan ER. 2. a. Each Gr Sotisfios: tx E[0,1], [km,y]Gn/y)by = An (fn/1)

To prove continuity of Gr it suffices to show that

2. a. Each Gr Sotisfios: tx E[0,1], [km,y]Gn/y)by = An (fn/1)

To prove continuity of Gr it suffices to show that

2. a. Each Gr Sotisfios: tx E[0,1], [km,y]Gn/y)by = An (fn/1)

To prove continuity of Gr it suffices to show that

2. a. Each Gr Sotisfios: tx E[0,1], [km,y]Gn/y)by = An (fn/1)

One has, for m, x' & [3,1], Skin, y) $Q_n(y)dy = \int |k(x,y)| Q_n(y)dy | \leq \int |k(x,y)| |k(x,y)| |Q_n(y)dy |$ Couchy-Schworz $\rightarrow \leq \left(\int |k(x,y)| - k(x,y)|^2 dy\right)^{\frac{1}{2}} = \|Q_n\|_{L^2}$ But, using uniform C^0 of k on $E_0,11^2$, for every E>0 there exists E>0 such that for |x-x'| < E, sup $|k(x,y)| - k(x,y)| \leq E$ Honce, for 12-2/125,

Hence 2 - Sky) Gay) by is milionly continuous hence continuous and so is on since In #0-Let N>1. We set for every 71, y & [0,1], Ky(n,y) = K(n,y) - Z In (nG) (nG) Let up prove that Tien's a positive operation. Lat (& L'(6,1))

 $\begin{aligned}
& (T_{KN} \{1\}) = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dy \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dx \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dx \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dx \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dx \right) f(x) dx \\
& = \int_{0}^{\infty} \left(\int_{0}^{\infty} K_{N}(x, y) f(y) dx \right$

=
$$(T_{k}||f|) - \sum_{n=0}^{N} A_{n}(f||q_{n}) \int_{0}^{1} q_{n}(h) f(h) f(h) f(h)$$

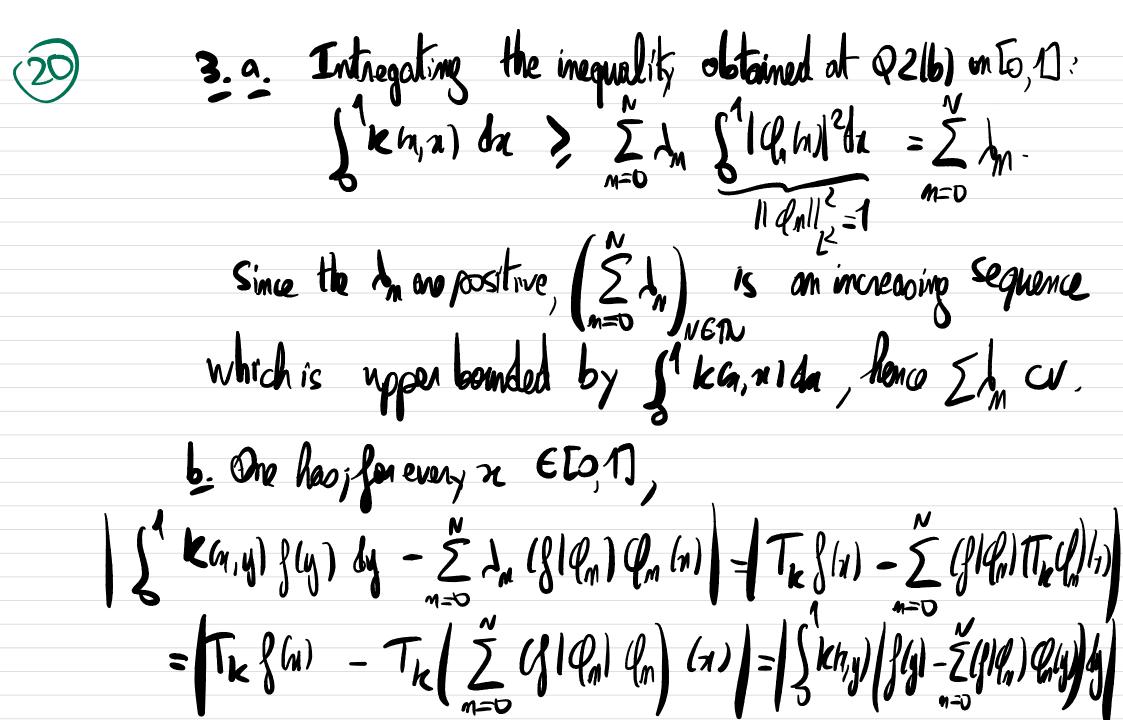
= $(T_{k}||f|) - \sum_{n=0}^{N} A_{n}(f||q_{n}) (q_{n}||f|)$

