Partiel du 2 mars 2010

Durée 2 heures 30

Les documents, calculatrices et téléphones portables sont interdits.

Les trois exercices sont indépendants.

Exercice 1

Les cinq questions sont indépendantes.

- 1) Quels sont les nombres premiers impairs $p \neq 7$ tels que $7 + p\mathbb{Z}$ soit un carré dans \mathbb{F}_p ?
- 2) Soit p un nombre premier impair. Dans l'anneau $\mathbb{F}_p[X]$ posons $F = X^4 + 4$.
 - 2.1) Supposons $p \equiv 3 \mod 4$. Montrer que F est le produit de deux polynômes irréductibles de degré $2 \det \mathbb{F}_p[X]$.
 - 2.2) Supposons $p \equiv 1 \mod 4$. Montrer que F a toutes ses racines dans \mathbb{F}_p .
 - 2.3) Si p = 13, expliciter les racines de F dans \mathbb{F}_{13} .
- 3) Dans l'anneau $\mathbb{Z}[X]$ posons $F = X^4 X^2 + 1$. Soit p un nombre premier. On suppose qu'il existe un entier $n \in \mathbb{N}$ tel que p divise F(n). On se propose d'établir que l'on a $p \equiv 1 \mod 12$.
 - 3.1) Montrer que p ne divise pas 6n.
 - 3.2) Montrer que F divise $X^6 + 1$ et donc $X^{12} 1$.
 - 3.3) Quel est le reste de la division euclidienne de X^6-1 par F ? Quel est celui de F par X^2+1 ?
 - 3.4) En déduire que p ne divise pas $(n^4 1)(n^6 1)$.
 - 3.5) En déduire l'ordre de la classe de n dans \mathbb{F}_p^* et le fait que 12 divise p-1.
- 4) Soit p un nombre premier congru à 1 modulo 4. Pour tout k compris entre 1 et p-1, l'expression $\left(\frac{k}{p}\right)$ désigne le symbole de Legendre. Montrer que l'on a

$$\sum_{k=1}^{p-1} k\left(\frac{k}{p}\right) = 0.$$

Indication : on pourra remarquer que l'application qui à k associe p-k est une bijection de $\{1, \dots, p-1\}$.

5) Rappeler la définition d'un entier pseudo-premier (ou pseudo-premier en base 2). Soit p un nombre premier. Démontrer l'équivalence

$$p^2$$
 est pseudo-premier $\iff 2^{p-1} \equiv 1 \mod p^2$.

Exercice 2

Soit K un corps fini de cardinal q. Étant donné un polynôme $F \in K[X]$, on note

$$\widetilde{F}:K\to K$$

la fonction polynôme qui lui est associée. Rappelons que si $F = \sum a_i X^i \in K[X]$, alors pour tout $x \in K$ on a $\widetilde{F}(x) = \sum a_i x^i \in K$.

1) Soient P et Q des polynômes de K[X] de degrés strictement plus petits que q. Montrer que l'on a

$$P=Q\Longleftrightarrow \widetilde{P}=\widetilde{Q}.$$

- 2) Soit $f: K \to K$ une application. Montrer qu'il existe un unique polynôme $F \in K[X]$ de degré strictement plus petit que q tel que l'on ait $f = \widetilde{F}$.
- 3) En déduire le nombre de polynômes de K[X] de degrés strictement plus petits que q qui n'ont aucune racine dans K.

Considérons un entier $n \geq q$.

- 4) Soit $R \in K[X]$ un polynôme de degré strictement plus petit que q. Quel est le nombre de polynômes $F \in K[X]$, unitaires de degré n, satisfaisant la condition suivante : le reste de la division euclidienne de F par $X^q X$ est R.
- 5) En déduire le nombre de polynômes unitaires de degré n de K[X] qui n'ont aucune racine dans K.
- 6) Expliciter les polynômes de degré 4 de $\mathbb{F}_2[X]$ qui n'ont aucune racine dans \mathbb{F}_2 .

Exercice 3

- 1) Montrer $5 + 23\mathbb{Z}$ est une générateur du groupe \mathbb{F}_{23}^* .
- 2) Deux personnes, Alice et Bob souhaitent se construire une clé secrète commune pour chiffrer leur correspondance, avec le protocole de Diffie-Hellman, en utilisant le couple public

$$(\mathbb{F}_{23}, 5 + 23\mathbb{Z}).$$

Pour cela, Alice transmet à Bob l'élément $9 + 23\mathbb{Z}$ et Bob transmet à Alice l'élément $3 + 23\mathbb{Z}$. Quelle est leur clé secrète commune ?