Feuille de TD 2: Distributions - Exemples, ordre et support.

Exercice 1

Soit $\varphi \in C_0^\infty(\mathbb{R})$. Montrer que les expressions suivantes définissent des distributions dont on déterminera l'ordre et le support :

$$\int_{\mathbb{R}} \varphi(x^2) \, dx, \quad \int_{\mathbb{R}} \varphi'(x) e^{x^2} \, dx.$$

Exercice 2

1. Soit $\varphi \in C_0^{\infty}(\mathbb{R})$. Montrer que l'expression suivante définit une distribution T d'ordre au plus 1:

$$\int_0^{+\infty} \varphi'(x) \log(x) \, \mathrm{d}x.$$

- **2.** Soit φ_n une fonction plateau valant 1 sur $\left[\frac{1}{n}, 1\right]$ et dont le support est inclus dans $\left[\frac{1}{2n}, 2\right]$.
- **a.** Minorer $| < T, \varphi_n > |$.
- **b.** En déduire que T est une distribution d'ordre exactement 1.
- **3.** Déterminer le support de T.

Exercice 3 - Valeur principale de $\frac{1}{x}$

Soit $\varphi \in C_0^{\infty}(\mathbb{R})$.

- **1.** Montrer qu'il existe $\psi \in C^{\infty}(\mathbb{R})$ telle que, pour tout $x \in \mathbb{R}$, $\varphi(x) = \varphi(0) + x\psi(x)$.
- 2. Montrer que la limite

$$\lim_{\varepsilon \to 0^+} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, \mathrm{d}x$$

existe.

- **3.** Montrer que cette expression définit une distribution d'ordre au plus 1, appelée valeur principale de $\frac{1}{x}$ et notée $\operatorname{vp}(\frac{1}{x})$.
- 4. En considérant φ_n comme à l'exercice 1, montrer que $\operatorname{vp}(\frac{1}{x})$ est d'ordre exactement 1.

Exercice 4

Soit $\varphi \in C_0^{\infty}(\mathbb{R})$.

- 1. Montrer qu'il existe $\psi \in C^{\infty}(\mathbb{R})$ telle que, pour tout $x \in \mathbb{R}, \ \varphi(x) = \varphi(0) + x\psi(x)$.
- 2. Montrer que les limites

$$\lim_{\varepsilon \to 0^+} \operatorname{Re} \left(\int_{\mathbb{R}} \frac{\varphi(x)}{x - \mathrm{i}\varepsilon} \, \mathrm{d}x \right) \text{ et } \lim_{\varepsilon \to 0^+} \operatorname{Im} \left(\int_{\mathbb{R}} \frac{\varphi(x)}{x - \mathrm{i}\varepsilon} \, \mathrm{d}x \right)$$

existent.

3. En déduire que l'expression

$$< T, \varphi > = \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} \frac{\varphi(x)}{x - \mathrm{i}\varepsilon} \, \mathrm{d}x$$

définit une distribution T dont on identifiera la partie réelle et la partie imaginaire. Donner l'ordre de T.

Exercice 5

Soit $\varphi \in C_0^{\infty}(\mathbb{R}^2)$.

1. Montrer que l'expression suivante définit une distribution T d'ordre au plus 1:

$$\langle T, \varphi \rangle = \int_0^\infty \left(\varphi(1/t^2, \sin t) - \varphi(0, \sin t) \right) dt.$$

2. Calculer le support de T.

Exercice 6

Soit $I \subset \mathbb{R}$ un intervalle ouvert et soit $x_0 \in I$. Montrer qu'il n'existe pas de fonction $f \in L^1_{loc}(I)$ telle que $T_f = \delta_{x_0}$.

Exercice 7 - Distribution d'ordre infini

Soit $\varphi \in C_0^{\infty}(\mathbb{R})$. Montrer que l'expression

$$\langle T, \varphi \rangle = \sum_{p=0}^{\infty} \varphi^{(p)}(p)$$

définit une distribution sur \mathbb{R} , d'ordre infini.

Exercice 8 - Partie finie de x^{α}

Soient $\varphi \in C_0^{\infty}(\mathbb{R})$ et $\varepsilon > 0$.

1. Pour $\alpha \in]-2,-1[$, montrer que :

$$\int_{\varepsilon}^{\infty} x^{\alpha} \varphi(x) \, \mathrm{d}x = A_{\varphi} \varepsilon^{\alpha + 1} + R_{\varepsilon}$$

où $A_{\varphi} \in \mathbb{R}$ ne dépend pas de ε et où R_{ε} tend vers une limite lorsque ε tend vers 0^+ .

2. On pose : $\langle \operatorname{pf}(x^{\alpha}), \varphi \rangle = \lim_{\varepsilon \to 0^{+}} R_{\varepsilon}$. Montrer que $\operatorname{pf}(x^{\alpha})$ est une distribution d'ordre au plus 1.