$$= \sum_{n=0}^{\infty} \frac{1}{2} \left[\frac{1}{2$$

Idence TKN is positive. Using question 1, for every n & Eg1]

KN (M, n) 20

i.e. treto1], Ka, 1) > 2 / 19/10)|2



Country-schwarz $\leq \| \kappa(1,\cdot) \|_{L^{2}(\Omega,\Omega)} \| \| - \sum_{m=0}^{\infty} (\beta | Q_{m}) | Q_{m}(\cdot) \|_{L^{2}(\Omega,\Omega)}$ $\leq \| \kappa \|_{\infty} \| \| - \sum_{m=0}^{\infty} (\beta | Q_{m}) | Q_{m}(\cdot) \|_{L^{2}(\Omega,\Omega)}$ $= \sum_{m=0}^{\infty} (\beta | Q_{m}) | Q_{m}(\cdot) | Q_{m}(\cdot) \|_{L^{2}(\Omega,\Omega)}$ $= \sum_{m=0}^{\infty} (\beta | Q_{m}) | Q_{m}(\cdot) | Q_{m}($ Hence the uniform convergence of In (19/1/2 to Tkg. c. Let p<q be two integers. One has for every 7, y ∈ 50,1),

2 In (n h) (n h) (s 1) (2 In (q h)) 5 (= p - 19/2 (= p - 19/2) 1/2 But (\frac{\frac{1}{2} \langle \langle

for any y, \(\sum \langle \text{Inlany}\rangle^2 \cv \litis \(\text{it is } \(\text{and} \left\left\left\left\left\left\rangle_{\text{y}} \right) \). Home: 4820, 31/2 ETV, 492021/2, 5/1/2/1/2/2 uniformly in y. Using the uniform Cauchy criterion, it implies that
the serie Im (In/n) (In/y) or mijorally in y or Eq. 1) for any lixed se E 50,1]. It remains to compute the limit. We apply 3.6. with fp= 1 [y-1,y+1] for y ε 30,1[, fp=15,1] y=0 and $10^{2} 1_{[1-\frac{1}{p},1]} 1_{y=1}$

Then, (fp|qn)= Sight) qn(+) the poisson qn(4) bene: ta, y & TO, D, Z & (1p19m) 9. h) -> S & 9. h) 9. h) But $\sum_{n} l_{n} (f_{p} l_{n}) cl_{n} l_{n} = \int_{0}^{\infty} k a_{n} t f_{p}(t) dt \xrightarrow{p \to t \infty} k a_{n} t$ Hence: $\sum_{m \geq 0} A_m \overline{q_n(y)} (q_n(m) = k(n,y).$ d. Since it cu uniformly in y, one can let y touch to x in the previous equality: $K(a,x) = \sum_{n=0}^{\infty} |q_n(x)|^2$

(24)

Then: $\int k(n,x) dn = \int \int k(n,x) dn \int k(n,x) dn = \sum \int k(n,x) dn \int$

Exencia 7:

1. Let
$$f \in H$$
. We have:

 $||Tf||_{2}^{2} = \int_{0}^{1} |Tf|_{0}|^{2} dx = \int_{0}^{1} |\int_{0}^{1} |K_{n}|^{2} |f| dt|^{2} dx$
 $CS \in \int_{0}^{1} (\int_{0}^{1} |K_{n}|^{2} |f|^{2} df) dx = \int_{0}^{1} |f|_{0}^{2} |f|_{0}^{2} df dx$
 $= ||K||_{L^{2}(E_{0}, D \times E_{0}^{2} I)}^{2} ||f|_{0}^{2} ||f|_{0}^{2} df dx$

