Feuille de TD 3 : Distributions - Opérations.

I. Multiplication par une fonction C^{∞}

Exercice 1

Soit T une distribution sur \mathbb{R}^n et f une fonction de classe C^{∞} sur \mathbb{R}^n , à valeurs dans \mathbb{R} .

- **1.** Montrer que si fT = 0, alors le support de T est inclus dans l'ensemble $Z(f) = \{x \in \mathbb{R}^n, f(x) = 0\}.$
- **2.** On suppose de plus que T est d'ordre 0. Montrer qu'alors la réciproque est vraie : si le support de T est inclus dans l'ensemble $Z(f)=\{x\in\mathbb{R}^n,\ f(x)=0\}$ alors fT=0.
- 3. En prenant $T = \delta'$, montrer que la réciproque est fausse en général si T n'est pas d'ordre 0.
- 4. Caractériser les fonctions f de classe C^{∞} sur $\mathbb R$ telles que $f\delta'=0$.

Exercice 2

Soit $T \in \mathcal{D}'(\mathbb{R})$. Montrer que $(\sin x)T = 0$ si et seulement s'il existe une suite $(c_n)_{n \in \mathbb{Z}}$ de nombres complexes telle que,

$$T = \sum_{n \in \mathbb{Z}} c_n \delta_{n\pi}.$$

On pourra s'aider des résultats obtenus en cours sur la distribution vp $(\frac{1}{x})$.

II. Dérivation dans \mathcal{D}'

Exercice 3

Montrer que, dans $\mathcal{D}'(\mathbb{R})$,

$$\operatorname{vp}\left(\frac{1}{x}\right)' = \operatorname{Pf}\left(\frac{1}{x^2}\right).$$

où, pour toute $\varphi \in \mathcal{D}$,

$$\langle \operatorname{Pf}\left(\frac{1}{x^2}\right), \varphi \rangle = \lim_{\varepsilon \to 0} \left(\int_{|x| > \varepsilon} \frac{\varphi(x)}{x^2} \, \mathrm{d}x - \frac{2\varphi(0)}{\varepsilon} \right).$$

Exercice 4

- **1.** Soit $T \in \mathcal{D}'(\mathbb{R})$. Calculer (xT)'.
- **2.** Résoudre, dans $\mathcal{D}'(\mathbb{R})$, l'équation différentielle :

$$xT' + T = 0.$$

Exercice 5

Soit I =]a, b[et f et g deux fonctions de classe C^{∞} sur I. On se propose de montrer que si $T \in \mathcal{D}'(I)$ vérifie T' + fT = g au sens des distributions, alors T est donnée par une fonction C^{∞} sur I qui vérifie cette équation différentielle au sens usuel.

- 1. Trouver une solution u_0 de u' + fu = g qui soit de classe C^{∞} sur I.
- **2.** Conclure en mettant toute solution de T' + fT = g sous la forme $T = u_0 + Se^{-F}$ où F est une primitive de f et S une distribution à déterminer.

Exercice 6

Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par :

$$\forall x \in \mathbb{R}, \ f(x) = \begin{cases} -2 & \text{si } x \le -2\\ 5 & \text{si } x \in] -2, 0 \\ 1 & \text{si } x > 0. \end{cases}$$

- 1. Justifier que la fonction f est localement intégrable sur \mathbb{R} . On note T_f la distribution associée à f.
- **2.** Calculer la dérivée de T_f dans $\mathcal{D}'(\mathbb{R})$.

Exercice 7

On considère l'opérateur différentiel $P = \frac{d^2}{dx^2} + a\frac{d}{dx} + b$, $a, b \in \mathbb{R}$, agissant sur $\mathcal{D}'(\mathbb{R})$.

Soient f et g deux fonctions de classe C^2 sur \mathbb{R} telles que Pf = Pg = 0, f(0) = g(0) et f'(0) - g'(0) = 1. On considère la fonction h définie par

$$\forall x \in \mathbb{R}, \ h(x) = \left\{ \begin{array}{ll} f(x) & \text{si} & x \le 0 \\ g(x) & \text{si} & x > 0. \end{array} \right.$$

Soit enfin T la distribution définie par,

$$\forall \varphi \in \mathcal{D}, < T, \varphi > = -\int_{\mathbb{R}} h(x)\varphi(x) dx.$$

Montrer que $PT = \delta_0$, au sens des distributions.

Exercice 8

- 1. Résoudre, dans l'ensemble des fonctions localement intégrables sur \mathbb{R} , l'équation différentielle : 2xu'-u=0.
- **2.** Soit $T \in \mathcal{D}'(\mathbb{R})$ une solution de l'équation 2xT' T = 0. Soit T_1 sa restriction à $\mathcal{D}'(\mathbb{R}_+^*)$ et soit T_2 sa restriction à $\mathcal{D}'(\mathbb{R}_+^*)$.
- **a.** Calculer T_1 et T_2 .
- **b.** Soit $S = T T_1 T_2$. Vérifier que le support de S est inclus dans $\{0\}$.