Exercice 9

Soit u une fonction continue sur $\mathbb{R}^n \setminus \{0\}$ telle que

$$\forall t > 0, \ \forall x \in \mathbb{R}^n \setminus \{0\}, \ u(tx) = t^{-n} \ u(x).$$

1. Soient $\varepsilon > 0$ et $\varphi \in C_0^{\infty}(\mathbb{R}^n)$. On pose

$$I_{\varepsilon}(\varphi) = \int_{|x| > \varepsilon} u(x)\varphi(x) dx.$$

Montrer que $\lim_{\varepsilon\to 0^+} I_{\varepsilon}(\varphi)$ existe pour toute $\varphi\in C_0^{\infty}(\mathbb{R}^n)$ si et seulement si

$$\int_{|\omega|=1} u(\omega) d\omega = 0.$$
 (1)

Indication: Passer en coordonnées polaires $(r, \omega) \in]0, +\infty[\times S^{n-1} \text{ pour } |x| \geq \varepsilon$. Puis utiliser la formule de Taylor avec reste intégral à l'ordre 1.

2. On suppose que la condition (1) est satisfaite. On pose alors, pour toute $\varphi \in C_0^{\infty}(\mathbb{R}^n)$,

$$\langle T, \varphi \rangle = \lim_{\varepsilon \to 0^+} I_{\varepsilon}(\varphi).$$

Montrer que T définit un élément de $\mathcal{D}'(\mathbb{R})$ d'ordre au plus 1.

Exercice 10

Calculer les limites, dans $\mathcal{D}'(\mathbb{R})$, des suites de distributions suivantes :

$$A_n = \sin(nx), \quad B_n = ng(nx) \text{ où } g \in L^1(\mathbb{R}),$$

$$C_n = \frac{1}{n} \sum_{n=0}^{n-1} \delta_{\frac{p}{n}}, \quad D_n = e^{\mathrm{i}nx} \mathrm{vp}\left(\frac{1}{x}\right).$$

Exercice 11

On note T_n , pour tout $n \in \mathbb{N}$, la distribution associée à la fonction localement intégrable $t \mapsto \frac{\sin(nt)}{\pi t}$. Montrer que la suite $(T_n)_{n \in \mathbb{N}}$ converge dans $\mathcal{D}'(\mathbb{R})$ vers la distribution δ_0 . Indication : on pourra se servir de l'identité $\int_0^\infty \frac{\sin t}{t} dt = \frac{\pi}{2}$

Exercice 12

Montrer que la suite de distributions $(T_n)_{n\geq 1}$ définie par:

$$\forall n \geq 1, \ T_n = n(\delta_{\frac{1}{n}} - \delta_{-\frac{1}{n}}),$$

converge dans $\mathcal{D}'(\mathbb{R})$. L'ordre de la limite d'une suite de distributions d'ordre m est-il toujours m?

Exercice 13

Soit $N \in \mathbb{N}$. On pose :

$$F_N: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{C} \\ t & \mapsto & \frac{1}{2\pi} \sum_{k=-N}^N e^{\mathrm{i}kt} \end{array} \in L^1_{\mathrm{loc}}(\mathbb{R}).$$

On note T_N la distribution associée à F_N .

1. Montrer que, pour tout $t \in \mathbb{R} \setminus 2\pi\mathbb{Z}$,

$$F_N(t) = \frac{1}{2\pi} \frac{\sin(\frac{(2N+1)t}{2})}{\sin\frac{t}{2}}.$$

2. Soit $M \in \mathbb{N}$. Soit $\varphi \in \mathcal{D}$ dont le support est inclus dans $[-(2M+1)\pi, (2M+1)\pi]$. Montrer que :

$$\langle T_N, \varphi \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(\frac{(2N+1)t}{2})}{\sin\frac{t}{2}} \phi(t) dt,$$

où, pour tout $t \in \mathbb{R}$, $\phi(t) = \sum_{k=-M}^{M} \varphi(t + 2k\pi)$.

3. En écrivant $\phi(t) = \phi(0) + t\psi(t)$ où ψ est de classe C^{∞} , montrer que la suite $(T_N)_{N \in \mathbb{N}}$ converge dans $\mathcal{D}'(\mathbb{R})$ vers la distribution $\sum_{n \in \mathbb{Z}} \delta_{2\pi n}$.

Exercice 14

Soit Ω un ouvert de \mathbb{R} . Une série de distributions $\sum T_n$ est dite convergente dans $\mathcal{D}'(\Omega)$ lorsque la suite des sommes partielles l'est.

Soit $(a_n)_{n\geq 1}$ une suite de nombres réels.

- **1.** Montrer que la série $\sum_{n\geq 1} a_n \delta_{\frac{1}{n}}$ converge dans $\mathcal{D}'([0,+\infty[)])$.
- 2. Montrer que si la série $\sum_{n\geq 1} a_n \delta_{\frac{1}{n}}$ converge dans $\mathcal{D}'(\mathbb{R})$ alors la série numérique $\sum_{n\geq 1} a_n$ converge. 3. On suppose désormais que $\sum_{n\geq 1} a_n$ converge. On
- **3.** On suppose désormais que $\sum_{n\geq 1}^{n} a_n$ converge. On pose pour tout $N\geq 1$, $A_N=\sum_{n=1}^{N} a_n$ et $A_0=0$, de telle manière que $a_n=A_n-A_{n-1}$ pour tout $n\geq 1$.
- a. Montrer que si $\varphi \in \mathcal{D}$ alors la série numérique

$$\sum_{n>1} A_n \left(\varphi \left(\frac{1}{n} \right) - \varphi \left(\frac{1}{n+1} \right) \right)$$

converge.

b. En déduire que $\sum_{n>1} a_n \delta_{\frac{1}{n}}$ converge dans $\mathcal{D}'(\mathbb{R})$.