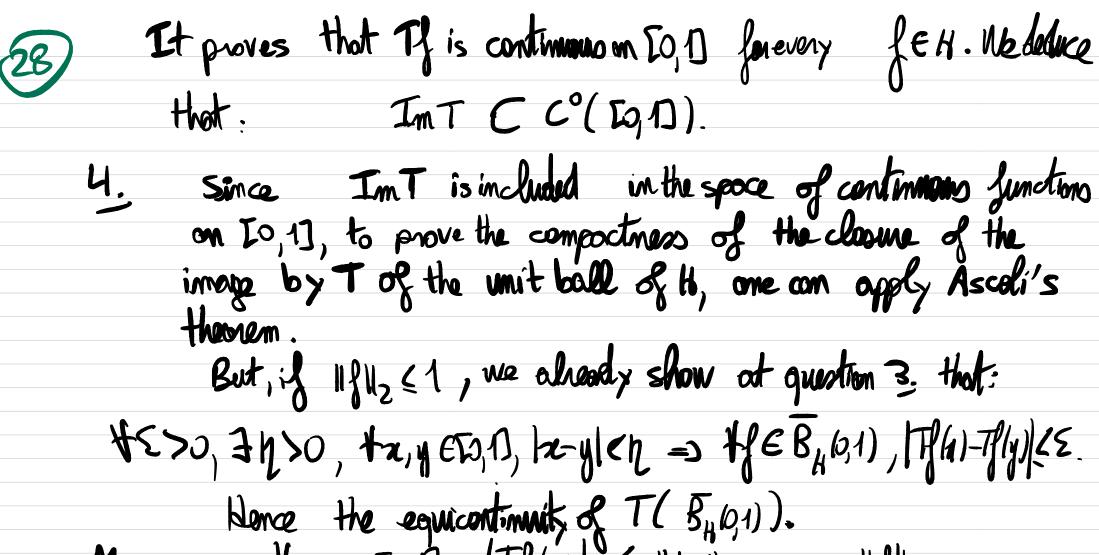
Agence T is bounded and: $||T||_{X(H)} \in ||K||_{L^{2}(E_{0}, D \times E_{0}^{2} I)}^{2} \cdot ||f|_{0}^{2} = \int_{0}^{1} ||f|_{0}^{2} ||f|_{0}^{2} df dx$
 $= \int_{0}^{1} \int_{0}^{1} |K_{n}(f)|^{2} |f| df ||f|_{0}^{2} df dx = \int_{0}^{1} |f|_{0}^{2} \int_{0}^{1} |f|_{0}^{2} df dx df$

= $\int_{-\infty}^{\infty} |f(t)| \int_{-\infty}^{\infty} |f(t)| \int_{-\infty}^{$ ookis mal what let Eso, Sma K 190° on [0,1] × [0,1] (it is easy check, the only thing to look at is the con the diagonal $s(n,t) \mid x=t \mid s$) which is compost, k is uniformly continuous on [0,1]x[0,1]. Let E)0. There exists 1/30 such that
for every 2,4650,17 such that 1x-41<1/2, $\sup |K(a,t) - K(y,t)| \leq \epsilon$.

H

Then we have: +7,yED,1), ha-ylch, +fEH, |Tg(n) -Tg(y)| = | \ \ k(n,+)g(+) dt - \ \ k(y,+)g(+)dt $= \left| \left\{ (k(a,t) - k(y,t)) \right\} (t) dt \right|$

Therefore: +7,46 ED,17, ln-y/21 => +86H, 1Tf(n)-Tf(y) (28/19/12-



Hence the equicontinuity of $T(B_{H}(0,1))$.

Moreover: $Y \approx \varepsilon [0,1]$, $|Tf(h)| \leq ||K||_{L^{2}(\Omega)} ||f||_{2}$, $||f||_{2}$ $||f||_{2} \leq ||K||_{L^{2}(\Omega)} ||f||_{2}$ Therefore, for ever, $x \in [0,1)$, $|Tf(h)|_{2}$ is bounded.

One compost. Hence Tis a compact operator.