- **c.** Soit $R = \sum_{k=0}^{p} a_k \delta^{(k)} \in \mathcal{D}'(\mathbb{R})$ où les a_k sont dans \mathbb{C} . Montrer que : $2xR' R = 0 \iff R = 0$.
- **d.** En déduire les solutions dans $\mathcal{D}'(\mathbb{R})$ de l'équation 2xT'-T=0.
- **3.** Résoudre, dans $\mathcal{D}'(\mathbb{R})$, l'équation différentielle :

$$2xT' - T = \delta_0.$$

Exercice 9

Soit h un C^1 -difféomorphisme de $\mathbb R$ dans $\mathbb R$. Soit T l'application linéaire de $C_0^\infty(\mathbb R^2)$ dans $\mathbb C$ définie par :

$$\forall \varphi \in \mathcal{D}, < T, \varphi > = \int_{\mathbb{R}} \varphi(x, h(x)) \, dx.$$

- 1. Montrer que $T \in \mathcal{D}'(\mathbb{R}^2)$. Quel est son ordre?
- **2.** Déterminer le support de T.
- **3.** En déduire qu'il n'existe pas de fonction continue sur \mathbb{R}^2 telle que T soit la distribution associée à cette fonction.
- **4.** Calculer, au sens des distributions, $(\partial_x + h'(x)\partial_y)T$.

Exercice 10 - Équation de Cauchy-Riemann

On considère sur $\mathbb{R}^2 \setminus \{0\}$ la fonction donnée par :

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{0\}, \ f(x,y) = (x + iy)^{-1}.$$

- **1.** Montrer que $f \in L^1_{loc}(\mathbb{R}^2)$.
- **2.** Soit $\bar{\partial}$ l'opérateur de Cauchy-Riemann défini par : $\bar{\partial} = \frac{1}{2}(\partial_x + i\partial_y)$. Calculer $\bar{\partial} f$ dans $\mathcal{D}'(\mathbb{R}^2)$.

Indication : on pensera à effectuer un changement de variables en coordonnées polaires.

Exercice 11

Calculer les dérivées partielles de la distribution

$$1_{\mathbf{x}+\mathbf{y}>\mathbf{0}} \in \mathcal{D}'(\mathbb{R}^2).$$

III. Convolution dans \mathcal{D}'

Exercice 12

- **1.** Calculer $\delta'_0 \star \delta'_0$ pour $\delta_0 \in \mathcal{D}'(\mathbb{R})$.
- **2.** Soient $a, b \in \mathbb{R}$. Calculer $\delta'_a \otimes \delta'_b$ dans $\mathcal{D}'(\mathbb{R}^2)$.
- **3.** Soit $T \in \mathcal{D}'(\mathbb{R})$. Montrer qu'il existe une distribution $E \in \mathcal{D}'(\mathbb{R})$, à support compact, telle que $E \star T = T^{(k)}$.
- **4.** Soient T et S dans $\mathcal{D}'(\mathbb{R})$, S étant supposée à support compact. Pour $n \in \mathbb{N}$, on désigne par X^n la fonction de \mathbb{R} dans \mathbb{R} , $x \mapsto x^n$. Démontrer la formule suivante :

$$X^n(T\star S) = \sum_{k=0}^n C_n^k(X^kT)\star (X^{n-k}S).$$

Exercice 13

On note $\mathcal{D}'_{+}(\mathbb{R}) = \{T \in \mathcal{D}'(\mathbb{R}); \text{supp } T \subset [0, +\infty[\}] \}$. Soit $\chi \in C^{\infty}(\mathbb{R})$ telle que, $\chi = 1 \text{ sur }] - \frac{1}{2}, +\infty[$ et $\chi = 0 \text{ sur }] - \infty, -1[$.

1.a. Soit $\varphi \in C_0^{\infty}(\mathbb{R})$. Montrer que l'application

$$\varphi^{\Delta}: (x,y) \mapsto \chi(x)\chi(y)\varphi(x+y),$$

est dans $C_0^{\infty}(\mathbb{R}^2)$.

b. Soient $T, S \in \mathcal{D}'_{+}(\mathbb{R})$. On définit

$$< T \star S, \varphi > = < T_x \otimes S_y, \varphi^{\Delta} > .$$

Montrer que $T\star S$ est bien définie et est indépendante du choix de χ .

- **c.** Montrer que $T \star S \in \mathcal{D}'_{+}(\mathbb{R})$.
- **2.** On dit que $T\in \mathcal{D}'_+(\mathbb{R})$ est inversible, s'il existe $S\in \mathcal{D}'_+(\mathbb{R})$ telle que $T\star S=\delta_0$. On note $S=T^{-1}$.
- a. Montrer que δ_0' est inversible et calculer son inverse.
- **b.** Montrer que, si $T \in C_0^{\infty}(]0, +\infty[)$, T n'est pas inversible.