5. Let $\lambda \in C(s_0)$, let $\{th, T\} = \lambda f$. Then: $\lambda \in [0, 0], \{f_n\} = \frac{1}{\lambda} \{f_n\} = \frac{1}{\lambda} \{f_n\} \{$

But, If is C' on E0,1) hence f = 1 It is also continuous. We doduce that $x_{1} = (1-x) \int_{-x}^{x} f(t) dt + x \int_{-x}^{x} (1-t) f(t) dt$ is C' on E0,1) and therefore f is also C' on E0,1). By derivation one gets:

HXCED,D, $f'(x) = 1 \int_{-x}^{x} f(t) dt + (1-x) x f(x) + \int_{-x}^{x} f(t) dt$ -x(1-x) f(x)

$$= \frac{1}{\lambda} \left[-\int_{x}^{2} t \int_{x}^{2} (t - t) \int_$$

Moreover, (1) implies that: f(0) = f(1) = 0.

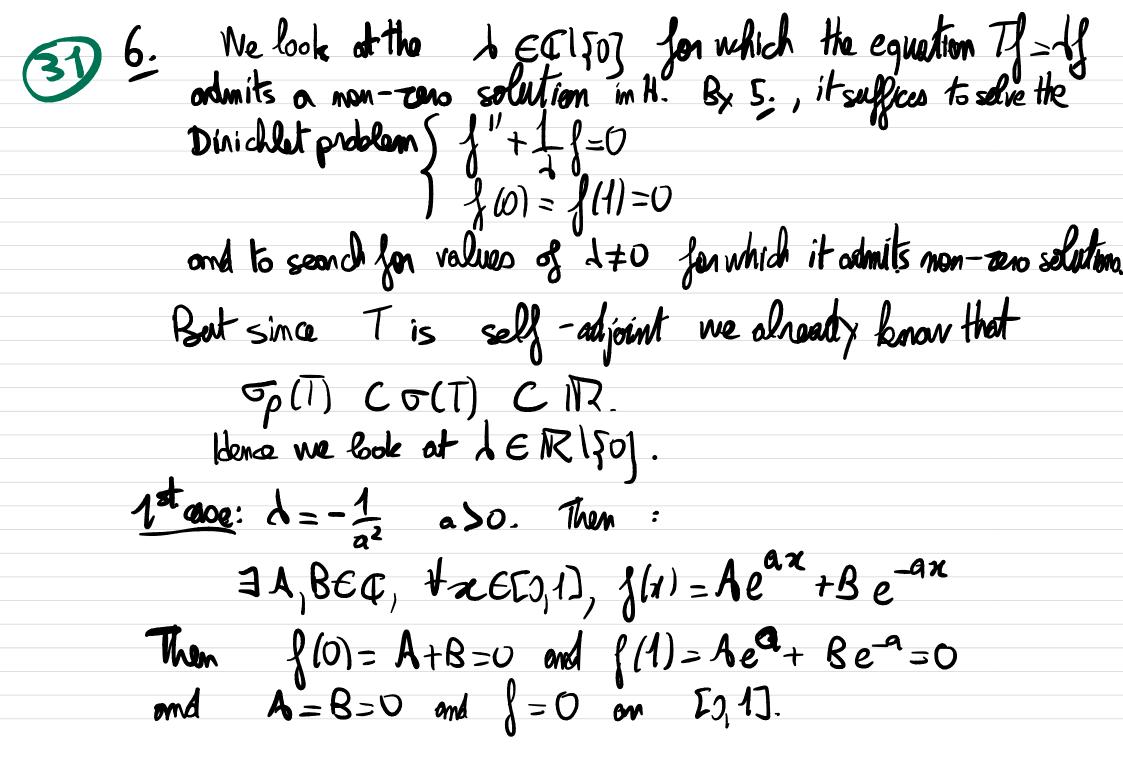
Shree fis Condeven C1 on [0,1], we get by (2) that fiselso C1 on [0,1] and a second derivation leads to:

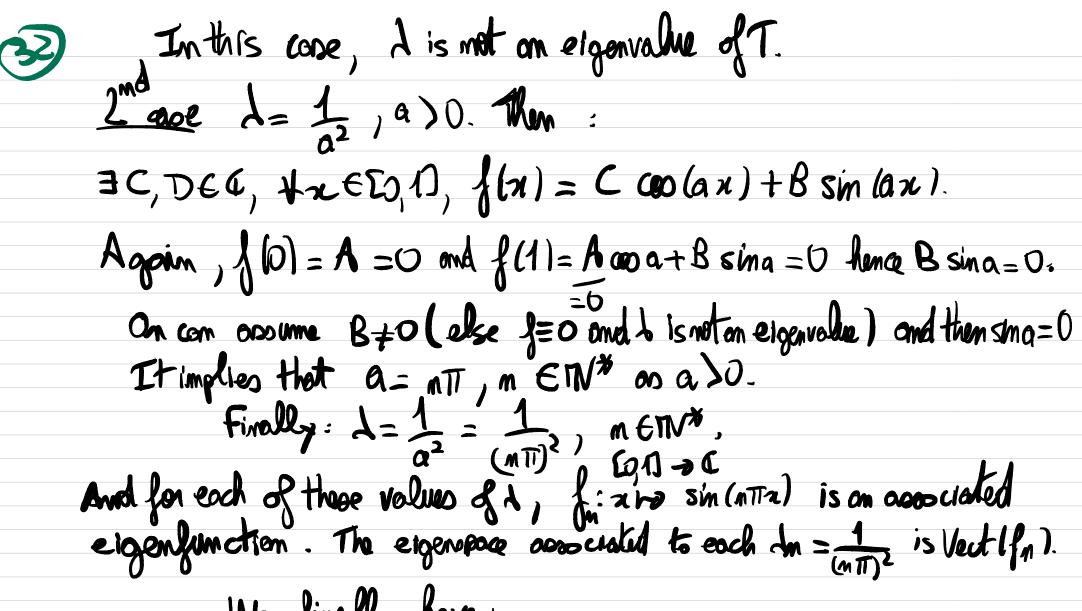
$$4x \in [0,1]$$
, $\int_{-1}^{1} [x] = \frac{1}{4} [-x](x) - (1-x) f(x)$

$$= \frac{1}{4} \left[-2 f(n) - f(n) + 2 f(n) \right] = -\frac{1}{4} f(n).$$

Anally:

$$\begin{cases} f'' + \frac{1}{4} f = 0. \\ f(0) = f(1) = 0. \end{cases}$$





We finally have: $\nabla p(T) = \begin{cases} \frac{1}{(nT)^2}, nETV^* \end{cases}$

7. Since I is a compact operator on Huhichis of infinite dimension, Riesz-Schauder's theorem occents that:

$$T(T) = \{0\} \cup \{1, m \in \mathbb{N}^n\}.$$

8. (a) Sma Tis self-adjoint and bounded:

$$||T^2|| = ||TT^*|| = ||T||^2$$
.

By idensiting: tn > 1, 117^{2n} = 11711^{2n} = 3tn > 1, $11711_{2(1)} = 117^{2n}$ | $11711_{2(1)} = 117^{2$

$$\Lambda(T) = \lim_{\rho \to +\infty} ||T^{\rho}||_{\rho} = \lim_{\delta \to +\infty}$$

34)

(b) But, by definition of the spectral randino

$$\Lambda(T) = \sup_{\lambda \in O(T)} |\lambda| = \sup_{M \to \infty} \frac{1}{mT} = \frac{1}{T^2}$$

$$\frac{1}{4} = \sup_{M \to \infty} |\lambda| = \sup_{M \to \infty} \frac{1}{mT} = \frac{1}{T^2}$$

Hence: $||T||_{\mathcal{X}(H)} = \frac{1}{\pi^2}$

9. We have $P=P^*$ and $P^2=P$. Hence:

$$\begin{aligned}
+ \int \{H, (Pf | f) = (P^2f | f) = (PPf | f) = (Pf | P^2f) \\
&= (Pf | Pf) = (Pf | f)^2 \ge 0
\end{aligned}$$

and P is positive.

10. We apply to T the spectral theorem for self-adjoint compact speratures.

11. By 6., we have: $\sum_{n=1}^{\infty} d_n = \sum_{n=1}^{\infty} d_n = \sum_{n=1}^{\infty} d_n$ Using Mencer's theorem: $\sum_{n=1}^{\infty} d_n = \sum_{n=1}^{\infty} k(\eta, n) dne.$

36) Hence: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \prod^2 \int_{0}^{1} k(x_1 x_1) dx = \prod^2 \int_{0}^{1} x_2(1-x_1) dx$ $= \prod^2 \left[x_2^2 - x_3^3 \right]_{0}^{1} = \prod^2 \left(\frac{1}{2} - \frac{1}{3} \right) = \prod^2 \int_{0}^{1} x_2(1-x_1) dx$ We find the well-known result!